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Abstract. Hyperspectral image (HSI) classification is a focus area in remote sensing research,
wherein redundant spectral information poses a significant challenge and deep-learning-based
classifiers have achieved better performance than traditional methods have. Training a deep-
learning-based classifier requires numerous labeled samples. However, collecting such a sub-
stantial amount of labeled hyperspectral data is difficult. Semisupervised classification of
HSIs has thus received increasing attention, where semisupervised learning classifiers function
based on labeled and unlabeled data. A new training method for semisupervised HSI classifi-
cation is proposed. Specifically, consistency regularization and pseudolabeling are combined as
a semisupervised training framework, without the introduction of a complex mechanism. Our
proposed algorithm can work without the need to change the conventional convolutional neural
network model architecture. Unlike previous deep-learning-based methods, our approach does
not require data reconstruction to obtain unsupervised loss. This means that our model can be
much less computationally intensive. From the results of experiments on three public hyper-
spectral datasets, our proposed method outperforms several state-of-the-art methods. © The
Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License.
Distribution or reproduction of this work in whole or in part requires full attribution of the original
publication, including its DOI. [DOI: 10.1117/1.JRS.16.026513]
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1 Introduction

Hyperspectral image (HSI) classification is a subject garnering very high research attention
in hyperspectral remote sensing. HSIs can provide rich spectral and spatial information, which
improves their utility in various applications. However, the abundant spectral information also
leads to low classification accuracy, which is termed the Hughes phenomenon. On the contrary,
limited labeled hyperspectral samples also lead to difficulty in HSI classification. In the real
world, increasing quantities of hyperspectral data are becoming available with the development
of information acquisition technology. However, most of these data are unlabeled, and labeling
the data is extremely laborious and time-consuming. Nevertheless, semisupervised learning
(SSL) methods can achieve good performance via usage of a large volume of unlabeled data
and a small amount of labeled data. Thus, SSL methods are increasingly being proposed to
address this challenge.

In the early stages of semisupervised HSI classification, several traditional methods have
been applied. For instance, the transductive support-vector machine (SVM) was proposed for
semisupervised HSI classification.1 Gomez-Chova et al.2 used the Laplacian SVM (LapSVM)
by introducing the graph Laplacian matrix to process unlabeled data. Yang et al.3 designed the
spatiospectral Laplacian SVM by considering both spatial and spectral information.
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Recently, deep learning has shown great potential for use in computer vision4,5 and HSI
classification. In this regard, Zhang et al.6 proposed a spectral–spatial residual network consist-
ing of spectral and spatial residual blocks to extract spectral and spatial features. By replacing the
residual network with the densely connected structure and using different convolution kernel
sizes, Wang et al.7 proposed a fast dense spectral–spatial convolution network.

Although previous studies on deep learning for supervised HSI classification with a small
number of training samples have achieved noteworthy success, these studies could not use unla-
beled data to enhance the classification performance. Thus, designing a semisupervised method
based on deep learning is of great value, and ladder networks have been introduced to deep
learning for semisupervised HSI classification.8 Fang et al.9 employed the cotraining method
with a model based on ResNets.10 However, such methods require the addition of new parts
to the model or designing of multiple models, which increases the computational effort.

Most recently, a new semisupervised method called Fixmatch11 has emerged as the state-of-
the-art semisupervised framework in computer vision. This method works using existing con-
volutional neural network (CNN) models, and changes to the model structure are unnecessary.
It comprises two components: consistency regularization and pseudolabeling. The consistency
regularization component depends on data augmentation. However, many classical data augmen-
tation methods in the computer vision field cannot be applied to HSIs directly. For example,
color distortion, a classical image augmentation method, is not suitable for HSIs because it
changes the spectral information. Consequently, HSI data augmentation has not been sufficiently
researched. We therefore attempted to apply data augmentation for HSI semisupervised classi-
fication and designed a simple SSL framework for HSI classification.

In this paper, inspired by Fixmatch,11 we propose a semisupervised method for HSI classi-
fication. Semisupervised methods for HSI classification can work with both labeled and unla-
beled data, which is of high practical significance. Because labeling HSI data is time-consuming
and labor-intensive. The contributions of this study are as follows:

1. We propose a method for semisupervised HSI classification based on consistency regu-
larization and pseudolabeling. The pseudolabels are produced based on the original
image which work as targets when the augmented images are fed into the model. In
our method, both the original image and the augmented image are used when performing
consistency regularization.

2. Our proposed algorithm couples the SSL with conventional CNN without the need to
change the model structure.

3. We explore the use of data augmentation on HSI semisupervised classification, where the
consistency regularization relies on data augmentation. We adjust data augmentation
methods to make the consistency regularization available for HSI classification. We
modifiy the classical Cutout12 method to prevent it from removing the spectral informa-
tion of the center pixel and combine it with horizontal or vertical flip as our augmentation
method. Our experiments prove that the proposed method is superior to the state-of-the-
art approach.

The remainder of this paper is organized as follows: Sec. 2 describes our proposed method in
detail. The experimental results for the three datasets are shown in Sec. 3. Finally, Sec. 4 provides
the conclusions.

2 Proposed Method

Our proposed method comprises two crucial elements, consistency regularization, and pseudo-
labeling, which will be introduced separately. Next, a summary of our proposed models is
presented.

2.1 Consistency Regularization

Consistency regularization13 is a vital component of many state-of-the-art SSL algorithms. The
working fundamentals of consistency regularization are based on the assumption that the model
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should yield consistent results when inputs are different visions of the same data. The model is
trained with a supervised loss and an unsupervised loss. The unsupervised loss is formulated as

EQ-TARGET;temp:intralink-;e001;116;592kpmodelðyjAugmentðxÞ; θÞ − pmodelðyjAugmentðxÞ; θÞk22: (1)

The AugmentðxÞ is a stochastic transformation. Thus, the two terms in Eq. (1) are not equal.

2.2 Pseudolabeling

Pseudolabeling14 is also a typical semisupervised method. It relies on the model to give labels
(the argmax of the model’s output) for unlabeled data. Only the labels whose largest probability
exceeds a predefined threshold are retained. The pseudolabeling process employs the following
loss function:

EQ-TARGET;temp:intralink-;e002;116;463

1

μB

XμB

b¼1

1ðmaxðqbÞ ≥ τÞHðq̂b; qbÞ; (2)

where qb ¼ pmðyjubÞ, q̂b ¼ argmaxðqbÞ, and τ is the threshold.

2.3 Summary of Our Proposed Model

The complete architecture is shown in Fig. 1. In our model, the loss function consists of two
elements, supervised loss ls and unsupervised loss lu. ls refers to the standard cross-entropy
loss, and lu is formulated as

EQ-TARGET;temp:intralink-;e003;116;328lu ¼
1

μB

XμB

b¼1

1ðmaxðqbÞ ≥ τÞHðq̂b; pmðyjAðubÞÞÞ: (3)

where qb ¼ pmðyjubÞ and q̂b ¼ argmaxðqbÞ. ub represents the unlabeled data, and AðubÞ rep-
resents the augmented unlabeled data. The loss function of our method is defined as

EQ-TARGET;temp:intralink-;e004;116;253l ¼ ls þ λulu; (4)

where λu is the weight parameter.
All the above equations were gained from Ref. 11. The augmentation method is illustrated in

Algorithm 1. The size of the submatrix in Algorithm 1 is not fixed.

3 Experimental Results

3.1 Experimental Datasets and Parameter Setup

We conducted experiments on three popular hyperspectral datasets: Indian Pines, Pavia
University, and Salinas, as shown in Fig. 2.

The Indian Pines image was acquired by the Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) in 1992 from northwestern Indiana. It contains 145 × 145 pixels with 224 spectral

Fig. 1 The overall architecture of our proposed framework.
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bands in the wavelength range of 0.4 to 2.5 μm. Considering the water absorption effect, the
researchers removed 24 bands, and the 10,249 labeled pixels were grouped into 16 classes.

The University of Pavia scene was acquired by the Reflective Optics System Imaging
Spectrometer in 2002 over Pavia, northern Italy. The image contains 610 × 340 pixels with
103 spectral bands. The spectral wavelength ranges from 0.43 to 0.86 μm. The 42,776 labeled
pixels were classified into nine categories.

The Salinas dataset was acquired by the AVIRIS sensor over Salinas Valley, California. The
data cube size is 512 × 217 × 224 with the wavelength range from 0.4 to 2.5 μm. Twenty water
absorption bands were discarded, and 200 bands were available for analysis. The 54,129 labeled
pixels were divided into 16 categories.

All the experiments were performed using the RTX Titan GPU. The learning rate was 0.0001,
and the minibatches had a size of 256. The model was trained using the Adam optimizer for
150 epochs. The unsupervised loss weight parameter was min(0.01 × epoch, 1), and the thresh-
old was 0.98. According to Fixmatch,11 we think a high threshold value is necessary to ensure a
high level of accuracy. We chose 0.9, 0.94, and 0.98 as the range of the threshold value. We chose
hybridSN15 as the backbone network. The input formats were also the same as in Ref. 15,
25 × 25 × 30 for the Indian Pines, and 25 × 25 × 15 for the Pavia University and Salinas images.
Principal component analysis was used to reduce the data dimensions. We compare our proposed

Fig. 2 (a) False-color Indian Pines image. (b) False-color Salinas image. (c) False-color University
of Pavia image.

Algorithm 1 Selecting random rectangular area to remove spectral information

1: Input: input image I; image size w × h × c.

2: Output: augmented image I�.

3: Randomly flip the input image I horizontally or vertically

4: Generate a matrix of the size (w × h) using 1

5: Select a random submatrix in this matrix and change the elements inside to 0

6: if the center point of the matrix is in the submatrix then

7: change the element of that point to 1

8: end if

9: for i ¼ 1 to c do

10: multiply the image in the i ’th channel by this matrix to obtain the augmented image I�

11: end for

12: Return the augmented image I�
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model with five methods, including four traditional methods and one deep-learning-based
method. The traditional methods are mentioned in Ref. 16: transductive SVM,17 local and global
consistency graph-based algorithm (LGC),18 label propagation algorithm (LPA),19 and label
propagation algorithm combined with particle cooperation and competition (LPAPCC).16

The deep-learning-based method is SS-CNN.8 This model requires data reconstruction to obtain
unsupervised loss. We trained this model for the same number of epochs as our model. The
training and testing samples are the same as in Ref. 16, as shown in Tables 1–3. The percentages
in parentheses are the corresponding ratios.

3.2 Analysis of Classification Results

The classification results over three HSI datasets are listed in Tables 4–6. The results of the
traditional methods as shown in these tables are obtained from Ref. 16. The best values are
marked in bold. We conducted the experiments five times consecutively. The numbers after the
plus-minus signs are the standard deviations of the corresponding metrics. In this paper, the
overall classification accuracy (OA), average classification accuracy (AA), and kappa coefficient
(Kappa) are adopted as model performance evaluation metrics. The OA is the ratio of the cor-
rectly classified samples to all the test samples. The AA denotes the average classification accu-
racy in each category. Finally, Kappa is the measure of agreement between the ground truth and
classification and is interpreted as follows: <0.2, poor agreement; 0.2 to 0.4, fair agreement; 0.4
to 0.6, moderate agreement; 0.6 to 0.8, good agreement; and 0.8 to 1, excellent agreement.

As shown in Tables 4–6, our proposed method achieved the best performance over three
experimental datasets. The AA of our model is much better than that of the other contrast meth-
ods. This means that our method is applicable to unbalanced data. Considering that our model
did not achieve the highest classification accuracy on some kinds of samples, we think this

Table 1 Training and testing samples for Indian Pines.

No. Name Labeled Unlabeled Test Total

1 Alfalfa 5 (10.87%) 8 (17.39%) 33 (71.74%) 46 (100%)

2 Corn-notill 42 (2.94%) 386 (27.03%) 1000 (70.03%) 1428 (100%)

3 Corn-mintill 24 (2.89%) 225 (27.11%) 581 (70.00%) 830 (100%)

4 Corn 7 (2.95%) 64 (27.00%) 166 (70.04%) 237 (100%)

5 Grass-pasture 14 (2.90%) 130 (26.92%) 339 (70.19%) 483 (100%)

6 Grass-trees 21 (2.88%) 198 (27.12%) 511 (70.00%) 730 (100%)

7 Grass-pasture-mowed 5 (17.86%) 3 (10.71%) 20 (71.43%) 28 (100%)

8 Hay-windrowed 14 (2.93%) 129 (26.99%) 335 (70.08%) 478 (100%)

9 Oats 5 (25.00%) 1 (5.00%) 14 (70.00%) 20 (100%)

10 Soybean-notill 29 (2.98%) 262 (26.95%) 681 (70.06%) 972 (100%)

11 Soybean-mintill 73 (2.97%) 663 (27.01%) 1719 (70.02%) 2455 (100%)

12 Soybean-clean 17 (2.87%) 160 (26.98%) 416 (70.15%) 593 (100%)

13 Wheat 6 (2.93%) 55 (26.83%) 144 (70.24%) 205 (100%)

14 Woods 37 (2.92%) 342 (27.04%) 886 (70.04%) 1265 (100%)

15 Buildings-grass-trees-drives 11 (2.85%) 104 (26.94%) 271 (70.21%) 386 (100%)

16 Stone-steel-towers 5 (5.38%) 22 (23.66%) 66 (70.97%) 93 (100%)

Total 315 (3.07%) 2752 (26.85%) 7182 (70.08%) 10,249 (100%)
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additionally reflects the high stability of our method. According to the Kappa results, our pro-
posed method performs well on the three datasets. This method achieved the highest classifi-
cation accuracy on six of the nine classes in the Pavia University dataset. These results further
confirm the superiority of our proposed method.

From the above results shown in Tables 4–6, we can reach several conclusions. First, our
proposed method shows the most accurate and stable performance. Second, from a comparison

Table 2 Training and testing samples for Pavia University.

No. Name Labeled Unlabeled Test Total

1 Asphalt 99 (1.49%) 1890 (28.50%) 4642 (70.00%) 6631 (100%)

2 Meadows 279 (1.50%) 5315 (28.50%) 13,055 (70.00%) 18,649 (100%)

3 Gravel 31 (1.48%) 598 (28.49%) 1470 (70.03%) 2099 (100%)

4 Trees 45 (1.47%) 874 (28.52%) 2145 (70.01%) 3064 (100%)

5 Painted metal sheets 20 (1.49%) 383 (28.48%) 942 (70.04%) 1345 (100%)

6 Bare soil 75 (1.49%) 1433 (28.49%) 3521 (70.01%) 5029 (100%)

7 Bitumen 19 (1.43%) 380 (28.57%) 931 (70.00%) 1330 (100%)

8 Self-blocking bricks 55 (1.49%) 1049 (28.49%) 2578 (70.02%) 3682 (100%)

9 Shadows 14 (1.48%) 270 (28.51%) 663 (70.01%) 947 (100%)

Total 637 (1.49%) 12,192 (28.50%) 29,947 (70.01%) 42,776 (100%)

Table 3 Training and testing samples for Salinas.

No. Name Labeled Unlabeled Test Total

1 Brocoli-green-weeds-1 12 (0.60%) 590 (29.37%) 1407 (70.03%) 2009 (100%)

2 Brocoli-green-weeds-2 22 (0.59%) 1095 (29.39%) 2609 (70.02%) 3726 (100%)

3 Fallow 11 (0.56%) 581 (29.40%) 1384 (70.04%) 1976 (100%)

4 Fallow-rough-plow 8 (0.57%) 410 (29.41%) 976 (70.01%) 1394 (100%)

5 Fallow-smooth 16 (0.60%) 787 (29.39%) 1875 (70.01%) 2678 (100%)

6 Stubble 23 (0.58%) 1164 (29.40%) 2772 (70.02%) 3959 (100%)

7 Celery 21 (0.59%) 1052 (29.39%) 2506 (70.02%) 3579 (100%)

8 Grapes-untrained 67 (0.59%) 3314 (29.40%) 7890 (70.00%) 11,271 (100%)

9 Soil-vineyard-develop 37 (0.60%) 1823 (29.39%) 4343 (70.01%) 6203 (100%)

10 Corn-senesced-green-weeds 19 (0.58%) 964 (29.41%) 2295 (70.01%) 3278 (100%)

11 Lettuce-romaine-4wk 6 (0.56%) 314 (29.40%) 748 (70.04%) 1068 (100%)

12 Lettuce-romaine-5wk 11 (0.57%) 567 (29.42%) 1349 (70.01%) 1927 (100%)

13 Lettuce-romaine-6wk 5 (0.55%) 269 (29.37%) 642 (70.09%) 916 (100%)

14 Lettuce-romaine-7wk 6 (0.56%) 315 (29.44%) 749 (70.00%) 1070 (100%)

15 Vineyard-untrained 43 (0.59%) 2137 (29.40%) 5088 (70.01%) 7268 (100%)

16 Vineyard-vertical-trellis 10 (0.55%) 532 (29.44%) 1265 (70.01%) 1807 (100%)

Total 317 (0.59%) 15,914 (29.40%) 37,898 (70.01%) 54,129 (100%)
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Table 4 Classification results on Indian Pines.

Class names TSVM LGC LPA LPAPCC SS-CNN Proposed

Alfalfa 0.7251 0.4371 0.0478 0.0547 0.94� 0.06 0.97� 0.03

Corn-notill 0.8698 0.514 0.9421 0.9587 0.68� 0.04 0.86� 0.03

Corn-mintill 0.7214 0.5599 0.9326 0.9228 0.71� 0.01 0.89� 0.02

Corn 0.8806 0.4205 0.931 0.9574 0.95� 0.03 0.87� 0.05

Grass-pasture 0.9737 0.8059 0.9955 0.9851 0.93� 0.05 0.90� 0.06

Grass-trees 0.944 0.7727 0.9758 0.987 0.87� 0.01 0.96� 0.02

Grass-pasture-mowed 0.3597 0.4289 0.6609 0.5325 0.61� 0.17 0.89� 0.05

Hay-windrowed 0.9983 0.9413 1 1 0.94� 0.01 0.98� 0.02

Oats 0.5356 0.1723 0.818 0.8862 0.60� 0.09 0.68� 0.11

Soybean-notill 0.8255 0.5348 0.9337 0.936 0.70� 0.06 0.90� 0.01

Soybean-mintill 0.8613 0.5228 0.9599 0.9634 0.70� 0.03 0.95� 0.00

Soybean-clean 0.6773 0.4165 0.9214 0.9344 0.56� 0.08 0.90� 0.10

Wheat 0.9806 0.805 0.9965 0.997 0.95� 0.02 0.97� 0.03

Woods 0.9867 0.8388 0.9977 0.9936 0.89� 0.02 0.96� 0.04

Buildings-grass-trees-drives 0.9345 0.4765 0.9511 0.9522 0.81� 0.07 0.89� 0.11

Stone-steel-towers 0.9757 0.9906 0.9871 0.978 0.97� 0.02 0.88� 0.05

OA 0.8648 0.6188 0.8768 0.8886 0.76� 0.01 0.92� 0.02

AA 0.8281 0.6023 0.8682 0.8776 0.80� 0.01 0.90� 0.01

Kappa 0.8458 0.5534 0.8607 0.8741 0.72� 0.01 0.91� 0.02

Table 5 Classification results on Pavia University.

Class names TSVM LGC LPA LPAPCC SS-CNN Proposed

Asphalt 0.7126 0.5135 0.5332 0.5335 0.91� 0.02 0.97� 0.01

Meadows 0.9123 0.9198 0.9917 0.9915 0.96� 0.01 0.99� 0.00

Gravel 0.6837 0.6265 0.8954 0.9297 0.80� 0.06 0.94� 0.06

Trees 0.8198 0.4756 0.9695 0.9777 0.99� 0.00 0.99� 0.00

Painted metal sheets 0.9572 0.8932 0.996 0.9977 1� 0 0.9851� 0.01

Bare soil 0.8869 0.9445 0.9949 0.996 0.95� 0.02 0.99� 0.00

Bitumen 0.708 0.6068 0.9251 0.9059 0.92� 0.03 0.95� 0.05

Self-blocking bricks 0.6626 0.5431 0.8738 0.8851 0.80� 0.03 0.91� 0.03

Shadows 0.4501 0.2614 0.8894 0.9443 0.99� 0.00 0.96� 0.01

OA 0.8227 0.7295 0.8488 0.8499 0.93� 0.00 0.98� 0.00

AA 0.7548 0.6427 0.8966 0.9068 0.92� 0.00 0.97� 0.01

Kappa 0.7626 0.6502 0.8005 0.802 0.91� 0.01 0.97� 0.00
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with the TSVM results, the deep-learning-based framework proves superior to the traditional
machine learning-based algorithm. Third, the Indian Pines dataset is much more difficult to clas-
sify than the Salinas scene. Moreover, the LGC and LPA results indicate that the single mecha-
nism does not perform well in HSI semisupervised classification. Therefore, methods based on
multiple mechanisms need to be investigated further. Besides, our proposed method gets better
performance than SS-CNN. It indicates that deep-learning-based methods can achieve good
results in HSI semisupervised classification without changing the model architecture. Finally,
the LPAPCC result suggests a significant advantage in using the graph mechanism. In future
work, we will attempt to introduce the graph mechanism to design a semisupervised framework.

3.3 Influence of Data Removal

Data removal is an important part of our augmentation method. Here, to evaluate its effects, we
compare the performance of our proposed method and our method without data removal. The
results are shown in Table 7. As shown in Table 7, our proposed method surpasses the perfor-
mance of our method with image flip only.

Although the enhancement is negligible on the Indian Pines dataset and University of Pavia
dataset, we think it is because that the proportion of unlabeled data in the training data is small.
This can be verified by a larger enhancement in Salinas dataset whose unlabeled data occupy a
relatively larger proportion. However, in the real world, the unlabeled data are much more than
labeled data. We suppose that data removal can have a greater impact on accuracy with a large
proportion of unlabeled data.

Table 6 Classification results on Salinas.

Class names TSVM LGC LPA LPAPCC SS-CNN Proposed

Brocoli-green-weeds-1 0.9378 0.1983 0.2134 0.2174 0.87� 0.23 0.98� 0.02

Brocoli-green-weeds-2 0.975 1 1 1 0.96� 0.02 0.99� 0.00

Fallow 0.9747 0.9877 0.9971 0.9979 0.92� 0.04 0.99� 0.00

Fallow-rough-plow 0.8457 0.9349 0.9922 0.99 0.97� 0.02 0.98� 0.01

Fallow-smooth 0.9696 0.9384 0.9989 0.9978 0.93� 0.05 0.99� 0.00

Stubble 0.9947 1 1 1 1� 0 0.99� 0.00

Celery 0.9649 0.9783 0.9933 0.9956 0.98� 0.01 0.98� 0.03

Grapes-untrained 0.925 0.9944 0.9994 0.9996 0.72� 0.07 0.97� 0.03

Soil-vineyard-develop 0.994 0.6112 0.5211 0.5459 0.98� 0.01 0.99� 0.00

Corn-senesced-green-weeds 0.9827 0.9916 0.9974 0.9948 0.91� 0.02 0.99� 0.00

Lettuce-romaine-4wk 0.9859 1 1 1 0.95� 0.01 0.94� 0.07

Lettuce-romaine-5wk 0.9731 0.9761 0.9937 0.9972 0.95� 0.02 0.99� 0.00

Lettuce-romaine-6wk 0.8525 0.9619 0.997 0.9927 0.98� 0.01 0.90� 0.10

Lettuce-romaine-7wk 0.9383 0.9082 0.9684 0.9815 0.99� 0.00 0.97� 0.02

Vineyard-untrained 0.8584 0.9978 0.9992 0.9991 0.75� 0.15 0.98� 0.00

Vineyard-vertical-trellis 0.9796 0.9606 1 1 0.99� 0.00 0.99� 0.00

OA 0.938 0.7646 0.7555 0.7681 0.85� 0.03 0.98� 0.01

AA 0.947 0.9025 0.9169 0.9193 0.93� 0.01 0.98� 0.01

Kappa 0.931 0.7418 0.7269 0.7433 0.84� 0.04 0.98� 0.01
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3.4 Influence of Parameter

The threshold and the weight of unlabeled loss in our proposed method are important. To find the
best parameters for our proposed method, we conducted several experiments. We compared the
performance of different parameters. The results are presented in Tables 8 and 9. From the results
about different thresholds, we can see our proposed method did not achieve the best accuracy
over Indian Pines. However, the differences are very small. Moreover, our proposed method is
superior to other methods over University of Pavia and Salinas. We can get that the threshold of
0.98 is strongly robust. From the results about different weights, we can easily conclude that our
proposed method achieved the highest accuracy.

Besides, from the results, we can find that the sensitivity of our model to the parameters is
different on different datasets. We suppose the reason is that the proportions of unlabeled data in
the training data are different on different datasets. Because the proportion of unlabeled data in
the training data is small on Indian Pines, the model is not sensitive to these parameters. The
smaller the proportion of unlabeled data in the training data is, the less sensitive the model is to
these parameters.

In summary, it has been shown from these results that the model accuracy is not significantly
affected by the weight and threshold. Our proposed method is very robust and therefore practical
in real-world applications.

Table 7 Classification results of our method without data removal
and our method with data removal.

Dataset Metric Without data removal With data removal

Indian Pines OA 0.91� 0.00 0.92� 0.02

AA 0.91� 0.02 0.90� 0.01

Kappa 0.90� 0.01 0.91� 0.02

University
of Pavia

OA 0.97� 0.00 0.98� 0.00

AA 0.96� 0.00 0.97� 0.01

Kappa 0.97� 0.00 0.97� 0.00

Salinas OA 0.96� 0.03 0.98� 0.01

AA 0.96� 0.02 0.98� 0.01

Kappa 0.95� 0.03 0.98� 0.01

Table 8 Classification results of our method with different thresholds.

Dataset Metric 0.9 0.94 0.98

Indian Pines OA 0.92� 0.01 0.91� 0.02 0.92� 0.02

AA 0.89� 0.01 0.90� 0.03 0.90� 0.01

Kappa 0.91� 0.02 0.90� 0.03 0.91� 0.02

University
of Pavia

OA 0.97� 0.01 0.97� 0.00 0.98� 0.00

AA 0.96� 0.01 0.96� 0.01 0.97� 0.01

Kappa 0.96� 0.01 0.97� 0.00 0.97� 0.00

Salinas OA 0.96� 0.01 0.96� 0.01 0.98� 0.01

AA 0.95� 0.03 0.95� 0.03 0.98� 0.01

Kappa 0.96� 0.01 0.95� 0.02 0.98� 0.01
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4 Conclusions

A deep-learning-based framework for HSI semisupervised classification is proposed in this
paper. The framework is composed of two components: consistency regularization and pseudo-
labeling. It is used on existing CNN models to enable them to utilize unlabeled data. Unlike the
case in previous research, a simpler SSL framework is proposed herein, and no complex mecha-
nism is introduced. The proposed method’s loss consists of supervised and unsupervised losses.
The unsupervised loss is essentially the cross-entropy loss based on the augmented version of
unlabeled data. The label is based on the output of the corresponding unlabeled data. Our pro-
posed algorithm can work without the need to change the conventional CNN model architecture.
Besides, unlike previous deep-learning-based methods, our approach does not require data
reconstruction to obtain unsupervised loss. Therefore, our model can be much less computation-
ally intensive. Our experiments demonstrate that the proposed method can achieve high clas-
sification accuracy and outperform state-of-the-art methods, while being robust to model
parameters.

In future work, we will propose a better data augmentation method for HSI classification, and
the generative adversarial network20 is the focus of our subsequent study. An attempt will be
made to introduce additional methods, such as the graph mechanism, to HSI semisupervised
classification because the original pseudolabeling does not solve the problem of wrong labels.
Moreover, an attempt is underway to design a new pseudolabeling method.
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