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ABSTRACT. The compact Reconnaissance Imaging Spectrometer for Mars (CRISM) has signifi-
cantly advanced our understanding of the mineralogy of Mars. With its enhanced
spectral and spatial resolution, CRISM has enabled the identification and charac-
terization of various minerals on the Martian surface, providing valuable insights into
Mars’ past climate and geologic history, as well as the evolution of the planet’s
atmosphere and climate. We present a comprehensive review of mineral identifica-
tion on Mars using CRISM data. We discuss the data description, pre-processing
techniques, different spectrum libraries, geological characteristics used for mineral
identification, challenges, and methodologies used for mineral classification, such
as learning models, probabilistic methods, and neural networks. We highlight major
findings of minerals on the Martian surface and discuss validation techniques. We
conclude with a discussion of further research to address the existing gaps and chal-
lenges in this field. Overall, we provide a general understanding of mineral classi-
fication using CRISM data and could serve as a helpful resource for researchers
and scientists interested in planetary remote sensing and mineral identification on
the Martian surface.
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1 Introduction
The compact Reconnaissance Imaging Spectrometer for Mars (CRISM) is a highly effective tool
that has significantly advanced researchers’ understanding of the mineralogy of Mars. CRISM,
equipped with enhanced spectral and spatial capabilities, has successfully obtained a multitude of
consecutive images from significant Martian regions, including volcanic areas, precipitous cliffs,
and sedimentary deposits, thereby improving our understanding of the planet’s surface. CRISM
has enabled the identification and characterization of various minerals, notably, the detection of
phyllosilicates including kaolinite, hydrated silica, and different types of smectites.1 This detec-
tion is of particular significance as these minerals are typically formed in the presence of liquid
water. Apart from phyllosilicates, CRISM has also detected different mafic minerals, carbonates,
and sulfates.2–4 The identification and mapping of these minerals provide valuable insights into
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Mars’ past climate and geologic history, as well as the geologic processes that have shaped the
Martian surface and the evolution of the planet’s atmosphere and climate.

During its Primary Science Phase operation, which spanned from November 2006 to
October 2010, Mars Reconnaissance Orbiter (MRO) aimed to achieve several scientific objec-
tives, such as studying seasonal variations in the Martian atmosphere and surface, detecting
evidence of historical water presence and its effects on the Martian surface, and mapping and
characterizing the geology, stratigraphy, and identifying the composition of surface deposits5

MRO’s extended phase mission aims to determine the feasibility of potential future landing sites,
assess Mars rover traversal, and provide a data relay service from ground missions back to Earth.
Overall, MRO has provided a wealth of scientific data that will continue to be analyzed and
studied for years to come.5,6

Figure 1 shows a systematic review of the literature on mineral identification on the Martian
surface published in the last 15 years since the launch of the MROmission. To obtain the number
of papers published during this period, relevant keywords, such as “mineral identification,”
“unsupervised,” “neural network,” and “mixture models,” along with the common keyword
“CRISM” were searched in Google Scholar and Scopus databases. The graph illustrates a
consistent increase in the number of publications focusing on the utilization of CRISM data for
mineral classification on the Martian surface over the last decade. Notably, the integration of a
neural network and unsupervised approach with CRISM data is one of the predominant interests
for Martian data researchers and experts currently. Therefore, a systematic review paper on this
topic can provide a comprehensive and up-to-date understanding of the advancements in mineral
identification using CRISM data. This can be useful for future research and development in this
field. It can also identify the existing gaps and challenges as well as suggest potential solutions
and future research directions.

The word cloud in Fig. 2, build upon the titles, keywords, and abstracts of the published
literature in this field, provides a comprehensive overview of mineral classification using CRISM
data. It sheds light on various aspects, such as objectives, methodologies, study areas, and iden-
tified minerals. Bigger fonts indicate more frequently researched concepts. Notably, research
spans noise correction methods, such as “volcano-scan” and “discrete ordinate radiative transfer
(DISORT) model,” alongside preprocessing techniques, such as “smoothing” to mitigate persis-
tent spectral irregularities post-noise correction, and “continuum removal” to counteract global
curvature changes in the captured spectra. Specific study regions, such as “Jezero Crater” and
“Gale Crater,” as potential landing sites for multiple Mars missions, garner significant attention,
as do dominant Martian surface minerals, such as the “phyllosilicate group” and “mafic group,”
which aligns with the presumption of the presence of water on Mars’ ancient environment.
Unsupervised mineral classification methods, such as discovery through eigenbasis modeling
of uninteresting data (DEMUD) and sequential maximum angle convex cone (SMACC), are
highlighted, as are “summary products” and “browse products,” pivotal for manual mineral

Fig. 1 Number of publications in the last decade based on the Google Scholar and Scopus
research publication database.
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mapping in Martian imagery and also for result validation. Notably, the rising preference for
different neural network models signifies a significant shift in recent research trends, underlining
their efficacy in mineral identification. These various facets constitute the core focus of discus-
sion in this comprehensive survey paper. Figure 3 provides a simplified illustration of the phases
involved in mineral identification on the Martian surface, spanning data collection to results
validation, serving as a visual aid to demonstrate the procedure’s complexity.

This paper provides a comprehensive review of mineral identification on Mars using CRISM
data, as well as an overview of the methods and techniques used for processing this remote
sensing data. The paper is organized into sections that cover various aspects of the mineral iden-
tification process. Section 2 provides a data description, including the spectral and spatial res-
olution for both multispectral and hyperspectral data. Section 3 discusses pre-processing
techniques, existing correction techniques, and their limitations. Section 4 outlines different
spectrum libraries, browse products, and summary parameters used for mineral identification
on the Martian surface, along with their limitations. Geological characteristics used for mineral
identification are described in Sec. 5, and challenges in using CRISM data for mineral identi-
fication are discussed in Sec. 6. Section 7 reviews different methodologies used for mineral clas-
sification, including the distance-based method, probabilistic method, unsupervised, and neural
network approach. The authors highlight major findings of minerals on the Martian surface in
Sec. 8. Sections 9 and 10 discuss validation techniques, the conclusion, and future exploration.
The paper aims to provide a general understanding of mineral classification using CRISM.

Fig. 2 Cloud tag of the titles, abstract, and keywords of the publications mentioned in Fig. 1,
which are also covered in this review.

Fig. 3 A diagram highlighting the steps of the mineral mapping procedure on the Martian surface.
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2 Data Description for CRISM Data
The MRO was launched on August 12, 2005, following the loss of two previous Martian missions,
the Mars Climate Orbiter (1998) and Mars Polar Lander (1999). MRO is equipped with several
scientific instruments, including the High-Resolution Imaging Science Experiment (HiRISE),
Mars Color Imager (MARCI), Context Imagery (CTX), Mars Climate Sounder (MCS), and
Shallow Radar (SHARAD). Different specifications of these sensors are presented in Table 1.

These instruments are specifically designed to study different aspects of Mars, such as its
geology, atmosphere, surface, climate, and the possibility of habitability.

The CRISM was the seventh successful operation to Mars orbiting at an altitude of 300 km
in a sun-synchronous near-polar orbit. The CRISM instrument detects visible near-infrared
(VNIR) wavelength by the “S” detector in the range 364 to 1055 nm, while infrared (IR) wave-
length is detected by the “L” detector in the range 1.1 to 3.9 μm with a sampling of 6.55 nm per
channel. The mission consisted of two phases: the multispectral mode and the targeted mode. In
the multispectral mode, global mineral characterization was carried out with 72 selected channels
operating at a resolution of 100 to 200 m per pixel, while the gimbal was positioned at the nadir.
The data were collected at a frequency of 15 to 20 Hz. This mode was crucial in confirming the
presence of hydrous movement on the Mars surface, which was difficult to detect with prior
Mars-orbiting spectrometers due to their low spatial and spectral resolution. The targeted mode,
covered a wide swath width of 9.5 to 12 km. This heightened spatial and spectral resolution
offered an enhanced capability for in-depth analysis and comprehensive characterization of the
Martian surface, surpassing what was achievable with the multispectral mode. The detailed
description of CRISM data for different observing modes is shown in Table 2.9,12

3 Atmospheric Correction for CRISM Data
In this section, the significance of pre-processing CRISM hyperspectral data from Mars to
enhance the quality and efficiency of mineral mapping is explored. The section also sheds light
on the third objective of the MRO mission, which focuses on studying seasonal changes in
atmospheric dust and ice aerosols and gathering additional details about the Martian atmosphere.
Here, the use of two techniques—volcanic scan correction and the DISORT model—is empha-
sized to eliminate dominant atmospheric gas contributions in the near-IR spectra. By employing
these techniques, the MRO mission is able to attain accurate characterization of seasonal

Table 1 Specifications of different MRO sensors.

Sensor
Spectral

range (μm)
Spatial

resolution
No. of
bands Objective

HiRISE7 0.4 to 0.7 0.6 m 1 • Capture high-resolution Martian surface images

• Identify potential landing sites

CTX8 0.5 to 0.8 6 m 1 • Provide contextual imaging data

• Support HiRISE and surface analysis

CRISM9 0.3 to 3.9 18 to 200 m 544 • Create global mineralogical and
atmospheric maps

• Study Martian surface and
atmosphere composition

MCS10 0.3 to 4.5 5 km 9 • Study Martian atmosphere using IR

• Understand climate and atmospheric evolution

MARCI8 0.2 to 0.8 Visible: 1 to 7 km;
UV: 10 to 30 km

Visible-5 • Analyze Martian regional morphology

• Understand Martian geological features

SHARAD11 12 to 20 15 m — • Detect subsurface features using radar

• Investigate subsurface structures on Mars
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fluctuations in suspended dust particles and icy aerosols. In addition, these methods provide
supplementary data concerning the Martian atmosphere, contributing to a more comprehensive
understanding of its properties.

3.1 Volcano Scan
Volcano scan is an empirical correction method that is designed to remove CO2 absorption in the
near-IR range of spectrum 1 to 2.6 μm. This method is based on previously derived transmission
spectra and is applied empirically to remove the absorption of atmospheric gas. Low- and
high-altitude spectra taken over Olympus Mons are used to obtain the necessary spectra, and the
Beer–Lambert Law is utilized to calculate the transmission spectra.13 The images are generally
processed for reflectance using the CRISM Analysis Tools (CAT).14

The initial step is to transform the spectral radiance observed by the sensor, which is mea-
sured in units of watts per square meter per steradian per micrometer, to I∕F, which is the ratio of
the radiance detected by the sensor to the solar irradiance, divided by π. This converted data are
then stored in the Experimental Data Record (EDR). Following this, the Photometric Lambertian
correction is carried out to modify the bidirectional reflectance characteristics of the Lambertian
surface and convert the data to a standard illumination geometry resulting in Lambert albedo. The
ratio shift correction is then performed to evaluate the systematic cross-track residual structure,
which is a ground plane along-track striping, and creates a correction frame based on inter-
column ratio statistics supported cross-track structure. Then, the empirical geometric normali-
zation is conducted to characterize and correct the geometric dependencies that arise from the
continually changing geometry of CRISM-targeted observations wavelength-dependent along-
track gradients. Finally, the empirical smile correction is performed to characterize and correct
a radiometric residual related to a spectral smile, an instrument optical artifact, and wavelength-
dependent asymmetric cross-track gradients. Figure 4 shows the process.

Once all the corrections are applied, the resulting value is stored in a targeted reduced data
record (TRDR), which contains important information, such as latitude, longitude, incidence
angle, emission angle, and phase angle. This information is used for map projection and post-
processing corrections. A summary product is then calculated, and a browse product is created.
Finally, after the map projection and pre-processing steps, spectral indices are derived and the
map-projected targeted reduced data record (MTRDR) is obtained. How these summary products
are used for mineral identification is provided in a later section.

3.2 Discrete Ordinates Radiative Transfer
DISORT is a powerful radiative transfer model widely utilized to replicate the propagation of
light through a scattering medium like a planetary surface or atmosphere.15 It finds extensive
usage in remote sensing applications to simulate the interaction of light with planetary atmos-
pheres and surfaces. In the context of CRISM data, DISORT can be employed to mimic the
radiative transfer of sunlight through the Martian atmosphere and its reflection and scattering
by the surface features. By comparing the simulated outcomes with the actual CRISM data, vital
information regarding the composition and structure of the Martian surface can be deduced.

The DISORT model is a complex process that requires multiple inputs and steps to correct
atmospheric effects. These steps include photometric, atmospheric, and thermal corrections, as
well as the retrieval of various parameters from lookup tables. Figure 5 shows the different lookup
tables used in the model. The photometric step begins by calibrating the raw data in EDR format
to TRDR, considering various viewing and incidence angles. Next, using the latitude, longitude,
topography, and apparent solar time associated with a specific pixel retrieved from the appropriate
DDR, the column abundances of atmospheric elements and aerosols are procured from a lookup
table called ADR_CL. In addition, the model obtains information regarding surface slope azimuth
and magnitude, thermal inertia, dust, and ice aerosol capacities, as well as surface temperature for
each pixel location. Subsequently, the values for each I∕F (reflectance) at every wavelength in the
scene are obtained from corresponding pixel locations in the DDR and ADR. To account for any
necessary corrections, a pre-computed multiplicative correction retrieved from the lookup table
ADR_AC is applied. The ultimate output of the DISORT model is the calculation of surface I∕F,
representing the theoretical Lambert albedo under ideal conditions with normal illumination and
viewing geometry, disregarding atmospheric effects and thermal emission.
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Fig. 4 Volcano scan correction method: sequential processing of TRDR3 data along with DDR to
yield MTRDR data.

Fig. 5 DISORT model: sequential processing of EDR data along with DDR to yield MTRDR data.

Kumari et al.: Mineral classification on Martian surface using CRISM hyperspectral. . .

Journal of Applied Remote Sensing 041501-7 Oct–Dec 2023 • Vol. 17(4)



Limitations: Both volcano scan and DISORTare commonly used methods for correcting and
analyzing CRISM data; however, they do have certain limitations.

1. The volcano scan correction method is specifically designed for volcanic regions and
may not be applicable to non-volcanic regions. Similarly, DISORT may not be suitable for
all types of surface materials or atmospheric conditions.

2. Both methods require significant computational resources and time to process large amounts
of data. This can limit their use for large-scale analysis or real-time applications.

3. Both methods rely on certain assumptions about the surface and atmospheric properties of
Mars and may have uncertainties in their results. For example, the volcano scan correction
method assumes a specific scattering phase function for the surface, which may not be accu-
rate in all cases.

4. Both methods require accurate calibration and validation of the CRISM data, which can be
challenging and may introduce errors in the analysis. Overall, while volcano scan correction
and DISORT are useful tools for analyzing CRISM data, they should be used with caution
and in conjunction with other methods to ensure accurate and reliable results.

4 Summary Parameters and Browse Products
This section presents a concise overview of the products that result from the atmospheric
correction process, namely the summary parameters and browse products. These products play
a crucial role in the interpretation of spectral data from Mars. Summary parameters represent a
single parameter value that captures the spectral properties of specific mineralogy. These values
are derived using different formulas applied to combinations of spectral bands, designed by the
field experts.5 Another important product of the atmospheric correction process is the CRISM
browse product, which is a combination of thematically related summary parameters to form
different false-color images. This product shows spectral variation associated with different
mineral groups, such as ice, phyllosilicates, mafics, sulfates, carbonates, and hydrated silica
groups of minerals in distinguishable colors. This product is useful for identifying minerals
on the Martian surface visually. The optimal implementation of these parameters is critical for
accurate interpretation of the data.

4.1 Summary Parameter
Initially, 44 summary parameters were given in Ref. 6 by Pelkey et al. based on multispectral
images which were later updated in Ref. 16 by Viviano et al. with 60 summary parameters based
on the hyperspectral images. Viviano et al. used these summary parameters to study the min-
eralogy and geology of several regions on Mars, including the Nili Fossae area and the Medusae
Fossae Formation. These are derived from the following measures which are calculated from
reflectances in key wavelengths.

• Band-depth ratio measures the relative depth of two absorption features in the spectrum of a
given region. The two features used in Ref. 16 are associated with iron- and magnesium-
rich phyllosilicates, which are indicators of aqueous alteration on Mars.

• Spectral slope measures the rate of change of reflectance or radiance with a wavelength in
the visible and near-IR parts of the spectrum. Spectral slope can be used to infer the com-
position and grain size of surface materials.

• Integrated band area measures the area under an absorption feature in the spectrum of a
given region. The absorption feature used in Ref. 16 is associated with olivine, a mineral
that is common in basaltic rocks on Mars.

• Band center position measures the location of the center of an absorption feature in the
spectrum of a given pre-computed absorption feature used in Ref. 16 and is associated with
pyroxene, a mineral that is also common in basaltic rocks on Mars.

These summary parameters provide valuable information about the elements and physical
properties of the Martian region and also are widely used for mineral identification. Table 3
presents some of these summary parameters along with their standard formulas.
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Limitation in mineral identification: The use of summary parameters for identifying minerals
on the Martian surface using has several limitations, such as,

• Spectral variability: The spectral response of minerals can vary significantly depending on
factors, such as grain size, composition, and hydration state. Therefore, summary param-
eters that rely on a single spectral measurement may not be able to distinguish between
different mineral species.

• Surface mixtures: The Martian surface can contain mixtures of different minerals, making it
difficult to identify individual species. In some cases, summary parameters may not be able
to differentiate between mixtures of similar minerals.

• Instrument noise: CRISM data can contain noise and artifacts that can affect the accuracy of
summary parameters. This can lead to false positives or negatives in mineral identification.

• Spatial resolution: The spatial resolution of CRISM data is limited, which can make it
difficult to identify minerals in small or complex geological features.

• Lack of ground truth: The identification of minerals using summary parameters is often
based on spectral libraries and models, which may not accurately represent the Martian
surface. In addition, there is limited ground truth data available for mineral identification
on Mars, which can make it challenging to validate the results.

In summary, the use of summary parameters for identifying minerals on the Martian surface
using CRISM data has several limitations, and these should be taken into account when inter-
preting the results.

4.2 Browse Product
A browse product is created by combining three summary product composites, resulting in a
false-color image that allows for visual identification of minerals and analysis of their distribution
map. This technique proves particularly useful in distinguishing subtle variations in phyllosili-
cate species, surpassing the capabilities of the original PHY product. The PFM and PAL browse
products, in particular, exhibit enhanced sensitivity to such variations. The PFM product utilizes
RGB composites of BD2355, D2300, and BD2290 to provide insights into Fe/Mg-phyllosili-
cates. In this composite, the existence of prehnite or chlorite is represented by red and yellow
colors, while cyan colors generally show the existence of Fe/Mg smectites. On the other hand,
the PHY product, with RGB composites of D2300, D2200, and BD1900r2, portrays all Fe/Mg-
phyllosilicates as inseparable red or magenta given that possess similar hydration bands. The
PAL product, with RGB composites of BD2210_2, BD2190, and BD2165, offers insights
specifically related to Al-OH materials. In this composite, Al smectites are depicted as cyan,
while kaolinites appear light or white in color. Similarly, the PHY product represents all
Al-OH segments as indistinguishable green or cyan if they possess comparable hydration bands.
In addition, the HYS product, utilizing RGB composites of MIN2250, BD2250, and BD1900r2,
further identifies Si/Al-hydroxylated minerals. In this composite, hydrated silica is depicted as
light red or yellow, while Al-OH minerals are represented as cyan. To accommodate variations in
summary product values across scenes, each summary product is individually stretched and
converted into an 8-bit RGB channel composition for the browse product. Figure 6 lists some
of the commonly used browse products, their RGB composites, and associated color meanings.

5 Spectral Library
In remote sensing, a spectrum consists of measurements of how much light is absorbed or
reflected at different wavelengths by a particular material. A spectral library is a collection
of spectra built as a reference database by experts for different types of materials, such as veg-
etation, soil, water, minerals, and man-made features such as roads and buildings. For the min-
erals on the Martian surface, many spectral libraries have been created by compiling spectrum
data from common materials for almost 50 years and made available easily by research organ-
izations for the Martian surface which most widely used such as CRISM spectral library,5 MICA
type spectral library,16 and Reflectance Experiment Laboratory (RELAB) library.17 These spec-
tral libraries are important resources for planetary scientists studying Mars. These enable remote
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sensing analysts to identify the observed materials in the image by comparing the spectral sig-
nature of the materials to known spectral signatures in the library and map their distribution and
abundance. In addition, these libraries guide mission planning by identifying areas of interest,
aid in understanding the Martian environment by studying the distribution of water and ice, and
help develop new analytical techniques for planetary surface study. By analyzing the spectral
data in these libraries, scientists can gain new insights and make new discoveries about Mars.

5.1 CRISM Spectral Library
NASA has built a Planetary data science system (PDS) by incorporating spectra from the CRISM
spectrum library as well as from other sensors. The CRISM spectral library is a significant
resource for studying the mineralogy and composition of Mars, and it has numerous important
applications in planetary science. This library released on March 10, 2006, is the first ground
truth library to allow the interpretation and analysis of minerals on the Planetary surface. There
are currently 2260 spectrum analyses altogether collected from Mars, Moon, and Earth surface,
consisting of 1134 natural and artificial Mars samples in the CRISM spectral library, which is
organized in a hierarchical framework. All of the spectra in this library are samples with the same
spectral resolution of CRISM data and were interpolated using linear interpolation to remove
the atmospheric obstruction and CO2 absorption under appropriate environmental conditions
of the Martian surface. The material origin (Mars, Moon, and Earth surface), classification

Fig. 6 Different browse products of a CRISM hyperspectral data FRTC518 from Gale Crater
region.
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(rocks, minerals, etc.), mineral class (phyllosilicates, sulfates, etc.), diverse mineral species
(prehnite), and device for measuring CRISM data are all included in the content of this spectrum
library. This library is incorporated within the CAT tool and accessible on the PDS geoscience
node. PDS provides a web-based interface where data can be searched, displayed, and down-
loaded by adding location information (latitude, longitude) of the surface.

5.2 MICA-Type Spectral Library
The MICA-type spectral library, derived from a CRISM sensor comprising multispectral and
hyperspectral images, serves as a widely accepted and utilized standard for mineral identification
and validation on the Martian surface. This comprehensive library is composed of data collected
over a span of more than 7 years from CRISM TRDR data, along with recently discovered data
from diverse Martian locations captured by the CRISM instrument. The library is the result of
continuous efforts by researchers to expand the collection of spectral data available for the inter-
pretation of Martian surface mineralogy. The library contains three types of spectra: numerator,
denominator, and ratioed I∕F spectra. These spectra are used for mineral identification and
mapping and have proven to be valuable tools in the study of the geology and mineralogy of
Mars. The MICA library has a total of 31 minerals grouped into six different types: mafic and
iron oxide, sulfates, phyllosilicates, carbonates, hydrated silicates, and ice.16 The planetary data
and the CRISM website both provide access to the information corresponding to the MICA-type
spectral library.16

5.3 RELAB Library
The Reflectance Experiment Laboratory spectral library is a collection of visible to near-IR
reflectance spectra of minerals, rocks, and other planetary materials. The library was developed
by the Planetary Spectroscopy Laboratory at Brown University and is widely used in planetary
science and remote sensing applications. The RELAB library contains over 2000 spectra of
minerals and rocks that are relevant to planetary science, including samples from the Moon,
Mars, asteroids, and other planetary bodies. The spectra were acquired using a variety of labo-
ratory instruments and under different environmental conditions, such as different illumination
angles, temperatures, and pressures. One of the unique features of the RELAB library is its high
spectral resolution, which allows for the identification of subtle spectral features that may not be
visible in lower-resolution spectra. The library also includes detailed metadata for each sample,
such as mineralogy, physical properties, and sample preparation methods. The RELAB library is
widely used in remote sensing applications for planetary exploration, including the analysis of
data from several space missions, such as the MRO, Lunar Reconnaissance Orbiter, and the
Dawn spacecraft. The library is publicly available and can be accessed online through the
Planetary Data System (PDS) website, which allows for easy access and sharing of data.17

6 Surface Mineralogy of Martian Surface
The Martian surface is a treasure trove of minerals that hold valuable information about the
planet’s geological history and potential for habitability. Various mineral groups can be found
on Mars, each with its own significance.16 The mafic and iron oxide group, including minerals
such as olivine, pyroxene, and magnetite, are indicators of past volcanic and impact processes.
The sulfate group, such as gypsum and jarosite, and the phyllosilicates group, including clay
minerals, suggest the presence of liquid water in the past and are potential markers for past
or present microbial life. Carbonates, such as calcite and magnesite, provide insights into
Mars’ past climate and water cycle. Hydrated silicates, such as serpentine and chlorite, form
through hydrothermal alteration. Ice minerals, including water ice and carbon dioxide ice, are
found in the polar ice caps and the atmosphere, respectively. Studying these minerals through
remote sensing techniques enables scientists to unravel Mars’ evolution and its potential for sup-
porting life.6,16 Future missions will continue to focus on exploring these diverse mineral types
for astrobiological investigations. By understanding the surface characteristics of minerals,
including their spectral signatures and spatial distribution, researchers can enhance mineral map-
ping, mineral exploration, and the development of materials science applications. The significant
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absorption features of some of the most common minerals found on the Martian surface are
discussed below. These minerals are also summarized in Fig. 7 for reference.

6.1 Mafic Minerals and Iron Oxides
This mineral category primarily consists of iron and magnesium-rich minerals, including
hematite, olivine, plagioclase, and pyroxene. Hematite detection, which is attributed to the Fe3þ

transition within the 0.4 to 0.9 μmwavelength range, was accomplished using the CRISM detec-
tor. The absorption features at ∼0.53 and 0.9 μm are crucial for identifying and distinguishing
Fe3þ-bearing minerals, such as hematite, jarosite, and nanophase oxides.18 Olivine, a mineral-
rich in magnesium and iron, exhibits broad absorption around 1 μm, which is further intensified

Fig. 7 Spectral features of someminerals found on the Martian surface and the spectra fromMICA
library.
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by the electronic transition of iron within its structure, defining its spectral characteristics. In
contrast, pyroxene spectra show broad absorption peaks centered around 1 and 2 μm, resulting
from the domain transition of iron in multifaceted coordination. The pyroxene mineral group
includes low calcium pyroxene (LCP) and high calcium pyroxene (HCP). In LCP minerals, the
absorption band is centered at ∼0.9 and 1.8 μm whereas in HCP, the bands are located within
1.05 and 2.3 μm. The precise positions of these mineral absorptions are influenced by the
calcium content within the pyroxene structure.19,20 Plagioclase, another significant mineral found
on the Martian surface, exhibits broad absorption characteristics centered at 1.25 and 1.31 μm,
primarily on account of minor substitution of Fe2þ for Ca2þ. Plagioclase is typically detectable
when other mafic minerals are present in an abundance of <5%.21

6.2 Sulfates
The sulfates group of minerals is abundantly present and widely distributed across the Martian
surface. Notable concentrations of sulfates have been identified in Meridiani Planum and adja-
cent areas of Arabi, as well as within the internal layered deposits on the canyon system’s floor
and associated chaotic zones in Valles Marineris. The dunes surrounding the northern polar ice-
cap are primarily composed of sulfate gypsum.22,23 Unlike mono-hydrated sulfates, which exhibit
variations in water vibrational combinations depending on the cation, spectra of poly-hydrated
sulfates display an absorption feature at 2.1 μm, resulting from a combination of elongation and
flexion oscillations of water molecules. The detection of poly-hydrated sulfates is challenging
due to the presence of another hydrous mineral that exhibits absorptions within 1.4, 1.9, and
2.4 μm.24 Several sulfate species with distinctive spectral characteristics have been identified.
Jarosite, for instance, displays absorption peaks centered at 1.47 and 1.85 μm.25 Bassanite exhib-
its a prominent band within 1.93 to 1.94 μm, along with multiple absorption characteristics in the
range of 2.1 to 2.3 μm attributed to H2O.

26 Gypsum spectra reveal a distinct band in the range of
1.4 to 1.5 μm, while alunite exhibits a doublet near 1.4 and 2.2 μm, accompanied by additional
absorptions near 1.76 and 2.3 μm.27

6.3 Phyllosilicates
Phyllosilicates comprise a diverse range of minerals found on the Martian surface, each exhibit-
ing unique spectral characteristics. For instance, kaolinite prominently shows an absorption peak
at 1.4 μm and a doublet near 2.2 μm, resulting from the vibrational modes of the hydroxyl group
and the Al-OH band. AI-smectite and mica also display a doublet near 2.2 μm but can be dis-
tinguished by the extra channel at 2.26 and 2.35 μm.28 Fe/Mg-phyllosilicates are prevalent in
various geological settings, including stratified deposits, exposed crust outcrops, and occasion-
ally in alluvial fans or deltas.29 This group encompasses Fe-smectite, Mg-smectite, serpentine,
talc, prehnite, chlorite, and margarite.30 The identification of Fe/Mg-phyllosilicates is based on
their compositional H2O and OH absorption features at near 1.4 μm and a decrease at 2.35 μm
feature, which shifts to elongated wavelengths as Mg replaces Fe.28 Mg-smectite exhibits nar-
rower absorption characteristics around 1.4 μm and a decrease at 2.35 μm, talc demonstrates a
strong absorption near 1.9 μm near 2.3 to 2.35 μm attributed to the Mg-OH band,31 and prehnite
exhibits absorption between 2.35 and 2.36 μm. Serpentine is identified by a diagnostic weaker
band at 2.1 μm, an OH overtone at 1.39 μm, and absorptions centered at 2.32 and 2.5 μm.
However, conclusive observations of serpentine pose challenges due to the requirement of a high
signal strength relative to noise to identify the superficial yet diagnostically significant 2.1 μm
feature.

6.4 Hydrated Silicates and Halides
The mineral group consisting of epidote, zeolite, and chloride displays specific absorption char-
acteristics at 2.21 to 2.22 μm arising from Si-OH amalgamation vibration, particularly at 2.26,
1.91, and 1.4 μm because of compositional H2O and OH. Epidote exhibits a strong absorption
near 2.24 and 2.35 μm, with a weaker absorption at 1.55 μm, enabling its differentiation from
spectrally similar mixtures, such as chlorite, illite, and calcite.30,32 Zeolite exhibits notable
absorptions within 1.4, 1.9, and 2.4 μm, which share spectral similarities with poly-hydrated
sulfates. However, zeolite can be distinguished from poly-hydrated sulfates by its intense and
subtle absorption at 2.5 and 1.79 μm.33 On the other hand, chlorides do not display distinct
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serpentine attributes in the visible and near-IR spectrum; however, they demonstrate unusually
amplified thermal IR radiative properties. This is accompanied by a decreasing slope in the spec-
tral profile as the wave numbers decrease. Chlorides demonstrate a distinctive combination of
a blue slope in the visible and near-IR range, a red slope in the IR range, and a relatively less
prominent 3 μm H2O feature. This suggests their hydrous nature compared to other surface
materials detected by CRISM.

6.5 Ices
The unique spectral characteristics of ice, such as the broad absorption around 1.5 μm associated
with crystalline H2O ice and the small absorption feature at 1.435 μm in CO2 ice spectra, offer a
means to distinguish between different ice types. The narrow absorption at 1.435 μm is particu-
larly advantageous because it is unaffected by atmospheric CO2 bands at 2 μm, and it is ∼2.3
times more potent than the subsequent secondary CO2 ice bands at 2.281 μm.34

6.6 Carbonates
Carbonates are formed when water captures atmospheric carbon dioxide, leading to the forma-
tion of a mineral group known as carbonates, which includes Mg-carbonate and Fe/Ca carbonate.
The presence of carbonates can be identified by their characteristic absorption peaks at 2.3 and
2.5 μm, corresponding to vibrations of the C-O bond. Fe/Ca carbonate exhibits specific absorp-
tion peaks at 2.33 and 2.53 μm, while Mg-dominant carbonates shift to 2.30 and 2.51 μm. The
abundance of calcium carbonates can be attributed to the weathering of Ca-dominant silicate
rocks and the previous existence of carbonate rocks. The current saltwater on Mars is over-
saturated with calcium carbonate. On the other hand, deposits of magnesium carbonate provide
insights into past aqueous activity on the Martian surface.35,36

7 Geological Information of Different Study Areas
Mars is known for its fascinating geology, which can be divided into two hemispheres, the
northern and southern hemispheres shown in Fig. 8. The northern hemisphere is characterized
by a large and flat plain known as the Vastitas Borealis, which is home to several large craters,
including the Lyot Crater and the Korolev Crater.38,39 In contrast, the southern hemisphere of
Mars is much more rugged and varied, with several deep canyons, including the Valles
Marineris, which is the largest canyon system in the solar system, and several large volcanoes,
including the massive Olympus Mons, which is the largest volcano in the solar system.40,41

Fossae are another important geological feature on the Martian surface, with the Cerberus

Fig. 8 Mola elevation map showing location on the Martian surface where the mineral has pre-
viously been studied.37
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Fossae and the Valles Marineris being the largest systems. The Syrtis Major is a dark, circular
region on the planet’s surface that is thought to be a large volcanic plain. The Hellas Planitia and
the Argyre Planitia are the two largest impact basins in the southern hemisphere of Mars, and
both are characterized by large, flat plains. Craters are the most prominent feature on Mars, with
the Hellas Planitia being the largest crater on the planet. Mars is also home to several large and
significant valleys, including the Valles Marineris, Mawarth Vallies, Ma’adim Vallis, and the
Valles Alpes, which were mostly created by past, severe flooding. The MRO CRISM instrument
has detected clays in the Jezero Crater, indicating the past presence of water. This makes Jezero
Crater a prime location for the Mars 2020 mission’s objective of exploring a potentially habitable
environment for remnants of past life. Mawrth Vallis was also considered a potential landing site
for the Mars Science Laboratory (MSL) mission in 2011, but Gale was ultimately chosen as the
landing site for the Curiosity mission due to indications of water by the presence of clays and
sulfate minerals. Researchers have already explored various areas on the Martian surface some of
which are listed in Table 4.

8 Challenges Exist in Mineral Identification in CRISM Data
The complexity of hyperspectral data presents significant challenges in data processing and
analysis. One of these challenges is identifying and removing bad bands from the data caused
by various factors, such as atmospheric interference, sensor noise, detector malfunctions, or data
transmission errors. Domain and scale inconsistency is also a significant issue in the CRISM
hyperspectral dataset due to variations in atmospheric conditions, mineral composition, and
other factors. For example, however, different minerals in the MICA library have spectra that
depend on various wavelengths, ranging from 430 bands for gypsum to 480 bands for bassanite.
To eliminate domain inconsistency, various interpolation techniques are commonly used, while
standardization or normalization is utilized to adjust the data to a uniform scale so that it can be
compared and analyzed more easily. Despite applying atmospheric and photometric corrections,
residual fluctuation noises in the form of spikes or small kinks can persist in spectra, potentially
obscuring significant features and introducing errors in scientific analysis. In the literature,
researchers have employed several smoothing techniques to address this issue, including
window-median filtering and Savitzky–Golay filtering, with the aim of mitigating such disturb-
ances.6,67,68 In this section, the two specific challenges associated with the spectra in CRISM
hyperspectral images, the issue of mixed spectra and the presence of the continuum resulting
from this, are examined in detail, aiming to provide a comprehensive understanding of their
implications.

8.1 Mixed Spectra
The planetary surfaces are composed of a mixture of different minerals, rocks, and soils. In a
scene, each object has its own unique spectral signature characterized by absorption or emission
lines, representing reflectance values across different wavelengths. When hyperspectral imaging
captures the light from all objects, their individual spectral signatures combine to form the overall
spectral shape of the scene, resulting in spectral mixing as depicted in Fig. 9. For example, a pixel
may contain a mixture of iron oxide minerals and silicates, which is different from the individual
spectra of the pure endmembers. As the resulting spectrum reflects the combined spectral infor-
mation of the objects rather than their individual features, it is very hard to detect the individual
endmembers. To overcome these challenges, spectral unmixing techniques have been developed,
allowing for the extraction of individual spectra and fractional abundances of different materials
within each pixel. Some of these are highlighted below.

• Linear spectral unmixing (LSU)69 assumes that each pixel’s spectrum is a linear combi-
nation of pure endmember spectra and employs a linear equation to relate the observed
spectrum to the endmember spectra and uses a least-squares approach for abundance
estimation.

• Nonlinear spectral unmixing (NSU)70 methods assume a nonlinear relationship between
the pixel’s spectrum and the endmember spectra. They can be more accurate than LSU
when dealing with highly nonlinear relationships. NSU techniques include artificial neural
networks (ANN), support vector machines, and decision trees.
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Table 4 Different locations on the Martian surface with the dominant minerals.

Area Major findings References

Aram chaos Monohydrated sulfate, nanophase ferric oxide 23

2.6°N, 21.5°W

Columbus Crater Kaolinite, polyhydrated sulfate, monohydrated sulphate 42

29.8°S, 166.1°W Fe/Mg phyllosilicates, jarosite, alunite, kaolinite 43

Gypsum, poly- and mono-hydrated Mg/Fe-sulfates, kaolonite 44

Mawrth Vallis Fe smectite, alunite, Al smectite 45

Fe/Mg-phyllosilicates, Al-phyllosilicates, hydrated silica 46

22.3°N, 343.5°E Fe/Mg-smectite, Al-phyllosilicate, hydrated silica 47

Melas Chasma Nontronite, jarosite, Al-clays, and leached clay 48

Polyhydrated, monohydrated sulfates, and jarosite 4910.4°S, 72.7°W

HCP and phyllosilicate 50

NE Syrtis Low-calcium pyroxene, Fe/Mg smectite, olivine 51

HCP, LCP 52

Fe/Mg-smectite, LCP 5318°N, 77°E

Nili Fossae Fe/Mg smectite, magnesium carbonate, olivine 54

Kaolinite, nontronite, chlorite, and vermiculite 55

22°N, 75°E Chlorite, prehnite, serpentine, kaolinite, potassium mica 56

Prehnite, chlorite, silica 57

Kashira Crater Kaolinite-group mineral halloysite 58

27.0°S, 341.7°E

Elorza Crater Phyllosilicates (vermiculite) and mafic silicates 59

304.8°E, 8.76°N

North polar area Gypsum 60

88°00′N, 15°00′E

Sirenum Fossae Kaolinite 44

35.57°S, 197.26°W

South Syrtis Ca/Fe carbonate, illite 61

18.855°N, 77.519°E

Gale Crater Olivine and high-calcium pyroxene 62

5°24′S, 137.8°E Kaolinite, chlorites, smectite, jarosite 63

Jezero Crater Mg-rich carbonate, olivine 64

18.38°N, 77.58°E Fe/Mg-smectites, Al-phyllosilicates, carbonates 65

Robert Sharp Craters Akaganeite 66

4.17°S, 133.42°E
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• Independent component analysis (ICA)71 is a statistical method that assumes the observed
spectrum is a linear combination of statistically independent components. It has been used
to map phyllosilicates on the Martian surface.

• Multiple endmember spectral mixture analysis (MESMA)72 extends LSU by allowing
multiple endmembers in each pixel. This technique is useful for cases with significant
spectral variability within a pixel.

• Vertex component analysis (VCA)73 is a geometric-based method that identifies pure end-
members by finding the vertices of a convex hull formed by the data points. It also assumes
the mixed spectra as a linear combination of the endmember spectra.

• Band-pixel selection and smoothing (BPSS)74 uses a smoothing algorithm to reduce the
effect of noise in the data and then selects a subset of the spectral bands that are most
informative for mineral identification.

• Multivariate curve resolution non-negative matrix factorization (MVC-NMF)75 decom-
poses the mixed spectra into a set of endmembers and their corresponding abundance
fractions using a non-negative matrix factorization (NMF) approach.

• Multiple-endmember linear spectral unmixing model76 analyzes the mineralogical com-
position of the Martian surface using the OMEGA imaging spectrometer. It selects the best
linear combination of spectra from a reference library to determine mineral composition.
The analysis is restricted to the 1.0 to 2.5 μm wavelength range, and synthetic spectra are
included in the library to account for variations in grain size and atmospheric scattering.

The LSU process is a rapid and convenient way to conduct an appropriate mathematical
inversion and is time-saving enough to be carried out on large amounts of data. However, the
coefficients obtained for each mineral are not simply related to their true abundance, so the
method can only be used as a qualitative detection of components. Reference 77 investigated
the capability of spectral unmixing techniques for analyzing hyperspectral images from Mars,
specifically focusing on a selected CRISM image of the Russell mega dune. Seven state-of-the-
art linear unmixing approaches are compared, and the quality of the results is estimated through
correlation coefficients and average errors between the reconstructed and reference abundance
maps. The authors of this work concluded that abundance maps provided by VCA, BPSS, and
MVC-NMF are generally accurate and sufficient for initial planetary interpretation.

8.2 Presence of Continuum
A mixed spectrum possesses a smooth baseline shape, known as a continuum, that masks
the individual spectral features. The continuum can also arise from various factors, such as

Fig. 9 The diagram depicts a surface (a pixel in hyperspectral data) containing three different
minerals having distinct spectra. The spectrum captured from the surfaced is a mixed spectrum
containing individual absorptions of those minerals.
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instrument artifacts and topographic illumination effects. Continuum alters the global curvature
of the target spectrum as shown in Fig. 10. It is of utmost importance to eliminate the continuum
from the analyzed spectrum and accurately discern its distinctive absorption characteristics in
order to facilitate precise material identification. Imposed continuum removal (ICR) and apparent
continuum removal (ACR) are two methods used for removing the continuum from a spectrum in
order to enhance the unique absorption signatures. ICR involves fitting a polynomial or power-
law model to the entire spectrum, assuming a known or confidently assumed continuum shape.78

On the other hand, ACR selects local regions in the spectrum that lack spectral features and
connects them to estimate the continuum for the full spectrum domain.79 The estimated con-
tinuum is then subtracted or divided from the spectrum to nullify its effects.80 ICR is preferred
when the continuum shape is well-established, while ACR offers more flexibility and robustness
in dealing with variations in the continuum shape:

EQ-TARGET;temp:intralink-;sec8.2;114;592CðRÞ ¼ R∕C or CðRÞ ¼ R − C

where R is the spectrum being analyzed, C is the estimated continuum, and CðRÞ is the con-
tinuum-removed spectrum.

In the context of continuum removal in hyperspectral data, various methods exist, each with
its own advantages and limitations. The convex hull method is commonly employed for short-
wave infrared spectra due to their typically convex or flat nature. This method involves fitting an
upper convex hull (UCH) to the spectrum to estimate the continuum.81 However, there are several
limitations to this approach. First, it assumes that the spectral signal has a convex shape, which
may not hold true for all real-world spectra; second, this method is sensitive to outliers in the
data; and lastly, this may not effectively remove the continuum from spectra with low-intensity
signals. These can result in inaccurate peak identification and quantification, although, many
researchers vouch for using simple continuum removal techniques, such as UCH.

Two variants of hull technique are present in the literature which involve calculating a seg-
mented upper hull82 and a linear local hull.83 In Ref. 84, the authors extended the UCH method to
propose a segmented curve-fitting method for continuum removal that detects more shoulder
points within the segments generated by UCH to determine the distinct absorption signatures
in a test spectrum more accurately. Another method, called reference spectral background
removal (RSBR) eliminates the influence of unwanted contribution factors by simulating the
background curve and removing it from the original spectrum.85 Experimental comparisons
showed that RSBR can more accurately extract absorption centers and widths from mixed spectra,
regardless of variations in abundance, if endmembers are known priori. Another technique that
uses a geometric hull86 also has been successful in accurately determining the band-minima of
the endmembers.

Fig. 10 The difference in global curvatures between the two H2O–ice spectra in the left image is
evident after the scaling operation in the right image.
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9 Mineral Classification Models
Mineral identification on the Martian surface is fundamental to understanding the geological and
geochemical processes that have shaped the planet’s surface. The manual approach for mineral
identification in CRISM images involves selecting a region of interest, which acts as the numerator,
and an unremarkable region, which act as the denominator, to obtain the ratioed I∕F CRISM
image. The spectral rationing enhances the spectral absorption characteristics and reduces the multi-
plicative noise. These spectra are then visually compared with a spectral library to identify minerals
based on their absorption features. However, this approach is time-consuming and requires tremen-
dous manual labor. The identification of an unremarkable zone within the image possibly on the
same line sample and finding the right match of numerator, denominator, and stretch limit requires
immense domain expertise. As a result, there is a growing need for automated solutions. Initially,
distance-based similarity-matching techniques were employed but struggled to capture semantic
differences, rendering them inadequate for mineral identification. Therefore, alternative approaches,
such as probabilistic, unsupervised, and neural network models, have been developed to address
these limitations and demonstrate improved effectiveness in mineral identification. Some of the
distance-based methods, as well as the alternative techniques, are discussed in this section, Table 5.

9.1 Distance-Based Matching Methods
Distance-based methods are used for mineral mapping because they are relatively simple to
implement and can be used to quickly classify large amounts of hyperspectral data. The dis-
tance-based methods are based on the fact that minerals have unique chemical compositions
and crystal structures that affect the way they reflect and absorb light. By computing the distance
or angle between a pixel’s spectrum signature and the spectra of reference minerals in a library,
the pixel can be assigned to the mineral that bears the closest resemblance.

Table 5 Different genres of methods used in the literature for mineral identification in CRISM data.

Method genre Method name Study area References

Distance-based matching SAM Jezero Crater 87

Gale Crater 63

ED Jezero Crater 88

Nili Fossae 89

MD Jezero Crater 90

Mawrth Vallis 91

MF Nili Fossae 92

Gale Crater 93

Distribution-based
unsupervised methods

GMM Nili Fossae 94

HDP Aram Chaos 95

PO-HDP Nili Fossae 96

HBM Gale Crater 97

Distance-based
unsupervised methods

OPTICS, DEMUD Nili Fossae 88

SMACC, N-FINDR Nili Fossae, Jezero Crater 98

Neural networks DNN Nili Fossae 99

GAN Jezero Crater 89

Active learning-based classifier Jezero Crater 89

CNN, ANN, SVM, RFC Jezero Crater, Mawrth Vallis 68
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Euclidean distance (ED)100 is a simple and commonly used distance metric that measures
the straight-line distance between two points in spectral space. Mahalanobis distance (MD)101

is a more complex metric that accounts for the correlations between the spectral bands and is,
therefore, more robust than ED. Spectral angle mapper (SAM)102 is based on the idea that the
spectra of different minerals have different shapes in spectral space and that these shapes can be
characterized by the angles between them. The main advantage of using SAM is that it is invari-
ant with scale and illumination. Matched filtering (MF)103 is based on the idea that the spectral
signature of a pixel can be decomposed into a linear combination of the spectral signatures of the
end members in the library and that the end member with the highest coefficient is the one that
best represents the pixel.

Although the distance-based approach is so simple to map the mineral, very little literature
exists on it. The main reason behind this similarity method is designed to capture the global
difference between two vectors. On the contrary, mineral identification is based on similarity
involving the presence of absorption dip with the wavelength ranges.

9.2 Distribution-Based Unsupervised Methods
Probabilistic methods are favored in mineral mapping due to their ability to provide an accurate
and comprehensive characterization of mineralogy, surpassing traditional approaches based on
thresholds or linear models. These methods offer several advantages. First, they allow for uncer-
tainty quantification, enabling the estimation of mineral abundances and classifications with
associated uncertainty. This is crucial when dealing with mineral mixtures or noisy spectral
signatures. Second, probabilistic methods account for non-linearity, acknowledging that the rela-
tionship between reflectance spectra and mineral abundances is often non-linear. Linear models
may not capture this accurately, making probabilistic methods more suitable for precise abun-
dance estimation. Lastly, probabilistic methods exhibit robustness to outliers and noise in the
data. Several widely employed probabilistic methods in this context are highlighted below.

• Gaussian mixture model (GMM)104 is a parametric probability density function used to
model the distribution of observed data by combining multiple Gaussian distributions.
It aims to identify distinct mineral components in spectral data by representing their spec-
tral signatures as Gaussian distributions. The GMM assumes that each pixel in the image
contains a mixture of mineral components and estimates the proportion of each component
in every pixel. To overcome limitations in handling skewed distributions or unknown num-
bers of components, the infinite Gaussian mixture model has been introduced. It allows for
the estimation of inference and other component parameters in a unified process. However,
to handle situations requiring non-Gaussian or differently shaped distributions, the infinite
mixture of infinite Gaussian mixture model has been developed.96 It is doubly non-para-
metric and enables the identification of the number of components for each cluster with
various shapes and sizes.

GMM is relatively simple and computationally efficient for mineral mapping, but it
assumes Gaussian distributions for mineral spectral signatures and does not incorporate
prior knowledge about mineral distributions in the region of interest, limiting its accuracy
in some cases.

• Hierarchical Dirichlet process (HDP)105 is a Bayesian non-parametric model that enables
the clustering of data points into multiple groups based on their similarity, without requir-
ing a predefined number of clusters. It provides a flexible framework for discovering latent
structures in data. In the context of mineral identification using spectral data, the partially
observed HDP (PO-HDP) is a variant of this model. The PO-HDP is specifically designed
to identify the presence of various minerals within a specific region based on spectral infor-
mation. It operates under the assumption that each pixel in a spectral image represents a
mixture of different mineral components. By utilizing the spectral data, the model estimates
the proportion of each mineral component within each pixel, allowing for accurate mineral
identification and mapping. The PO-HDP offers a powerful approach for analyzing com-
plex spectral datasets and extracting valuable information about the mineral composition of
an area. Its Bayesian nature provides a robust and flexible framework for handling uncer-
tainties and missing data.
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• Hierarchical Bayesian model (HBM)106 uses the observed data as a function of unknown
parameters, which are themselves modeled as random variables. In the context of mineral
mapping, the observed data could be spectral data collected from a satellite or airborne
sensor, and the unknown parameters could be the proportions of different minerals present
in each pixel of the image. One advantage of the HBM is that it is a flexible modeling
framework that can be adapted to different data types and sources of prior knowledge.
This prior information can be derived from geological maps, previous mineral surveys,
or other sources of information. By incorporating prior knowledge into the model, the
HBM can improve the accuracy and robustness of the mineral mapping results, allowing
for the identification of mineral deposits correlated with certain geological features.

In Ref. 95, the authors used a bi-level Bayesian Gaussian mixture model that had shown
promise in eliminating nonlinear noise and determining both high- and low-abundance mineral
aspects in CRISM images, where GMM is implemented for the identification of the spectral and
spatial distribution of minerals at pixel scale for each mineral class. This developed model made
efficient, accurate, and scalable assessments toward automation of mineral identification by
replacing traditional spectral analysis techniques.

9.3 Distance-Based Unsupervised Methods
The unsupervised classification approach is widely used for mineral characterization on the
Martian surface due to the deficit of classified training data, as it does not require any prior
knowledge of the end members. Unsupervised clustering methods find natural groupings on
similar spectral characteristics in the unlabeled data and then match each group with the spectral
library to assign a label. These methods also can identify new mineral types that may not be
present in a pre-defined mineral library and help researchers discover new mineral types or
identify previously unknown minerals.

• Ordering points to identify the clustering structure (OPTICS)107 identifies the natural
clustering structure of a dataset without assuming a fixed group of clusters or any previous
information of the data distribution. It does this by defining a hierarchy of density-based
clusters based on the concept of reachability distance. OPTICS algorithm is used in Ref. 88
to cluster super-pixels to reduce redundancy in identified minerals and make more con-
fident from the respective region on the Martian surface, followed by DEMUD analysis
on the super-pixels to assign a label based on threshold operation for anomaly detection to
find rare minerals. This method has been applied to Hesperia Planum (Fe/Mg smectite),
Aram Chaos (jarosite, kieserite), and Juventae Chasma (Mg-olivine, monohydrated
sulfate).88,108

• SMACC109 method constructs convex cones around each data point and then merges the
cones that have similar spectral properties. N-FINDR110 is another unsupervised algorithm
that uses NMF to identify pure spectral endmembers in an iterative process. In Ref. 98, the
authors used these methods on CRISM images and detected several dominant minerals,
such as kalonite, carbonate, olivine, and phyllosilicates. Nevertheless, these methods can
be time-consuming, and it is still necessary to identify the minerals of the suspected detec-
tions by comparing them with spectra obtained from laboratory analysis.

9.4 Neural Networks
Neural networks are renowned for their ability to uncover hidden patterns in data. However, they
typically require a substantial amount of labeled training data, which can be a challenge when it
comes to mineral identification on the Martian surface. The scarcity of ground truth or training
data hinders the development of supervised learning models for this purpose. Currently, there are
only a few studies that have employed neural network-based approaches with CRISM hyper-
spectral data for mineral exploration.99 A recent investigation95 tackled this concern by offering
a dataset of labeled pixels sourced from 77 distinct TRDR images taken at numerous sites on
Mars. The labeling process involved employing an HBM that estimates spectral pattern varia-
tions. These labeled pixels can prove to be a valuable asset for tasks, such as nonlinear noise
reduction, operating as the training set for mineral identification models, and validated using
TRDR or MTRDR data. Another approach68 involved creating training data by augmenting the
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spectra available in the MICA spectral library keeping the key absorption signatures in the min-
eral spectra unaltered while providing sufficient diversity. This allowed for the development of
neural network models for mineral identification using CRISM data.

In Ref. 68, the authors have provided a novel augmentation method and preprocessing pipe-
line that incorporated a feature extraction method to capture the distinctive absorption patterns in
spectra, along with a few traditional early data processing phases. They implemented both a
shallow ANN model111 and a shallow convolutional neural network (CNN) model112 to compare
the effectiveness of the proposed feature extraction step. The study yielded satisfactory results,
indicating that further improvements in performance could be achieved by refining the pre-
processing steps, exploring advanced feature extraction techniques and incorporating more
sophisticated learning models.

In Ref. 113, the authors proposed an active learning-based classifier for neutral spectra,
aiming to reduce the number of labeled examples required for training. They employed a
selective sampling technique that evaluates the quality of each neutral spectrum individually,
minimizing the need for expert labeling and reducing costs. The algorithm utilizes the query-
by-committee approach, iteratively selecting the most informative data points for labeling and
training a committee of models on the same training set. Through multiple iterations, the model
improves over time, with a particular emphasis on addressing problematic areas. The subjective
nature of labeling allows the proposed framework to learn complex boundaries in classification
tasks.

In Ref. 89, the generative models were employed to improve the distinguishability of spec-
tra. The authors manually labeled samples from 30 CRISM images, using MICA identification
for classification. A detailed preprocessing pipeline was presented to prepare the data for the
generative model. The study demonstrated that the features acquired by the generative adversarial
network (GAN) exhibited greater efficacy in distinguishing mineral signatures within the CRISM
database when compared to summary parameters and traditional similarity metrics. For pixel
classification, the spectral angular mapper (SAM) metric was used to identify the best match
between the target pixel and the spectra generated by the models.

10 Validation Techniques
Result validation is crucial for accurate mineral identification in CRISM data on Mars, helping
scientists confirm specific minerals and prevent misidentification. By enhancing scientific under-
standing, these techniques provide insights into Martian geology, its history, and potential habit-
ability. The lack of ground truth data on Mars poses challenges for traditional field-based
validation, but statistical analysis and comparison with previous studies offer effective means
to overcome this limitation. For example, the presence of a specific mineral can be expected
in a particular region based on its geological history. Result validation using browse products
and a spectral library also provides a better understanding of the efficacy of a model. Combining
multiple techniques allows scientists to validate identified minerals in CRISM data, improving
the accuracy and completeness of Martian surface mineral maps.

The CRISM image FRT93BE (latitude: 19.1N, longitude: 283.5W), which is given in
Fig. 11, obtained from the Jezero Crater region, has been used in Ref. 68 for mineral identifi-
cation purposes. Using the proposed ANN model, the dominant minerals detected in the scene
include Mg-carbonate, HCP, and Mg-Smectite, which align with findings from a previous study
in Ref. 89. The PHY (RGB composites—R: D2300; G: D2200; B: BD1900R2) and PFM (RGB
composites: R: BD2355; G: D2300; B: BD2290) browse products provide valuable insights into
the component of hydroxylated and phyllosilicate group minerals. In the PHY product, the pres-
ence of indistinguishable Fe/Mg-Smectites is represented by red/magenta colors, while in the
PFM product, they exhibit a cyan tinge, considering the equivalent strength of hydration bands.
The MAF (RGB composites: R: OLINDEX3; G: LCPINDEX2; B: HCPINDEX2) browse prod-
uct focuses on mafic mineral investigation, where Fe-phyllosilicate and olivine simultaneously
display a characteristic bowl-shaped absorption in the 1.0 to 1.7 μm range. This absorption is
visualized in the MAF product as a red color. Specifically, HCPINDEX2, which is responsive to
broad absorption at 2 μm associated with pyroxene, effectively distinguishes HCP from other
spectral signatures that exhibit convexity centered at 1.3 and 1.5 μm. Consequently, HCP shows
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as a blue/magenta cover in the MAF product. Figure 11 shows these findings, including a com-
parison between the important absorption features observed in the mean spectra of the detected
minerals and the associated spectra in the MICA spectral library.

11 Conclusion and Future Prospectives
CRISM covering a broad spectral range in the VNIR and IR has revolutionized mineral iden-
tification on the Martian surface, providing unprecedented detail in probing the composition of
Martian minerals. The derived browse products and summary parameters, obtained through
extensive photometric and atmospheric correction procedures, play a crucial role in interpreting
and visualizing mineralogical data. Summary parameters effectively capture the distinctive
absorption features of minerals, while browse products generate false-color images that enhance
the visibility of mineral distribution. The integration of machine learning techniques has shown
promising results in automating the process of mineral identification. The ongoing missions and
technological advancements will further enhance our understanding of Martian mineralogy and
its history.

Despite the significance of the aforementioned technique for mineral investigation on the
Martian area using CRISM data, a universal and optimal procedure for precise classification and

Fig. 11 Detected dominant minerals in CRISM MTRDR data FRT93BE. (Top row) Browse prod-
ucts (left: CR2, red/magenta colored pixels indicate Mg-carbonate), (middle: MAF, blue/magenta
colored pixels indicate HCP), (right: PFM, cyan colored pixels indicate Fe/Mg-Smectite); (middle
row) minerals detected by the ANNmodel given in Ref. 68; (bottom row) absorption feature match-
ing between mean spectra of detected pixels and corresponding spectra from MICA library.16

(a) Mg-carbonate, (b) HCP, and (c) Mg-smectite.
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quantification is yet to be established. Several challenges, including noise interference in CRISM
MTRDR data, continue to pose formidable obstacles. Even after applying standard noise
correction methods, residual noise persists, resulting in the presence of a continuum in spectra
that can lead to misclassification. Although numerous continuum reduction techniques have
been proposed in the literature, they have not completely eliminated noise from the data.
Thus, the development of more effective continuum removal techniques is imperative to enhance
the accuracy of mineral classification. Furthermore, the extraction of pure pixels from CRISM
images remains a formidable task due to the prevalence of mixed spectra caused by instrument
artifacts and noise. While summary parameter characteristics have been widely employed for
mineral identification, manual selection of appropriate numerator and denominator combinations
for different locations is time-consuming and susceptible to errors, particularly in the presence of
instrument artifacts and noise, which can give rise to false mineral detections. Consequently,
alternative approaches that do not solely rely on summary parameters have been explored exten-
sively in previous studies to overcome these limitations.

Distance-based mineral categorization is rare in CRISM data due to scale and global shape
differences. Unsupervised learning is the most suitable method for mineral classification, while
the Bayesian model shows potential for integrating CRISM hyperspectral data. Limited imple-
mentation of supervised learning exists due to insufficient training data, but progress is being
made through data augmentation approaches. GAN models also have shown potential for
addressing the challenge. The utilization of neural network models in planetary exploration holds
great potential for enhancing the community’s capacity to rapidly and accurately map composi-
tional units in remote-sensing data on a large scale. This advancement may open doors for the
development of more sophisticated and efficient second-generation algorithms. Neural network
approaches offer several advantages in the context of mineral mapping. They are capable of
handling intricate spectral signatures that may pose challenges for visual interpretation, and they
demonstrate the ability to efficiently and accurately classify vast amounts of data. Moreover,
supervised learning techniques enable the identification of minerals that are not easily discernible
through visual inspection, while also facilitating the mapping of mineral distribution and abun-
dance within a given study area.

Machine learning methods in hyperspectral remote sensing become more computationally
demanding as the data size increases. It is important to choose the right approach based on
the specific application and experimental conditions, as there is no one-size-fits-all solution.
Although there are several machine learning algorithms available, their practical implementation
for mineral identification using CRISM hyperspectral data is still limited. Collaborative efforts
between scientists, engineers, and data analysts will play a crucial role in overcoming the existing
challenges and pushing the boundaries of CRISM research.

Code and Data Availability
The links of the available data and experimental results are included as references, cited at the
intended places in the manuscript.
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