Open Access
9 April 2024 Predicting large wildfires in the Contiguous United States using deep neural networks
Sambandh Dhal, Shubham Jain, Krishna Chaitanya Gadepally, Prathik Vijaykumar, Ulisses Braga-Neto, Bhavesh Hariom Sharma, Bharat Sharma Acharya, Kevin Nowka, Stavros Kalafatis
Author Affiliations +
Abstract

Over the last several decades, large wildfires have become increasingly common across the United States causing a disproportionate impact on forest health and function, human well-being, and the economy. Here, we examine the severity of large wildfires across the Contiguous United States over the past decade (2011 to 2020) using a wide array of meteorological, land cover, and topographical features in a deep neural network model. A total of 4538 wildfire incidents were used in the analysis covering 87,305 square miles of burned area. We observed the highest number of large wildfires in California, Texas, and Idaho, with lightning causing 43% of these incidents. Importantly, results indicate that the severity of wildfire occurrences is highly correlated with the weather, land cover, and elevation of the study area as indicated from their SHapley Additive exPlanations values. Overall, different variants of data-driven models and their results could provide useful guidance in managing landscapes for large wildfires under changing climate and disturbance regimes.

CC BY: © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
Sambandh Dhal, Shubham Jain, Krishna Chaitanya Gadepally, Prathik Vijaykumar, Ulisses Braga-Neto, Bhavesh Hariom Sharma, Bharat Sharma Acharya, Kevin Nowka, and Stavros Kalafatis "Predicting large wildfires in the Contiguous United States using deep neural networks," Journal of Applied Remote Sensing 18(2), 028501 (9 April 2024). https://doi.org/10.1117/1.JRS.18.028501
Received: 2 June 2023; Accepted: 27 March 2024; Published: 9 April 2024
Advertisement
Advertisement
KEYWORDS
Data modeling

Land cover

Forest fires

Climatology

Education and training

Neural networks

Vegetation

Back to Top