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ABSTRACT. In response to a community-identified need for ground-based thermodynamic (TD)
profiling of the troposphere, we present the further development and validation of
a differential absorption LiDAR (DIAL) technique to retrieve temperature. This paper
showcases the accuracy of temperature retrievals using a perturbative technique,
combining a DIAL measurement of a temperature-sensitive oxygen (O2) absorption
profile with a high spectral resolution LiDAR measurement of the backscatter ratio
profile near 770 nm. This study introduces three key advancements. First, the
spectroscopic model used to represent the absorption of light by O2 is enhanced
via a more complete physical representation, improving measurement accuracy.
Second, the error estimation and masking are developed using the bootstrapping
technique. Third, we present a comparison of temperature profiles from our labora-
tory-based instrument with collocated radiosondes, evaluating the accuracy of our
updated measurements. It is essential to clarify that the instrument described in this
paper does not operate as a stand-alone TD profiler, as it is not capable of meas-
uring water vapor (WV). Instead, we focus on demonstrating the perturbative
retrieval technique with temperature profiles inferred using ancillary radiosonde
WV profiles. Results from a full TD profiling instrument will be presented in a future
publication. The laboratory-based LiDAR instrument was operated over a 6-month
period between April 21, 2022, and September 22, 2022. During this time, we
launched 40 radiosondes, providing reference data to validate the accuracy of the
DIAL-based temperature profiles. The results indicate that DIAL-based temperature
retrievals are within �2.5°C between 0.4 and 3 km (3.5 km) during daytime (night-
time) operation, using a 300-m range resolution and a 60-min time resolution.
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1 Introduction
Thermodynamic (TD) profiling of the lower troposphere, including measurements of absolute
humidity and temperature, can be used to partially define the state of the atmosphere. This
TD profiling can provide important information for many atmospheric science and weather
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forecasting applications and has been identified as vital by several reports.1–5 As noted by
Wulfmeyer et al.,5 “networks of ground-based passive and active remote sensing systems oper-
ating in the optical, infrared (IR), and microwave (MW) spectral regions have the potential to
close major gaps with respect to lower tropospheric TD profiling.” As an example of the obser-
vation gaps, the National Research Council recommends approximately 400 next-generation
weather stations across the continental United States.1 These next-generation weather stations
can include TD profiling LiDAR instruments that provide continuous profiling of the atmosphere
and can be used to improve numerical weather forecasting by providing continuously updated
information to constrain the numerical weather forecasting models. Initial work on the impacts
from surface and profiler data for improving numerical weather forecasting is currently under
study.6 Wulfmeyer et al. recommended temperature profiling with a time resolution of ≤1 h and a
vertical range resolution of 100 to 300 m in the convective mixed layer with a bias of <0.5 K and
noise error <1 K5 being needed for improved numerical weather forecasting. Atmospheric
temperature profiling requirements for improving very short-range forecasting are defined by
the World Meteorological Organization7 as threshold (breakthrough): 2 to 3 K [1 K] accuracy
for a time period of 60 min (10 to 30 min), vertical resolution of 1 to 2 km (0.3 to 0.5 km), and
horizontal resolution of 50 to 200 km (10 to 20 km).

Of particular interest in this work is the temperature portion of the ground-based profiling.
Ground-based temperature profiling of the lower troposphere has been accomplished using
Raman LiDAR (e.g., Refs. 8–10) or passive remote sensing instruments, such as MW radiom-
eters and IR spectrometers (e.g., Refs. 11–13). Passive remote sensing profilers typically have
lower spatial and temporal resolution than active profilers; IR spectrometers have errors under
cloudy conditions and have difficulty when temperature inversions are present. For Raman
LiDARs, the small Raman scattering cross section, relative to elastic backscattering, requires
high-power (class IV) lasers that can be complex. Raman LiDARs are unable to utilize etalons
or ultra-narrow interference filters to block the solar background and thus provide reduced per-
formance during the day. Furthermore, Raman LiDAR requires calibration.

As an alternative to these more established measurement techniques, differential absorption
LiDAR (DIAL) is considered here. A diode-laser-based micropulse differential absorption LiDA
(MPD) was developed as a low-cost network-deployable lower tropospheric profiler. The initial
MPD instruments measured water vapor (WV) via the DIAL technique, but have expanded to
provide full TD profiling through the addition of high spectral resolution LiDAR (HSRL) and
O2 DIAL channels.14 Comparisons of the WV-only MPD instruments with passive and active
ground-based instruments and field campaigns involving other observing systems have been
discussed in previous work.15,16

The DIAL technique uses two closely spaced wavelengths: the online wavelength that is
partially absorbed by the molecule of interest and the offline wavelength that is minimally
absorbed by the molecule of interest. Because these wavelengths are very closely spaced,
typically on the order of 0.1 nm, all other scattering and absorption effects are assumed to be
the same. Thus, the only difference in the online and offline wavelengths after propagating
through the atmosphere results from absorption by the molecule of interest, allowing the absorp-
tion coefficient to be measured directly. Common uses of DIAL have historically included num-
ber density profiling of WV, ozone, and other trace gases. If the number density of the molecule
of interest is known, then the temperature profile can be inferred from the absorption coefficient
profile when the absorption coefficient is temperature-sensitive. Theopold and Bösenberg
demonstrated that atmospheric temperature measurements are theoretically possible using a
temperature-sensitive oxygen (O2) absorption line.17 However, the temperature measurement
is complicated in practice due to errors related to the Rayleigh–Brillouin broadening of the
molecular backscatter signal. Bösenberg showed that, if the spectrum of the backscattered signal
is not taken into account, errors of greater than 10°C can result.18 Further practical issues arise
from imperfect knowledge of the WV field. Theopold and Bösenberg17 state that the temperature
measurements require WV measurements because the number density of WV affects the esti-
mated number density of O2. The error associated is non-trivial based on pressure and relative
humidity, but is generally higher with more WV.

Recently, a perturbative DIAL retrieval technique that accounts for the spectral shape of the
scattered light has been developed;19,20 it directly addresses the errors described by Bösenberg.
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This technique uses an ancillary HSRL measurement of the aerosol backscatter ratio (BSR)—the
ratio of the total backscatter to the molecular backscatter—to define the spectral shape of the
backscattered signal and an ancillary DIAL measurement of WV. A perturbative solution that
includes both a first-order and second-order correction is then used to obtain the absorption coef-
ficient profile. Once the temperature-sensitiveO2 absorption profile is retrieved, an iterative tech-
nique is then used to obtain the temperature profile. Initial temperature profiling has been
demonstrated using an MPD measurement of an O2 absorption line at 769.7958 nm.14

In this paper, an experiment was conducted to further improve the efficacy of the DIAL
method for temperature profiling. The laboratory-based instrument used for this study included
a combined O2 DIAL and potassium-based HSRL, but lacked the WV DIAL described in Spuler
et al.15 The instrument was operated continuously on the Montana State University (MSU) cam-
pus between April 21, 2022, and September 22, 2022. During this time, a total of 40 radiosondes
were launched for comparison. The purpose of this paper is to describe improvements made to
the temperature retrieval since Repasky et al.19 and Stillwell et al.14 and to perform an analysis of
DIAL temperature retrieval profiles compared to temperature profiles measured using radio-
sondes. The improvements to the temperature retrieval include adding multiple absorption lines
to the spectroscopic model, using an improved pressure model for the temperature retrieval, and
applying a bootstrapping method that provides an estimate of error.

The retrieval described in this paper infers pressure assuming hydrostatic equilibrium from
the temperature profile in an iterative fashion. Lapse rate estimates directly result from the range-
resolved temperature retrieval. Combining the measured temperature and inferred pressure pro-
files, the potential temperature profile can be retrieved. Further combining the temperature profile
with the WV absolute humidity profile allows for the retrieval of relative humidity and virtual
potential temperature. With these basic TD quantities, atmospheric stability can be assessed. The
purpose of this paper is to demonstrate the ability of the MPD to retrieve temperature profiles;
we anticipate that future work will address the continued development of data products, such as
relative humidity, potential temperature, and virtual potential temperature.

This paper is organized as follows. In Sec. 2, the theory for the DIAL-based temperature
retrieval is discussed. Section 3 presents the data analysis process, including a brief discussion on
a bootstrapping method for estimating the error in the retrieved temperature profile. A brief
description of the instrument used in this study is presented in Sec. 4. Experimental results are
presented in Sec. 5. A discussion of the experimental results is presented in Sec. 6. Finally, some
brief concluding remarks are presented in Sec. 7.

2 Temperature Retrieval Theory
Theopold and Bösenberg17 showed that a DIAL temperature retrieval is theoretically possible
based on work performed in the prior decade.21–24 They also showed that large errors, up to 10°C,
occur if the lineshape of the backscattered signal is not considered. In the selected region of
770 nm, the Rayleigh–Brillouin broadened molecular backscatter has a linewidth of about
2 GHz, which is a similar spectral width to the selected O2 absorption line, whereas the aerosol
scattering linewidth is about equal to the laser linewidth (typically about 1 MHz). In short, light
scattered by aerosols has nearly identical absorption on the propagation path from the LiDAR
system to the scatterer as on the return trip. By contrast, light scattered by molecules has less
absorption on the return trip to the LiDAR system than the outbound leg (assuming the laser is
tuned to the absorption line center). Not accounting for this effect results in the measured absorp-
tion coefficient typically being lower than the absorption coefficient that would be expected
assuming that laser light is not altered by scattering, where aerosol gradients accentuate the
effect, and it is the cause of the large errors in DIAL temperature retrievals, as discussed by
Bösenberg.18

2.1 O2 Absorption Retrieval and Correction
To address this issue highlighted by Bösenberg,18 the temperature retrieval used in this paper
utilizes an HSRL to measure the BSR as well as a DIAL measurement of O2 absorption.
The first step involves a perturbative retrieval of a temperature-sensitiveO2 absorption coefficient
that accounts for the lineshape of the scattered light. The second step uses an iterative retrieval
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that incorporates the retrieved absorption profile to obtain the temperature profile. The reader is
referred to Bunn et al.20 and Repasky et al.19 for complete details; the present work will focus on
the differences and advancements beyond the methods presented in those two works.

The lineshape of the backscattered signal is

EQ-TARGET;temp:intralink-;e001;114;688gxðν; rÞ ¼
1

1 − BSRðrÞ hxðνÞþ
1

BSRðrÞ ½hxðνÞ ⊗ lðν; rÞ�; (1)

where hxðνÞ is the laser lineshape, lðν; rÞ is the molecular backscatter broadened lineshape
(represented here by a Rayleigh–Brillouin lineshape25,26), ⊗ is a symbol for the convolution
operation, and the subscript x is either 1 for the online wavelength or 2 for the offline wavelength.
For the work described in this paper, the laser lineshape, which is about three orders of magnitude
narrower than the Rayleigh–Brillouin broadened lineshape, is assumed to be a delta function.
The Rayleigh–Brillouin broadened lineshape is calculated following Binietoglou et al.27 The
variable r represents the range from the instrument, and ν represents the wavenumber. The

BSR is defined as BSRðrÞ ¼ βaðrÞþ βmðrÞ
βmðrÞ and is measured directly by the HSRL. This is

a major difference from early DIAL-based temperature profiling efforts, which leveraged
Fernald/Klett-style inversions18 for BSR. Here, βaðrÞ is the aerosol backscatter coefficient and
βmðrÞ is the molecular backscatter coefficient.

A perturbative expansion to the LiDAR equation using knowledge of the BSR is used to
retrieve the O2 absorption coefficient, αO2

ðrÞ. The O2 absorption coefficient is written as an
approximate sum of a zero-order term, α0thðrÞ, and first and second-order corrections, Δα1stðrÞ
and Δα2ndðrÞ, respectively, so that

EQ-TARGET;temp:intralink-;e002;114;466αO2
ðrÞ ≈ α0thðrÞþΔα1stðrÞþΔα2ndðrÞ: (2)

The zero-order term, α0thðrÞ; is found using the standard DIAL equation, which is written as

EQ-TARGET;temp:intralink-;e003;114;429α0thðrÞ ¼ α2ðrÞ −
1

2Δr
lnðN1ðrþΔrÞN2ðrÞ

N1ðrÞN2ðrþΔrÞÞ: (3)

In this case, the offline absorption, α2ðrÞ, is three orders of magnitude smaller than the online
absorption and is estimated using a modeled atmosphere. The received signal at range r is rep-
resented by N, and Δr is the LiDAR range bin. The first and second-order correction terms
incorporate the BSR and account for the Rayleigh–Brillouin broadening of the molecularly scat-
tered signal. The first and second-order terms are unchanged from Bunn et al.20 and Repasky
et al.19 and are omitted here for brevity.

2.2 Iterative Temperature Retrieval
With the measured absorption coefficient, αO2

, that is corrected for Rayleigh–Brillouin effects,
the retrieval uses an iterative process to determine temperature from an O2 absorption profile.
This process is described in detail in Repasky et al.19 for a single absorption line and is expanded
here to include multiple absorption lines. This is necessary because there are a number of extra
confounding lines in the oxygen A-band that occur near the absorption line of interest. These
lines have different temperature sensitivities and overall line strengths that result from different
vibrational ground states, isotopes of diatomic oxygen, and electric quadrupole transitions.
Figure 1 shows the O2 absorption using all cabsorption lines in the region of interest obtained
from the high-resolution transmission molecular absorption database (HITRAN) database.28–30

Panel (a) shows the absorption at sea-level and at 4 km above mean sea-level using the United
States (US) standard atmosphere. The online and offline wavelengths are shown as vertical
dashed lines. The absorption line strength decreases with height due to a lower temperature
at 4 km. Likewise, lines narrow with height due to the lower pressure. Panel (b) shows individual
absorption lines and the total absorption. The main absorption line is from the Ref. 16:O2, v’’ = 0
band around 769.8 nm. There is one confounding line that contributes significantly and is shown
in Fig. 1 from the Ref. 16: O2, v’’ = 1 band also near 769.8 nm.

The iterative temperature retrieval starts with an initial temperature guess, TiðrÞ, and then
uses the retrieved O2 absorption profile to calculate a correction to the temperature profile,
ΔTðrÞ. This temperature correction is used to update the temperature profile, as shown in
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Eq. (4), where i is the iteration number. The updated temperature profile is then used in the next
iteration, along with the O2 absorption profile, to calculate a new temperature correction. This
process is repeated until the temperature profile converges, i.e., changes in temperature are small
on the order of 0.01°C, typically within 20 iterations. The temperature correction is given as

EQ-TARGET;temp:intralink-;e004;117;362Tiþ 1ðrÞ ¼ TiðrÞþΔTðrÞ ¼ TiðrÞ
�
1þ ΔTðrÞ

TiðrÞ
�
: (4)

The total O2 absorption is the sum of each individual absorption line, given as

EQ-TARGET;temp:intralink-;e005;117;312αO2
ðν; rÞ ¼

X
k

akðν; rÞ; (5)

where k represents the absorption lines of interest. The absorption for each line k is calculated
as31

EQ-TARGET;temp:intralink-;e006;117;253αkðν; rÞ ¼
S0kðT0ÞT0PðrÞ exp

�
εk

kBT0

�
kB

gkðν − ν0; rÞqðrÞTðrÞ−2 exp
�

−εk
kBTðrÞ

�
; (6)

where S0 is the absorption line strength, T0 is the HITRAN reference temperature, T is the tem-
perature, P is the pressure, ε is the ground state energy, kB is the Boltzmann constant, g is the
Voigt absorption lineshape, and q is the O2 atmospheric mixing ratio. The pressure as a function
of altitude is updated along with the temperature using

EQ-TARGET;temp:intralink-;e007;117;161PðrÞ ¼ Ps exp

�Z
r

0

g0mair

kBTðr 0Þ
dr 0

�
; (7)

where Ps is the surface pressure, g0 is the gravitational acceleration, and mair is the molecular
mass of air. The equation for pressure, Eq. (7), is substituted into Eq. (6). The ΔT in the current

iteration is found using the expansion from Eq. (4), where ΔTðrÞ
TiðrÞ ≪ 1 and keeping first-order

terms containing TðrÞ in Eq. (6) to find

Fig. 1 (a) O2 absorption spectrum in the wavelength region of interest. The model is shown at sea-
level and at a range of 4 km above mean sea-level (assuming the 1976 US Standard Atmosphere).
(b) The total O2 absorption spectrum as the bold blue line and each individual absorption line in the
region of interest at the surface. Dashed vertical lines represent the online and offline DIAL wave-
lengths. In this figure and throughout the text, all wavelengths are given as wavelengths in vacuum.
This figure shows how the absorption changes with altitude and the many separate absorption
lines contributing to total absorption.
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EQ-TARGET;temp:intralink-;e008;114;736ΔT ¼ αO2
ðrÞ −P

No: of lines
k¼1 C1kðrÞC2kðrÞgkðν − ν0; rÞqðrÞP

No: of lines
k¼1 C1kðrÞC2kðrÞC3kgkðν − ν0; rÞqðrÞ

; (8)

where

EQ-TARGET;temp:intralink-;e009;114;691C1;k ¼
S0kðT0ÞT0Ps exp

�
ϵk

kBT0

�
kB

; (9)

EQ-TARGET;temp:intralink-;e010;114;635C2;kðrÞ ¼ TiðrÞ−2 exp
�

−ϵk
kBTiðrÞ

�
exp

�
−g0mair

kB

Z
r

0

1

Tiðr 0Þ
dr 0

�
; (10)

and

EQ-TARGET;temp:intralink-;e011;114;604C3;kðrÞ ¼
−2
TiðrÞ

þ ϵk
kBT2

i ðrÞ
þ g0mair

kB

Z
r

0

1

T2
i ðr 0Þ

dr 0: (11)

The subscripts k represent the separate absorption lines, and the subscripts i represent the
temperature retrieval iteration. Note that Eqs. (8)–(11) can be compared to Repasky et al.19

Eqs. (25) and (26a–c), respectively. The prime difference is the addition of multiple lines and
the different barometric formula used for pressure. Here, we do not assume a single value for
the lapse rate but rather leave the temperature profile within the integral term.

3 Data Analysis Algorithm
The temperature retrieval and error analysis are written in MATLAB. Section 3.1 describes the
steps of the temperature retrieval from data to HSRL retrieval, absorption retrieval, and finally
temperature. Section 3.2 describes the bootstrapping method of error estimation.

3.1 Temperature Retrieval Program
The temperature retrieval program processes raw photon data (plus surface T and P) and retrieves
temperature profiles with an estimate of error. The return photon signals for both the online and
offline wavelengths for both the molecular and total receiver channels, including integration in
time and range, are first loaded and pre-processed and then prepared for error analysis (discussed
in Sec. 3.2). The HSRL retrieval is discussed in detail in Hayman and Spuler32 and Stillwell
et al.14 and used here without modification with measured calibration data files specific to this
instrument.

In the next step of the temperature retrieval algorithm, the perturbative retrieval is applied to
find the O2 absorption coefficient. For this retrieval, the online and offline wavelength data from
the total channel are used. This process is described in detail in Sec. 3.2. First, the spectrum of the
backscattered light is estimated using the BSR retrieved from the HSRL with a Rayleigh–
Brillouin lineshape applied to the molecularly scattered light. The Rayleigh–Brillouin lineshape
is weakly temperature-dependent, so an approximation is made. We assume a simple starting
temperature profile that is based on the surface temperature and lapse rate of 6.5°C/km.
However, because the model temperature profile is updated each iteration, the choice of the start-
ing lapse rate does not affect the final temperature profile (except possibly slowing the final
solution convergence given a starting guess that is nearer/further from the final solution). It
should be noted that the Rayleigh–Brillouin lineshape changes from an full width at half maxi-
mum (FWHM) = 2.18 GHz at 27°C to an FWHM = 2.16 GHz at 17°C, i.e., HSRL measurements
are not exceptionally sensitive to temperature. Furthermore, the Rayleigh–Brillouin lineshape
comes into the perturbative retrieval through the first and second-order correction terms, which
affect the overall absorption coefficient by ∼10% and 1%, respectively. Thus, errors in the
assumed initial temperature profile used to determine the lineshape for the molecularly scattered
light will affect the retrieved absorption coefficient minimally. Next, the absorption linewidth is
calculated using the HITRAN parameters and a Voigt profile. The Rayleigh-–Brillouin lineshape
and the absorption lineshape are calculated using principal component analysis.33 The zero-order,
first-order, and second-order corrections are then calculated and used to retrieve the total O2

absorption profile.
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The next step in the retrieval algorithm is to use the retrieved O2 absorption profile to com-
plete the iterative temperature retrieval. First, an initial temperature profile (Ti) is modeled using
the surface temperature and lapse rate. Next, a pressure profile is calculated as described in
Sec. 2. The temperature deviation ΔT is then calculated using the retrieved absorption coefficient
and Eq. (8). A new temperature profile (Tiþ i) is then calculated by adding the initial temperature
guess (Ti) and ΔT. This new temperature profile is then used as the temperature guess and pres-
sure on the next iteration of the temperature retrieval. This process is repeated using the updated
temperature and pressure profiles until the temperature profile converges (i.e., when ΔT goes to
within some tolerance of zero). The iterative temperature retrieval converges in ∼20 iterations.

3.2 Error Analysis
Standard LiDAR analysis has heavily leveraged the linear propagation of error, i.e., taking a
Taylor expansion of the equation of interest and assuming Poisson statistics to bound measure-
ment uncertainty. This common method fails in this case for a number of reasons. An estimate of
the error is difficult for the two-step temperature retrieval described above due to the nonlinear
nature of the retrieval. Furthermore, the errors observed are not all Poisson distributed, including
uncertainties in BSR and WV profiles. In lieu of standard error propagation techniques, a boot-
strapping method for estimating the error is used. This method has been developed for the WV
MPD15 and adapted for temperature profiling.

The bootstrapping method can be used to estimate multiple sources of error, such as the shot
noise of the detectors, initial conditions of temperature and pressure, error in wavelength sta-
bility, and in HSRL calibration measurements. However, bootstrapping shows only variability in
error and cannot show consistent bias in error. The dominant source of error is due to the shot
noise in the detectors because of a low signal-to-noise ratio; therefore, this paper only considers
shot noise in the bootstrapping error estimate.

The O2 online combined, O2 offline combined, O2 online molecular, and O2 offline molecu-
lar (and WVonline and offline for other MPD instruments) photon number profiles are summed
by the MPD instrument over 2 s and then written to the data file. The bootstrapping error estimate
starts with a Poisson thinning technique in which these profiles are randomly split into two sta-
tistically independent but identically distributed number profiles for both the online and offline
wavelengths.34 This splitting is accomplished by sampling a binomial distribution with a prob-
ability of 0.5 for each photon measurement. The two online and offline profiles are then proc-
essed using the temperature retrieval (including the HSRL retrieval and absorption retrieval),
yielding two unique temperature profiles: TfðrÞ and TgðrÞ. The Poisson thinning and temper-
ature processing is repeated until the variance estimate converges. This process tends to converge
in ∼20 iterations, and the standard deviation of the multiple temperature profiles is then used as
an error estimate:15

EQ-TARGET;temp:intralink-;e012;117;292σ2TðrÞ ≈
1

2½B − 1�
XB
b¼1

½Tb;fðrÞ − Tb;gðrÞ�2; (12)

where b is the iteration number; B is the total number of bootstrap iterations, which is defined to
be > 1; and σTðrÞ is the estimated error in °C.

4 Instrument Description
The instrument in this paper is a subset of the MPD architecture that has been developed by MSU
and the National Center for Atmospheric Research (NCAR). The architecture was initially
designed for WV profiling. A network of five full TD profiling MPDs has been constructed
by NCAR for field use and includes the O2-DIAL, HSRL, and WV DIAL in the same system
using a common telescope. The interested reader can find the full details of the MPD architecture
in Spuler et al.14 The instrument in this paper is a laboratory demonstrator and does not include a
WV DIAL needed for a full TD profiler.

The combined HSRL and O2 DIAL were located in a roofport-equipped laboratory facility
of MSU. Ancillary measurements of surface temperature and pressure were provided by a col-
located weather station (Vaisala CS105, HMP45C) operated by the MSU Optical Remote Sensor
Lab. The radiosonde station was located next to the roofport and allowed for the launching of
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Vaisala RS92_KL radiosondes that are monitored using the Vaisala SPS220 with the GC25
ground check station. The DIAL-based temperature retrievals were compared to temperature
profiles retrieved using the radiosondes.

5 Observational Data
The instrument described in Sec. 4 was operated between April 21, 2022, and September 22,
2022. Between April 21 and July 16, a pulse duration of 1 μs and a pulse repetition rate of 7 kHz
were used. Between July 26 and September 22, a pulse duration of 750 ns and a pulse repetition
rate of 8 kHz were used. The pulse length was changed in an attempt to address a consistent
low-altitude bias, and the repetition rate was increased to account for the total pulse power loss.
The bias is discussed in Sec. 6. A collocated radiosonde station was used to launch a total of
40 radiosondes over the course of the LiDAR operation, with 30 launched between April 21
and July 16 and the remaining 10 launched between July 26 and September 22. Radiosondes
were launched at times to sample a variety of daytime and nighttime conditions. Some days
have multiple radiosonde launches to track the evolution of the boundary layer for a separate
study.

The retrieved temperature profile as a function of time and range is shown in Fig. 2, with a
selected subsection in Fig. 3 to show more detail. Figures 2(a) and 2(c) show the retrieved tem-
perature as a function of range and time for the April 21 to July 22 and July 26 to September 22
periods, respectively. Figures 2(b) and 2(d) show the corresponding surface temperature. The
dashed black vertical lines indicate when radiosondes were launched. The WV mixing ratio used
in the retrieval to calculate temperature for Figs. 2 and 3 was interpolated from radiosonde data.
For the data presented in Figs. 2 and 3, a cloud mask and a signal-to-noise-ratio mask were
applied. The cloud mask is a moving standard deviation window of the BSR with dimensions
of 150 m and 20 min (two range bins and two time bins) and a threshold of 5 that is set to remove
clouds. The temperature resolution is defined by a moving average with dimensions of 300 m in
range and 60 min in time. Vertical resolution is limited by the need to reduce instrument noise.
Other methods, such as the Poisson total variation method introduced by Hayman et al.,35 sig-
nificantly reduce noise for full TD retrievals but at the cost of computational expense. The signal-
to-noise mask is created from the Poisson thinning process described in Sec. 3 with a threshold of
5°C. This combination of averaging and masking was chosen so the temperature mask covered
up to 3.5 and 4 km in range and the temperature uncertainty from detector noise was within 5oC.
Furthermore, data below 400 m are masked due to the relatively long pulse length of the MPD
contaminating low-altitude bins.

Selected plots of the temperature as a function of range with comparisons to radiosondes are
shown in Fig. 4. All radiosondes are shown for the interested reader in Sec. 8. The blue line is the
temperature measured from the radiosonde, and the black line indicates the temperature retrieved
using the LiDAR. The error bounds shown in red are estimated using the bootstrapping method.
Figure 5 shows the same profiles but as a difference between DIAL profiles and radiosonde
profiles. The profiles shown in Figs. 4 and 5 show good agreement with the radiosondes, includ-
ing changes in temperature with altitude. During the summer months, surface air temperature is
highly variable due to strong shortwave radiative heating. During the day, intense surface heating
caused a super-adiabatic lapse rate, and during the night, radiative cooling caused temperature
inversions at the surface. These effects are mostly confined below the first measurement bin of
the temperature profile at 400 m. This can be seen in the radiosonde profiles between the ground
level and 500 m in Fig. 4.

6 Discussion
This section discusses the LiDAR data presented in Sec. 5 and radiosonde data. The data pre-
sented are either from radiosondes (subscript radiosonde), absorption calculated from radiosonde
measurements (subscript spectroscopic), or the DIAL instrument (subscript DIAL). Section 6.1
discusses the perturbative absorption correction from Sec. 2.1. Section 6.2 discusses the iterative
temperature retrieval from Sec. 2.2. Section 6.3 discusses the DIAL temperature retrieval with
radiosonde temperature measurements.
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6.1 Perturbative Absorption Correction
The perturbative retrieval of the O2 absorption coefficient utilizes the retrieved BSR to account
for the broadened lineshape of the backscattered signal. A plot of the zero-order absorption, first-
order correction, second-order correction, and total absorption are shown in Figs. 6(a)–6(d),
respectively, for the same time period as Fig. 3. The BSR is shown in Fig. 6(e). For the O2

absorption coefficient retrieval, the zero-order term tends to be too low due to the broadening
of the molecularly scattered signal, i.e., observed absorption is less than what would be expected
from pure aerosol scattering. Accordingly, the first-order correction term is mostly positive and is
on the order of about 10% to the total absorption coefficient. The second-order correction term
contributes about 1% to the total absorption coefficient. The first- and second-order correction

Fig. 2 (a)–(d) Temperature retrieval from the MSU O2-DIAL and HSRL in the summer of 2022.
Vertical dashed lines represent radiosonde launches. Areas in white represent a data mask. The
data mask is from data availability, clouds, and a low signal-to-noise ratio. Time ticks are located at
00:00 UTC. This figure shows the LiDAR range and performance over many weeks of operation,
including the diurnal cycle.
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Fig. 3 (a) and (b) Selected section of the measurement period shown in Fig. 2. This selection
was chosen to show finer detail than can be seen in Fig. 1. Time ticks are located at 00:00
UTC.

Fig. 4 Selected radiosonde profiles from the measurement period with the radiosonde tempera-
ture in blue, DIAL temperature in black, and error colored in light red shading. The dry adiabatic
lapse rate (−9.8°C∕km) is shown as the dashed line. The individual performance of the DIAL tem-
perature retrieval is shown compared to direct radiosonde measurements. Time and date are in
UTC time.

Fig. 5 Temperature difference between DIAL and radiosonde. Error estimates are light red shad-
ing. The dry adiabatic lapse rate is shown in the dashed line.
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terms tend to contribute most in two distinct scenarios: (1) when there are strong gradients in
the BSR (the DIAL technique depends on the gradient in range and a BSR gradient greatly
contributes to Rayleigh–Brillouin error) or (2) when the BSR approaches unity and molecular
scattering dominates. (Here, the reduction in absorption due to Rayleigh–Doppler broadening is
maximized.)

The efficacy of temperature retrieval was tested using data provided by the radiosondes in
two ways. Because the retrieval described is a two-part process (first, perturbative retrieval of
the O2 absorption coefficient and second, iterative conversion of absorption to temperature), it is
useful to test each step. To test the former, an O2 absorption profile calculated from HITRAN
parameterizations (αSpectroscopic) using radiosonde temperature, pressure, and WV data was
compared to the absorption profile measured using the perturbative retrieval and data from the
LiDAR (αDIAL). A plot of the difference between the absorption coefficient profile measured
using the LiDAR and the absorption coefficient measured using the data from all 40 radiosondes
is shown in Fig. 7. Figure 7(a) shows the absorption difference based on the standard DIAL
retrieval, i.e., the zero-order absorption term. As expected, the absorption measured by the
LiDAR is about 10% lower than the absorption coefficient calculated using the radiosonde data.
This corresponds to a bias of ∼ 2.5°C to 6°C and up to 20°C in areas with high aerosol backscatter
gradients. Furthermore, large deviations are observed at distinct heights. These correspond to
strong aerosol gradients and are the reason Bösenberg18 concluded that “the incomplete
Rayleigh–Doppler correction is the dominant source of error, making this method practically
useless for applications in atmospheric research.” Figure 7(b) shows the absorption difference
as a function of range when the total absorption coefficient is calculated with the perturbative
method—the sum of the zero, first, and second-order terms. The absorption difference is now

Fig. 6 Section of the MPD data from the same time period as Fig. 3 showing the effect of the BSR
on the O2 absorption and the perturbative correction. (a) The zero-order O2 absorption coefficient.
(b) The first-order correction. (c) The second-order correction. (d) The total observed O2 absorption
coefficient. (e) The BSR. Note the changes in color and scale from (a)–(d). Temporal resolution of
data in this figure is 10 min, and range resolution is 75 m. Time ticks are located at 00:00 UTC. The
performance of the DIAL and perturbative absorption correction can be seen in aerosol gradients
of the BSR.
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centered near zero with no large spikes, indicating that the perturbative retrieval of the absorption
coefficient is correcting for the change in lineshape of the backscattered light.

6.2 Comparison of Iterative Temperature Retrieval with Radiosonde Data
Similar to Sec. 6.1, a test of the second step of the temperature retrieval algorithm was conducted
using data from the radiosondes. Note that, although this does not test the accuracy of the spectro-
scopic model or the perturbative absorption correction (the first step of the DIAL temperature
retrieval), it will highlight, in particular, the pressure sensitivity in the spectroscopic model. The
calculated absorption profiles from the radiosondes from Fig. 7 (αSpectroscopic) are used as input
into the iterative temperature retrieval. The surface temperature, along with a lapse rate of
6.5°C/km, was used as the initial temperature profile (this is only a starting point because the
temperature and pressure model will converge to the final temperature profile). Reanalysis data
could be used for slightly faster convergence but is not necessary. A pressure profile was then
calculated using the surface pressure and the initial guess lapse rate using Eq. (7). The initial
temperature profile was updated using Eq. (8) and iterated until convergence (temperature steps
< 0.001°C). Once the iterative temperature retrieval converges, a comparison of the retrieved
temperature and pressure profiles with the temperature and pressure profiles measured with the
radiosondes (TSpectroscopic and PSpectroscopic) can be used to assess the efficacy of the iterative
temperature retrieval technique. A plot of the temperature and pressure difference between the
spectroscopic model and radiosonde measurements as a function of range is shown in Figs. 8(a)
and 8(b), respectively.

The maximum temperature difference in Fig. 8 is less than 0.035°C at 5 km, and the maxi-
mum pressure difference is less than 0.001 atm up to 5 km. Note that the data range exceeds the
observed DIAL observation range as all data originate from sonde measurements. This result
indicates that, if one starts with the correct O2 absorption profile, the iterative temperature
retrieval will converge to provide a good estimate of the temperature and pressure profiles
(as is suggested by Fig. 7). Using different initial starting temperature lapse rates and pressure
using Eq. (7) affects the number of iterations to convergence but does not affect the final value.
The addition of the confounding absorption line in the temperature retrieval shown in Sec. 2
removed a bias in the retrieval-sonde comparison by an average of 1.6°C at 400 m and
0.8°C at 4 km using the same comparisons shown in Fig. 8(a). The retrieved temperature is

Fig. 7 Comparison of the DIAL O2 absorption coefficient and modeled O2 absorption coefficient
from radiosonde data shows the performance of the perturbative absorption correction. Each line
represents one radiosonde profile. (a) Zero-order O2 absorption coefficient difference. (b) Total
corrected O2 absorption coefficient difference.
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higher without the additional line because a lower calculated absorption in Eq. (8) will result in a
higher temperature. The difference changes in height because the absorption lines have different
temperature sensitivities and center wavelengths.

6.3 DIAL and Radiosonde Comparisons
A comparison of the radiosonde temperature to the DIAL retrieved temperature is shown in
Fig. 9. Using a linear fit to the scatter plot of the temperature retrieved from the LiDAR and
the temperature measured using collocated radiosondes shown in Fig. 9(a), a slope of 0.966 and
intercept of 0.3144°C were determined with an R2 ¼ 0.956. The fit in Fig. 9(c) has a slope of
0.939 and an intercept of −0.103°C with an R2 ¼ 0.945. In Fig. 9(e), the slope is 0.938 with an
intercept of 0.6479°C and an R2 ¼ 0.944. Difference comparisons between radiosonde and
LiDAR temperature as a function of altitude show a consistent bias that swings from positive
to negative in altitude ∼1 km above ground level. This is also seen on time series plots as hori-
zontal banding. Slight horizontal banding can also be observed in WV MPD data in previous
work14,16 as well as in Fig. 3 near 1 km, suggesting the bias stems from something with MPD
hardware architecture, perhaps involving the extended overlap function and pulse length.
Different instruments and small differences in the alignment of the MPD show different shapes
and amplitudes of the bias. In the observational period presented here, the pulse length of the
LiDAR transmitter was changed from 1 to 0.75 μs in an attempt to reduce or change the bias.
Figures 9(b) and 9(d) show the bias change between a 1 and 0.75 μs pulse length. This effect is
currently under investigation.

Each comparison bin has dimensions of 75 m and 10 min. Figures 9(a) and 9(b) have 979
bins for comparison, Figs. 9(c) and 9(d) have 325 bins for comparison. The standard deviation of
the temperature difference is 1.95°C (mean −0.315°C) for the 1 μs pulse duration, 1.76°C (mean
−0.159°C) for the 750 ns pulse duration, and 2.36°C (mean −0.784°C) for the combined data.
The combined data result suggests that the error in the temperature retrieval is approximately
�2.5°C. However, a small bias in range is present, as shown in Fig. 9.

The results of the bootstrapping method of error estimation, theoretically described in Sec. 3,
can be seen as the red shaded areas in Figs. 4 and 5. As expected, the error estimate increases with
increasing range because the signal-to-noise ratio decreases with increasing range. The error
estimate is primarily used as a mask, with the temperature profiles being masked based on a
threshold of 5oC in the error estimate. The masks shown in Figs. 2 and 3 show an expected

Fig. 8 Similar to Fig. 7 comparing temperature and pressure. (a) Temperature difference (retrieval
minus sonde). (b) Pressure difference [Eq. (7) minus sonde]. This figure shows the good perfor-
mance of the iterative temperature retrieval using collected radiosonde data.
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pattern of masking more during the day because of the higher background noise. The radiosonde
comparisons in Fig. 9 show few comparison points beyond �5°C, meaning the error estimate
appears to function well enough to mask data within a threshold.

7 Conclusions
TheMPD architecture has been specifically designed to address observational gaps for TD profil-
ing within the lower troposphere. In this study, a laboratory-based instrument—consisting of a
subset of the MPD TD-profiling architecture (temperature DIAL without the WV DIAL)—was
evaluated to assess the effectiveness of the DIAL temperature retrieval algorithm. This study
introduced three key advancements. First, the temperature retrieval was updated by incorporating
multiple O2 absorption lines and using an improved pressure model for the temperature retrieval,
thereby enhancing the physical realism. Second, a bootstrapping error estimation method for the
temperature retrieval was adapted from a technique originally developed for the WV MPD.
Finally, a total of 40 radiosondes were launched from a collocated station with the LiDAR system
between April 21, 2022, and September 22, 2022, for evaluation of the accuracy of the DIAL
temperature retrieval. These radiosonde data were utilized to evaluate the efficacy of the temper-
ature retrieval in three stages: comparing the perturbative retrieval of absorption against a
spectroscopic model using radiosonde data, an assessment of the iterative temperature retrieval

Fig. 9 (a, c, e) Comparisons of radiosondes and DIAL temperature on a 1:1 plot. The blue line is a
linear fit. The nlack dashed line is the 1:1 line, and black solid lines are 2°C bounds. (a) Early
summer 1 μs pulse length, (c) late summer 0.75 μs, and (e) combined summer comparison.
(b, d, f) Comparisons of radiosonde and DIAL temperature difference as a function of range.
The blue line is the mean, and dashed blue lines are the standard deviation from the mean.
(b) Early summer 1 μs pulse length, (d) late summer 0.75 μs, and (e) combined summer compari-
son. This figure shows the good performance of the DIAL temperature retrieval compared to
radiosonde measurements as well as the consistent bias in altitude.

Cruikshank et al.: Advancement and demonstration of a perturbative retrieval. . .

Journal of Applied Remote Sensing 034514-14 Jul–Sep 2024 • Vol. 18(3)



from a spectroscopic model using radiosonde data, and comparing the DIAL temperature
retrieval against radiosonde temperature measurements.

Although individual comparisons of the DIAL-based temperature retrieval with radiosondes
generally exhibited good agreement (within 2.5°C), some temperature profiles exhibited varia-
tion in altitude, albeit without significant bias. Notably, difference comparisons between radio-
sonde and DIAL-based temperature as a function of altitude consistently revealed a characteristic
bias of about 1°C around ∼1 km above ground level. This slight bias may be attributed to a
combination of factors, and identifying the exact mechanism and minimizing this bias will
be a focus of future work.

This work demonstrates the potential viability of the temperature profiling micropulse DIAL
to meet recommendations of resolution and error. Future advances in hardware and signal
processing are expected to improve bias and noise error. Temperature profiling combined with
WV profiling can provide important retrievals, such as potential temperature and relative humid-
ity for improved performance of numerical weather prediction.

8 Appendix A: All Temperature Comparison Profiles
All radiosonde profiles, along with DIAL temperature profiles and error estimates, are presented
in Figs. 10 and 11.

Fig. 10 All radiosonde profiles from the measurement period with the radiosonde temperature in
blue, DIAL temperature in black, and error colored in light red shading. Time and date are in UTC
time.
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