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ABSTRACT. Nitrogen and phosphorus are essential elements of plants, which play important roles
in representing plant growth, physiological function regulation, fruit harvest, etc.
Hyperspectral technology provides a nondestructive, rapid, highly accurate, and
cost-efficient method for plant leaf nutrient content estimation. There are very limited
studies on nutrient diagnosis of Camellia oleifera leaves using hyperspectral technol-
ogy. In this work, 160 Camellia oleifera samples were used. Hyperspectral data were
obtained using a full-band spectrometer. On the basis of preprocessing, the spectral
response characteristics of leaf nitrogen content (LNC) and leaf phosphorus content
(LPC) were revealed by comparing different combinations of spectral indices, and the
spectral variables were further selected. The optimal LNCand LPC estimationmodels
based on three machine learning algorithms [i.e., support vector machine (SVM), ran-
dom forest (RF), and back propagation neural network (BPNN)] were constructed.
The results showed that the spectral sensitive regions of leaf nitrogen and phosphorus
content were mainly reflected in green band, followed by red band and the long-wave
direction of short-wave infrared band. Savitzky–Golay first derivative (SGFD) pretreat-
ment methodwas generally better thanmultiplicative scatter correction. Themaximum
correlation coefficients of the absolute values of LNC, LPC, and spectral transforma-
tion features were 0.56 and 0.49. The optimal LNC and LPCmodels were both SGFD-
TBNDSI-BPNN, withR2 of 0.81 and 0.79, andRMSEP of 0.55 and 0.06 g∕kg, respec-
tively. The research results can provide a reliable theoretical basis for large-scale opti-
cal remote sensing monitoring of nutrient content for Camellia oleifera.

© The Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License.
Distribution or reproduction of this work in whole or in part requires full attribution of the original
publication, including its DOI. [DOI: 10.1117/1.JRS.18.038502]

Keywords: ground hyperspectral technology; Camellia oleifera; nutrient content;
machine learning; feature transformation

Paper 240008G received Jan. 2, 2024; revised Jun. 14, 2024; accepted Jul. 10, 2024; published Aug.
7, 2024.

1 Introduction
Nitrogen and phosphorus are essential elements for plant absorption, transport and assimilation
from soil, maintaining all stages of growth and development.1 Improving soil nutrient structure
by adding nitrogen fertilizer, phosphate fertilizer, and compound fertilizer can create a good
survival foundation for plants with fast growth, high quality, high yield, and stable yield.
The traditional way of soil nutrient determination and balance (i.e., soil testing formula) is
to understand the physical and chemical properties of the soil at the root of the plant through
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soil sampling and chemical analysis, so as to guide the supply balance of soil nutrients.2

Although such technology has made significant contributions to alleviating the contradiction
between plant fertilizer demand and soil fertilizer supply for a period of time, it is still impossible
to determine the actual amount of nitrogen and phosphorus that plants actually absorb from soil.
In plant physiology, the content of nitrogen and phosphorus in plants represents the real nutri-
tional level of plants in real time, and leaves are the most sensitive organs to plant physiological
and metabolic changes.3,4 Therefore, the monitoring of nitrogen and phosphorus content in
leaves has always been hot topics in long-term research both at home and abroad, and the quan-
titative diagnosis of nutrient profit and loss status in different growth stages of plants is the
focus.5 However, rigorous laboratory testing conditions, expensive analytical instruments, and
technical bottlenecks, which are difficult to break through have greatly increased the difficulty of
extending destructive monitoring to the determination of nitrogen and phosphorus content in
leaves at large regional scales.

Nitrogen is involved in regulating plant photosynthesis. Nitrogen deficiency will have a
serious impact on plant growth and yield, while excessive consumption of nitrogen fertilizer
can lead to a series of environmental problems. Phosphorus content in plant leaves is second
only to nitrogen, but it also plays a crucial role in plant growth and development. Compared
with the research breadth and depth of nitrogen in the field of spectral analysis, there are rel-
atively few reports on phosphorus. Phosphorus deficiency is easy to produce anthocyanins and
change chlorophyll content and significantly change the arrangement of leaf cell structure and
affect the synthesis of organic matter. Under the combined action of various factors, the change
rule of phosphorus spectral characteristic curve is more complicated.6,7 The spectral changes of
different varieties of crops during the phenological period are generally similar, and the spectral
reflectance decreases in the visible light band and increases in the near-infrared band with the
increase of nitrogen application rate or the increase of leaf nitrogen content (LNC).8,9 Due to the
strong mobility of nitrogen, the spectral response of nitrogen in horizontal or vertical spatial
heterogeneous distribution is different.10,11 Nitrogen in leaf cells mostly exists in the form of
protein, and some of it synthesizes chlorophyll. Under certain radiation levels, it causes the
absorption and reflection of photosynthetic nitrogen or nonphotosynthetic nitrogen at specific
wavelength positions and then produces significant differences in spectral reflectance.12 Based
on the highly correlated characteristics of nitrogen and chlorophyll content, many current studies
focus on the visible and near-infrared short-wave ranges, ignoring the protein or nonphotosyn-
thetic nitrogen components that respond to the near-infrared long-wave.13 Ramoelo et al.14 used
in situ hyperspectral and environmental data to estimate the phosphorus content of grass and
found that the sensitive regions were mostly located in the near-infrared band, which were sus-
ceptible to interference from proteins, sugars, and starches, showing low correlation similar to the
visible light band. Guo et al.15 found that 31 characteristic wavelengths can be selected in the
range of 350 ∼ 2500 nmwhen monitoring the phosphorus content in rubber tree leaves, of which
about 70% are distributed in the near-infrared band. Li et al. used in situ canopy spectra to mon-
itor nitrogen and phosphorus in winter rapeseed, and obtained wavelengths related to phosphorus
at 755, 832, 891, 999, 1196, and 1267 nm. They also pointed out that the spectral absorption
characteristics of these regions may affect the final estimation accuracy due to differences in
canopy or cell physical morphology.6 Although the response difference in spectral response
of leaf phosphorus has been confirmed to be related to internal biochemical components and
cell structure, the previous research conclusions are mostly limited to short-term survey data.
The effects of genetic conditions, external environment, and human interference cannot be com-
pletely excluded. Therefore, the use of spectral data to estimate leaf phosphorus content still has a
large research space.

How to efficiently extract weak information of interest from redundant and complex hyper-
spectral data has always been a research difficulty, which has prompted researchers to start in-
depth research on multivariate quantitative analysis techniques for weak hyperspectral signals in
various fields. The process of hyperspectral data mining is essentially to solve typical high-
dimensional problems, especially when the number of samples is far less than the dimension
of spectral data, it may face “curse of dimensionality,” which indirectly leads to the reduction
of analysis accuracy. Therefore, to minimize or eliminate the influence of nontarget elements, it is
very important to select appropriate spectral preprocessing and feature transformation to improve
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signal sensitivity when constructing hyperspectral estimation model. At present, the relevant
processing methods are divided into two categories: spectral processing for spectral arrays and
spectral array data processing combined with concentration array information.16–20 Although so
many preprocessing methods have been developed, there is still no preprocessing that can guar-
antee the complete removal of all irrelevant information independently. In addition, scholars have
also fully learned from the successful experience of vegetation index in multispectral analysis
and gradually used spectral index for hyperspectral analysis. By combining linear or nonlinear
methods, potential effective information is mined from the full-band hyperspectral response char-
acteristics of extremely narrow continuous intervals, and nonvegetation or irrelevant information
is minimized, representing ratio nitrogen index, normalized area index and canopy chlorophyll
concentration index.21–25

The objectives were: (1) to compare the accuracy between multivariate scattering correction
(MSC) and Savitzky–Golay first derivative (SGFD) for spectral preprocessing; (2) to reveal sen-
sitive bands or combinations of spectral response of leaf nitrogen and phosphorus content basis
on two-band and three-band spectral indices; and (3) to construct the optimal estimation models
of LNC and leaf phosphorus content (LPC) based on machine learning algorithms [support vec-
tor machine (SVM), random forest (RF), back propagation neural network (BPNN), etc.].

2 Materials and Methods

2.1 Overview of the Study Area
This paper takes the planting base of Camellia oleifera in Xian’ge Village, Xianyuan Town,
Huangshan District, Huangshan City, Anhui Province, China, as the research scope. The coor-
dinates of the central point are 118°10′13.448″E, 30°19′49.421″N. The whole area is located on
the sunny slope, and the slope surface is inclined downward from northwest to southeast in the
form of terraces. The maximum height difference between the upper and lower slopes is more
than 50 m, and the average altitude is 290 m. The study area is located in the northern part of
Huangshan District, facing adjacent to Taiping Lake Scenic Area in the north and Huangshan
Mountain Scenic Area in the south. The climate characteristics are obvious, the four seasons are
quite distinct, and the rain and heat are in the same period, which belongs to the typical sub-
tropical monsoon humid climate.

2.2 Sample Tree Selection
From October 28 to November 2, 2021, 160 Camellia oleifera trees were selected as the research
subjects in the study area, of which 120 trees were randomly sampled and 40 plants were sampled
centrally. To reduce the blindness of ground sampling, this study uses an UAV to take low-
altitude aerial photography of the study area to obtain high-resolution digital orthophoto map
(DOM), and then uses ArcMap software to generate a fishnet map (3 m × 3 m) matching the
DOM range of the study area. Thirty fishnet grids were randomly selected based on the spatial
distribution of the Camellia oleifera trees, in which four plants were selected (i.e., four plants per
grid × 30 grids = 120 plants). In addition, we set up a 15 m × 35 m square sample plot with 40
plants. Thus, a total of 160 plants were selected as research objects. All the Camellia oleifera
trees tested in this study are Changlin series (i.e., Changlin No. 27, Changlin No. 40, and
Changlin No. 53), which were planted in 2012. The investigation and fruit harvesting were car-
ried out during the fruit ripening stage. There were no other operational measures, such as water-
ing, fertilizing, dosing, etc., during the first seven months before investigation, except for
necessary weeding.

2.3 Data Acquisition
A full-band spectrometer (FieldSpec4 Wide-Res, Analytical Spectrum Devices Inc., United
States) was used to collect the full-band (i.e., 350 ∼ 2500 nm) hyperspectral data. The armored
optical fiber of the spectrometer was connected to the optical fiber extension cable through a fiber
adapter and then the probe was lifted to 2.0 m above the center of the trees’ canopies using a
custom bracket. Thus, a cone-shaped detection space with a diameter of more than 1.8 m is
formed from the surface, and this detection field basically covers most of the top and middle
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layers of the canopy of a single tree. The measured hyperspectral data do not include background
noise, such as soil and tree trunks.

In the outdoor environment, external factors, such as light intensity, cloud cover, wind speed,
air temperature, and humidity, will affect the quality of hyperspectral data. Therefore, to min-
imize the interference of external factors, this experiment chose to carry out measurement oper-
ations under sunny, windless and cloudless weather conditions. Generally, hyperspectral data are
obtained between 10 a.m. and 2 p.m. in Beijing time. Before collecting the spectra of each tree,
one or more corrections were performed using a reference whiteboard with a reflectivity close to
100% in full band range. Finally, to reduce the random measurement error, 10 spectra were con-
tinuously collected for each single tree.

2.4 Determination of Nitrogen and Phosphorus Content in Leaves
According to the relevant literature,26–28 in this experiment, a single plant of Camellia oleifera
was harvested in the upper and middle parts of the canopy and scattered in 4 directions, with
two leaves in each direction, totaling 16 leaves (mixed sampling of new and old leaves,
160 samples × 16 leaves in total). After picking the leaves, immediately put them into an
envelope bag and take them back to the laboratory. Place them in an air-drying oven and sterilize
them at 105°C for 30 min. Then, dry them at 60°C until they reach a constant weight. After
drying, grind through a 60-mesh sieve, and the screened oil tea leaf powder is used for machine
measurement of LNC on the packaging sample, while a portion is used for digestion and boiling
to measure LPC. Nitric acid-perchloric acid mixing method was used for plant sample digestion.
LNC was measured using an element analyzer (EA3000, Euro Vector, Inc., Italy), while LPC was
measured using a continuous flow analyzer (AA3, SEAL Analytical, Inc., Germany). LNC and
LPC corresponded to the contents of total nitrogen (TN) and total phosphorus (TP) in leaves,
respectively, and the unit was converted into g/kg.

2.5 Data Preprocessing

2.5.1 Hyperspectral data preprocessing

Before preprocessing, it is necessary to visually select and delete the outliers within the 10 hyper-
spectral reflectance curves repeatedly collected from a single plant and then calculate the average
reflectance of the remaining hyperspectral curves.

Elimination of water vapor bands. The absorption characteristics of water vapor to solar
radiation span the entire ultraviolet-visible-near infrared-short wavelength infrared (SWIR)
spectral range and change with time and space. The absorption intensity near 1400, 1800, and
2500 nm is almost 100%. Since the measurement process was carried out outdoors, the tran-
spiration of Camellia oleifera leaves will increase with the increase of solar elevation angle,
and a large amount of water vapor will evaporate upward in the canopies, which makes the
reception signal of the spectrometer very weak in these three places, so it is very easy to be
affected by random noise and produce large fluctuations. Therefore, according to the collected
hyperspectral reflectance curve of Camellia oleifera, the abnormal range of water vapor absorp-
tion can be roughly judged. The band reflectance in the range of 1351 ∼ 1440, 1796 ∼ 2025, and
2331 ∼ 2500 nm is directly removed, and the original spectra at this time is recorded as R.

Multiplicative scatter correction. Multiplicative scatter correction (MSC) is a spectral
preprocessing method to deal with the influence of diffuse reflection and optical path change
of rough surfaces. It corrects the baseline translation and offset of each spectral data by establish-
ing an “ideal spectrum.”29 However, the average value of all spectral data is approximately
replaced by the “ideal spectrum,” since it cannot be directly collected. Equation (1) describes
the calculation process of MSC. By performing a unary linear regression between the canopy
spectrum of a single tree and the “ideal spectrum,” the specific intercept and slope are obtained,
that is, the baseline translation and offset corresponding to each spectrum. Then subtract the
obtained intercept and divide it by the slope, and finally obtain the spectrum after scattering
correction
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EQ-TARGET;temp:intralink-;e001;117;736MSCi ¼
ðRi − biÞ

ki
; (1)

where Ri is the i’th original spectral reflectance and bi and ki are the corresponding baseline
translation and offset, respectively.

Savitzky–Golay first-order derivative. SGFD is a spectral preprocessing method for
resolving absorption overlapping peaks, improving resolution, correcting baseline offset, and
eliminating background noise.30 It combines the characteristics of Savitzky–Golay convolution
smoothing filter to eliminate weak high-frequency noise with the ability of the first-order deriva-
tive to correct the spectral baseline drift and has three variable parameters (i.e., polynomial order,
smoothing window size, and derivative order) [Eq. (2)]. Different combinations of variable
parameters can also achieve flexible changes in correction effects.31 SGFD makes up for the
lack of noise suppression ability of direct difference derivation and realizes the polynomial cor-
rection and first-order derivative transformation of spectral reflectance based on least squares
method in a smooth window and then realizes the correction of full-band spectra by moving
the window. When using this method, the combination of the three variable parameters is very
important. For instance, if the width of the smoothing window is too large, the detail information
will get lost, and if the window is too small, the noise will not be weakened. In this paper, the
polynomial degree is set to two, and the smoothing window size is five

EQ-TARGET;temp:intralink-;e002;117;503y 0
i ¼

Xj¼m

j¼−m

Cjyiþ j

N
; (2)

where y 0
i is the new value after the first derivative of Savitzky–Golay convolution, Cj is the

convolution weight determined by the polynomial order and the size of 2mþ 1 moving window,
N is the normalization factor, and yiþj is the measured original spectral reflectance.

2.6 Multivariate Spectral Index Method
Spectral index is a new index that combines the spectral reflectance of different bands through
simple linear or nonlinear algebraic operations. There are three common algebraic operations:
difference, ratio, and normalized value.32

2.6.1 Two-band spectral indices

The simple combination of reflectance values of a few bands can effectively enhance the linear
measurement of hyperspectral features on the physical-chemical parameters of ground objects
and weaken the influence of errors and uncertainties caused by differences of background factors.
The spectral index of the two-band combination expands the spectral feature space of the one-
dimensional wavelength index range to the two-dimensional index scale and fully combines
the correlation between the spectra. In this part, three combinations of two-band reflectance
values [i.e., difference spectral index (DSI), ratio spectral index (RSI), and normalized difference
spectral index (NDSI)] are used, as shown in Eqs. (3) to (5). To reduce computational cost,
a 5-nanometer resampling interval is set before the calculation

EQ-TARGET;temp:intralink-;e003;117;220DSIði; jÞ ¼ Ri − Rj; (3)

EQ-TARGET;temp:intralink-;e004;117;184RSIði; jÞ ¼ Ri

Rj
; (4)

EQ-TARGET;temp:intralink-;e005;117;153NDSIði; jÞ ¼ Ri − Rj

Ri þRj
; (5)

where Ri and Rj are the reflectance values at i nm and j nm, respectively.

2.6.2 Three-band spectral indices

The three-band spectral index introduces a new wavelength index dimension, and in this section,
we still use three combinations of reflectance values [i.e., three-band difference spectral index
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(TBDSI), three-band radio spectral index (TBRSI), and three-band normalized difference spec-
tral index (TBNDSI)], as shown in Eqs. (6)–(8). To reduce computational cost, a 10-nm resam-
pling interval is set before the calculation

EQ-TARGET;temp:intralink-;e006;114;700TBDSIði; j; kÞ ¼ ðRi − RjÞþ ðRk − RjÞ; (6)

EQ-TARGET;temp:intralink-;e007;114;664TBRSIði; j; kÞ ¼ Ri

Rj þRk
; (7)

EQ-TARGET;temp:intralink-;e008;114;633TBNDSIði; j; kÞ ¼ Ri − Rj

Ri þRk
; (8)

where Ri, Rj, and Rk are the reflectance values at i, j, and k nm, respectively.

2.7 Machine Learning Model Construction and Evaluation
The independent nitrogen and phosphorus estimation model dataset is constructed by combining
the spectral characteristics of Camellia oleifera and the nitrogen and phosphorus content param-
eters of leaves, and the rank sample set partitioning based on joint X-Y distances (RANK-SPXY)
algorithm is used to divide the calibration set and the prediction set at a fixed ratio (7:3). SVM,
RF, and BPNN algorithms are used to train and construct models using the calibration set. The
generalization ability of the nitrogen and phosphorus content estimation model of Camellia olei-
fera leaves was evaluated by using independent prediction sets to test the applicability of
the model.

3 Results and Analysis

3.1 Descriptive Analysis of Nitrogen and Phosphorus Content in Camellia
oleifera Leaves and Canopy Hyperspectral Reflectance

3.1.1 Descriptive analysis of nitrogen and phosphorus content in Camellia
oleifera leaves

The RANK-SPXY method was used to divide the sample dataset of nitrogen and phosphorus
content (i.e., LNC and LPC) of Camellia oleifera leaves with a capacity of 160 at according to the
ratio of 7:3. The calibration set of 112 and the prediction set of 48 were established, respectively.
The descriptive statistical results of the dataset are shown in Table 1. Among the 160 plants, the
maximum N content was 15.33 g∕kg, the minimum was 8.00 g∕kg, the average was
11.15 g∕kg, and the standard deviation was 1.31. The maximum P content was 1.12 g∕kg, the
minimum was 0.52 g∕kg, the average was 0.83 g∕kg, and the standard deviation was 0.12. We
also performed a one-way analysis of variance test, all of which were greater than 0.05, indicating
that there was no significant difference. The range of LNC in Camellia oleifera leaves reached
7.33 g∕kg, and the range of LPC was 0.60 g∕kg. From the coefficient of variation, it can be seen
that the degree of variation of LPC is greater than that of LNC.

Table 1 Descriptive statistics of datasets and partition results.

Type Dataset Size Mean Maximum Minimum
Standard
deviation Skewness Kurtosis

Coefficient of
variation/%

LNC The whole sample 160 11.15 15.33 8.00 1.31 0.34 0.26 11.78

Calibration set 112 11.13 15.33 8.00 1.34 0.25 0.13 12.03

Prediction set 48 11.18 15.03 8.80 1.26 0.62 0.74 11.29

LPC The whole sample 160 0.83 1.12 0.52 0.12 0.06 −0.31 14.34

Calibration set 112 0.83 1.12 0.52 0.12 0.05 −0.20 14.26

Prediction set 48 0.83 1.07 0.58 0.12 0.06 −0.46 14.65
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The RANK-SPXY method is used to divide the data set. The results show that the selection
range of the correction set of LNC and LPC is well covered and greater than the numerical range
of the prediction set. According to the skewness and kurtosis calculation values described in
Table 1, the two types of datasets and the division results generally obey the normal distribution.
This phenomenon indicates that the RANK-SPXY method can make the calibration set and the
prediction set satisfy the homomorphic distribution that is approximately consistent with all the
data and further consider the differences in spectral space and target properties and extract rep-
resentative samples.

3.1.2 Descriptive analysis of Camellia oleifera canopy hyperspectral
reflectance

Figure 1(a) shows the distribution of the Pearson correlation coefficient of hyperspectral reflec-
tance for any adjacent wavelengths across the whole band of the Camellia oleifera canopy.

The regions with correlation coefficients above 0.8 are blocky, corresponding to UV, Vis,
NIR, and SWIR bands, respectively. There are also small blocky regions with correlation coef-
ficients close to 1 in the spectral region. These strong correlation regions are distributed in a
specific wavelength range, with different widths and sizes. It shows that the same band has high
redundancy and there is interference between adjacent bands. In addition, the correlation coef-
ficient of different spectral regions in the joint region is generally lower than 0.8, indicating that
different spectral regions have certain independence. The mutual interference and the redundancy
between different spectral intervals are reduced, and the information load is relatively more
obvious.

Figure 1(b) depicts the changes in the spectral curve characteristics of the raw hyperspectral
reflectance (R) by MSC and SGFD pretreatments, respectively. Compared with R with typical
characteristics of Camellia oleifera canopy, MSC pretreatment basically does not change
the overall peak trend of its spectral curve, but reduces the standard deviation of reflectance
of high reflection platform in the range of 780 ∼ 1350 nm, and increases the standard deviation
of reflectance in the range of 400 ∼ 500 nm. It shows that MSC can weaken the scattering fluc-
tuation caused by difference in leaf cell level or canopy level structure, and change the response
characteristics of some Vis bands. Compared with the spectral curve characteristics of R and
MSC, the SGFD pretreatment completely changed the original spectral presentation form, and
amplifies the peak reflection and trough absorption characteristics of each band to varying
degrees.

Fig. 1 Canopy hyperspectral reflectance feature analysis. (a) Correlation coefficient distribution
diagram of reflectance at different wavelengths. (b) Characteristics of canopy hyperspectral reflec-
tance curve under different pretreatments. Note: r is the absolute value of Pearson correlation
coefficient.
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3.2 Response Relationship Between Canopy Hyperspectral Reflectance
and Leaf Nitrogen and Phosphorus Content of Camellia oleifera

3.2.1 Response relationship between canopy hyperspectral reflectance
and LNC of Camellia oleifera

By comparing the response relationship of the average hyperspectral reflectance (R) of Camellia
oleifera canopy in the five equal intervals of LNC [Fig. 2(a)], the results show that the overall
trend of canopy hyperspectral reflectance at different nitrogen levels shows a certain rule. The
amount of samples in five equal LNC intervals are 14, 54, 65, 23, and 4, respectively. The spe-
cific performance are as follows: with the increase of LNC, the reflectance of the visible spectral
region gradually decreases, and the red-edge feature tends to shift towards the long wave direc-
tion, while the spectral reflectance in the SWIR spectral region has a monotonic downward ten-
dency only in the range of 2026 ∼ 2330 nm. Nitrogen plays a crucial role in regulating plant
photosynthesis and is involved in the synthesis of chlorophyll. Phosphorus deficiency can lead
to the production of anthocyanins, altering the chlorophyll content. Therefore, we have focused
on exploring the differences in nitrogen and phosphorus levels and their correlation with spectral
changes. It can also be seen from the figure that the spectral reflectance of the LNC values in the
ranges of 10.93 ∼ 12.40 g∕kg and 12.40 ∼ 13.86 g∕kg are very close in the Vis band, and when
LNC exceeds these two intervals, there is a significant change in reflectance. This indicates that
there may be a transition stage in the regulation of nitrogen on the growth of Camellia oleifera.
When the LNC increases or decreases beyond the critical value of the transition stage, there will
be a clear direction of plant growth change.

Figure 2(b) shows the Pearson correlation coefficient between LNC and raw spectral reflec-
tance, and the correlation coefficient between LNC and reflectance with MSC and SGFD pre-
treatment. It can be seen that there are three sensitive bands of canopy spectra (i.e., 515 ∼ 660,
688 ∼ 734, and 2078 ∼ 2310 nm). The response degree has reached a very significant correlation
level (p-value < 0.01), and the maximum correlation coefficient is at wavelength 705 nm
(r ¼ 0.39). After MSC pretreatment, the sensitive band changed significantly, only overlapped
with raw reflectance in 698 ∼ 740 nm. However, the correlation coefficients increased in the
range of 352 ∼ 520 nm, 658 ∼ 688 nm, and 1025 ∼ 1086 nm, and all reached a very significant

Fig. 2 Spectral response characteristics of LNC. (a) Response relationship of average canopy
hyperspectral reflectance with different LNC gradients. (b) Correlation analysis of LNC and R,
MSC, and SGFD spectral reflectance.
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correlation level. The maximum correlation coefficient increased to 0.44, and the corresponding
wavelength moved to 718 nm. The change of spectral reflectance by SGFD further enhanced the
correlation with LNC, which was mainly reflected in the fact that most of the response relation-
ships in the visible spectral region (490 ∼ 775 nm) were at a very significant correlation level,
and the sensitive intervals of NIR and SWIR1 bands were increased. The maximum correlation
coefficient of SGFD was at a wavelength of 544 nm (r ¼ 0.48). It is not difficult to find that the
spectral reflectance of R, MSC, and SGFD reaches a very significant correlation level with LNC
in the range of 698 ∼ 734 nm, which just shows that the red-edge feature is a stable window for
monitoring the changes of LNC. On the other hand, the correlation coefficient in the range of
2078 ∼ 2310 nm decreased after pretreatment, among which the SGFD method decreased the
most, which exactly coincides with the change relationship reflected in Fig. 2(b) (SGFD), indi-
cating that both MSC and SGFD will reduce the signal-to-noise ratio of SWIR2 band.

The correlation analysis results of three two-band spectral indices (i.e., DSI, RSI, and NDSI)
constructed by LNC and R, MSC, and SGFD pretreatment of Camellia oleifera are shown in
Fig. 3. Compared with R in Fig. 2(b), the maximum correlation coefficient of R-DSI spectral
index increased from 0.39 to 0.47 and its sensitive interval was mainly distributed in the visible
spectral region. The linear correlation between NIR band and LNC and SWIR band and LNC
was weak. DSI in the range of 694 ∼ 737 nm had a high correlation in the whole band, and the
linear correlation is higher when the wavelength is more biased towards the visible spectral
region. Compared with R-DSI, both R-RSI and R-NDSI increased the maximum correlation
coefficient from 0.47 to 0.51, with an increase rate of 8.5%. The sensitive regions of the two
in the visible spectral region decreased year-on-year, and the response degree was weakened.
However, the linear correlation between the red edge band and the band combination in
740 ∼ 1350 nm was significantly enhanced, and a high linear correlation region of
560 ∼ 690 nm combined with 740 ∼ 1350 nm was added. MSC-DSI and SGFD-DSI both

Fig. 3 Two-band spectral indices correlation analysis of LNC and R, MSC, and SGFD spectral
reflectance. (a) R-DSI, (b) R-RSI, (c) R-NDSI, (d) MSC-DSI, (e) MSC-RSI, (f) MSC-NDSI,
(g) SGFD-DSI, (h) SGFD-RSI, and (i) SGFD-NDSI.
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increased the maximum correlation coefficient, which were 0.51 and 0.52, respectively. The
sensitive interval of MSC-DSI was basically similar to that of R-DSI, while SGFD-DSI refined
the response details, and the sensitive bands near 520, 690, and 760 nm were prominent. The
correlation coefficients of SGFD-RSI and SGFD-NDSI both increased to 0.56. Although the
sensitivity interval of SGFD-NDSI was similar to SGFD-RSI, the response region was more
fragmented.

The correlation analysis results of three three-band spectral indices (i.e., TBDSI, TBRSI, and
TBNDSI) constructed by LNC and R, MSC, and SGFD pretreatment of Camellia oleifera are
shown in Fig. 4. It can be seen from Figs. 4(a)–4(c) that the maximum correlation coefficient of
R-TBDSI increased to 0.49, and the correlation degree increased by 25.6% compared with R.
Compared with R-DSI, the maximum correlation coefficient also increased by 0.02, and the
maximum correlation coefficient of R-TBRSI and R-TBNDSI has improved, r ¼ 0.53 and
r ¼ 0.55, respectively. This shows that the linear enhancement effect of the three-band spectral
indices of R is obvious, and it is better than that of the two-band spectral indices. Among the
three spectral index combinations, NDSI has the best improvement effect, followed by RSI and
DSI. From Figs. 4(d)–4(f), it can be seen that the maximum correlation coefficients of the three
three-band spectral indices of MSC are very close, all around 0.54, which is improved compared
to R-TBDSI and R-TBRSI, but the enhancement effect is similar to R-TBNDSI. In Figs. 4(g)–
4(i), the three-band spectral indices of SGFD were not significantly improved compared with the
maximum correlation coefficient of its two-band spectral indices. The maximum correlation
coefficients of SGFD-TBRSI and SGFD-TBNDSI are lower than those of SGFD-RSI and
SGFD-NDSI. The linear enhancement effect of TBNDSI on SGFD is between TBRSI
and TBDSI.

Fig. 4 Three-band spectral indices correlation analysis of LNC and R, MSC, and SGFD spectral
reflectance. (a) R-TBDSI, (b) R-TBRSI, (c) R-TBNDSI, (c) MSC-TBDSI, (d) MSC-TBRSI, (e) MSC-
TBNDSI, (f) SGFD-TBDSI, (g) SGFD-TBRSI, and (h) SGFD-TBNDSI.
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3.2.2 Response relationship between canopy hyperspectral reflectance
and LPC of Camellia oleifera

The amount of samples in five equal LPC intervals are 6, 41, 53, 47, and 13, respectively. By
comparing the response relationship of the average hyperspectral reflectance (R) of Camellia
oleifera canopy in the five equal intervals of LPC [Fig. 5(a)], the results show that the overall
trend of canopy hyperspectral reflectance at different phosphorus levels shows a certain regu-
lation. With the increase of LPC, the reflectance in the visible spectral region gradually decreases,
and the red-edge feature will shift towards the long wave direction. The spectral reflectance in
the range of 2026 ∼ 2330 nm of SWIR2 has a more obvious monotonic downward trend. The
difference between this and LNC is that the spectral reflectance of LPC in the ranges of
0.76 ∼ 0.88 g∕kg, 0.88 ∼ 1.00 g∕kg and 1.00 ∼ 1.12 g∕kg is close in Vis band. Only when
LPC falls out of these three intervals, there is a significant change in reflectance. This indicates
that the critical value of phosphorus regulating the growth change of Camellia oleifera into the
transition stage is small and can be maintained in a wide concentration range.

Figure 5(b) shows the Pearson correlation coefficient between LPC and R, and the corre-
lation coefficient between LPC and reflectance with MSC and SGFD pretreatment. It can be seen
that the sensitive bands of canopy spectrum are 513 ∼ 723 and 2083 ∼ 2325 nm, and the
response degree reaches a very significant correlation level. The maximum correlation coefficient
is at 2295 nm (r ¼ 0.35). After MSC pretreatment, the sensitive band changed significantly, only
overlapped with R in 697 ∼ 722 nm. The correlation coefficient in the range of 350 ∼ 520 nm

and 1021 ∼ 1102 nm increased and reached a highly significant correlation level but the linear
correlation degree in the range of 521 ∼ 665 nm decreased. The maximum correlation coefficient
was 0.33, and the corresponding wavelength moved to 386 nm. The maximum correlation coef-
ficient after SGFD pretreatment is at 681 nm (r ¼ 0.40). The spectral reflectance of R, MSC, and
SGFD reached a significant correlation with LPC in 697 ∼ 722 nm, indicating that the red-edge
feature can also be used as a stable window for monitoring LPC changes.

The correlation analysis results of three two-band spectral indices (i.e., DSI, RSI, and NDSI)
constructed by LPC and R, MSC, and SGFD pretreatment of Camellia oleifera are shown in
Fig. 6. The sensitive interval of R-DSI spectral index is mainly distributed in the visible spectral
region, and the wavelength around 700 nm has a high linear correlation with the DSI value in the
whole band [Fig. 6(a)]. Compared with R-DSI, both R-RSI and R-NDSI increased the maximum

Fig. 5 Spectral response characteristics of LPC. (a) Response relationship of average canopy
hyperspectral reflectance with different LPC gradients. (b) Correlation analysis of LPC and R,
MSC and SGFD spectral reflectance.
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correlation coefficient from 0.40 to 0.42, with an increase rate of 5%. MSC-DSI and SGFD-DSI
increased the maximum correlation coefficients to 0.44 and 0.45, respectively. The sensitive
range of MSC-DSI in the visible spectral region is basically similar to that of R-DSI, but it also
enhances the response near 1640 nm. The combination of MSC-RSI and MSC-NDSI is not so
good, and the maximum correlation coefficients of the two are significantly reduced to 0.38
[Figs. 6(e)–6(f)]. SGFD-RSI and SGFD-NDSI increase the maximum correlation coefficient
to 0.48.

The correlation analysis results of three three-band spectral indices (i.e., TBDSI, TBRSI, and
TBNDSI) constructed by LPC and R, MSC, and SGFD pretreatment of Camellia oleifera are
shown in Fig. 7. It can be seen from Figs. 7(a)–7(c) that the maximum correlation coefficient of
R-TBDSI increased to 0.43, which is 22.9% higher than that of R and is 0.03 higher than that of
R-DSI. R-TBNDSI was basically the same as R-TBDSI, but the maximum correlation coefficient
of R-TBRSI increased to 0.46. The maximum correlation coefficient of MSC with both TBDSI
and TBRSI combination is 0.42 [Figs. 7(d)–7(f)]. Although it is lower than three-band spectral
index combinations of R, the difference of MSC and the response degree normalized spectral
index are not significantly weakened as the two-band spectral indices. The maximum correlation
coefficient of the three-band spectral indices of SGFD did not increase significantly, and only the
maximum correlation coefficient of SGFD-TBRSI reached 0.49 [Figs. 7(g)–7(i)].

3.3 Using VCPA-IRIV Algorithm to Select the Combination of Spectral
Variables

3.3.1 Results of canopy hyperspectral variable combination of Camellia
oleifera LNC

The variable selection combination scheme [i.e., variable combination population analysis-
iteratively retained informative variables (VCPA-IRIV) algorithm] used in this paper reduced

Fig. 6 Two-band spectral indices correlation analysis of LPC and R, MSC, and SGFD spectral
reflectance. (a) R-DSI, (b) R-RSI, (c) R-NDSI, (d) MSC-DSI, (e) MSC-RSI, (f) MSC-NDSI,
(g) SGFD-DSI, (h) SGFD-RSI, and (i) SGFD-NDSI.
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the number of retained variables from 1661 (490 abnormal wavelength variables affected by
water vapor have been eliminated) at the beginning to 4 with the increase of the number of
iterations and the algorithm process after setting basic parameters, with a reduction rate of
99.76% (Fig. 8). After several of VCPA-IRIV analysis, the downward trend of variables showed
the characteristics of fast first and then slow. The VCPA stage went through “fast selection” and
“precise selection” in the EDF iteration process. Eight variables (i.e., 732, 733, 736, 757, 1101,
1226, 2029, 2296 nm) were retained. To reduce the multicollinearity between the variables,
the correlation coefficients between the eight variables were calculated, and only one of the pairs
of variables with a correlation coefficient higher than 0.9 was retained, which was highly corre-
lated with LNC. The final subset of variable combinations is 732, 1101, 2029, and 2296 nm
(Table 2).

Fig. 8 Changes in the number of retained variables during the operation of VCPA-IRIV strategy.

Fig. 7 Three-band spectral indices correlation analysis of LPC and R, MSC, and SGFD spectral
reflectance. (a) R-TBDSI, (b) R-TBRSI, (c) R-TBNDSI, (c) MSC-TBDSI, (d) MSC-TBRSI, (e) MSC-
TBNDSI, (f) SGFD-TBDSI, (g) SGFD-TBRSI, and (h) SGFD-TBNDSI.
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Table 2 shows that the number of retained variables after MSC and SGFD pretreatment
increases, which indicates that the use of pretreatment methods can improve the ability of
VCPA-IRIV to mine potential information. At the same time, from the perspective of the selected
wavelength position, the wavelengths that make up the optimal subset are not all located in the
sensitive interval with high linear correlation, such as 1101, 1254, etc., which further shows that
the selection of spectral variables cannot simply take the wavelength where the maximum cor-
relation coefficient is located as a single input variable. According to the results of the optimal
variable combination subset selected by multiple iterations of VCPA-IRIV algorithm after com-
bination of LNC and two and three band spectral indices, it can be seen that the two band spectral
indices and three band spectral indices of LNC show the characteristics of combination of strong
spectral signals (p-value < 0.01) and weak spectral signals (p-value ≥ 0.01) in the location dis-
tribution of selected wavelength combinations, and most of them are located in the joint region of
visible spectral region and NIR, SWIR1, and SWIR2.

3.3.2 Results of canopy hyperspectral variable combination of Camellia
oleifera LPC

From Table 3, it can be seen that the number of reserved variables after MSC and SGFD pretreat-
ment increases sequentially, and the selected wavelength positions are more dispersed. Through
the results of the optimal variable combination subset selected by multiple iterations of VCPA-
IRIValgorithm after combining LPC with two and three band spectral indices, it is found that the
two band spectral indices and three band spectral indices of LPC also have the characteristics of
combining strong spectral signals with weak spectral signals in the location distribution of the
selected wavelength combination. Similarly, the VCPA-IRIValgorithm maintains a high variable
space compression ratio for high-dimensional data.

3.4 Estimation Models of Nitrogen and Phosphorus Content of Camellia
oleifera Leaves Based on Canopy Hyperspectral Reflectance

3.4.1 Evaluation of LNC estimation models based on canopy hyperspectral
reflectance of Camellia oleifera

Through the correlation analysis of LNC and R, MSC, and SGFD spectral reflectance, and the
analysis combined with three two-band spectral index forms and three three-band spectral index
forms, 63 machine learning models were constructed. The result showed that the R2

C is
0.35 ∼ 0.82, and RMSEC is 0.56 ∼ 1.08 g∕kg in calibration set. The R2

P is 0.30 ∼ 0.81,

Table 2 Optimal variable combination subset results of R, MSC, and SGFD of LNC.

Pretreatment type Number of variables retained Selected wavelength position/nm

R 4 732, 1101, 2029, and 2296

MSC 6 736, 758, 1254, 2030, 2107, and 2127

SGFD 7 736, 878, 913, 1145, 1192, 1328, and 1501

Table 3 Optimal variable combination subset results of R, MSC, and SGFD of LPC.

Pretreatment
type

Number of
variables retained Selected wavelength position/nm

R 3 697, 926, and 1451

MSC 5 701, 1349, 1472, 2132, and 2300

SGFD 9 681, 734, 969, 1079, 1148, 1226, 1233, 1532, and 2236
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RMSEP is 0.55 ∼ 1.05 g∕kg, and the RPD is 1.21 ∼ 2.29 in prediction set, which shows that
there are obvious differences in the estimation performance of different combination types.
In terms of overall performance of the three machine learning models, the R2

C of SVM model
is 0.35 ∼ 0.78, and the R2

P is 0.30 ∼ 0.77. The R2
C of RF model is 0.38 ∼ 0.76, and the R2

P is
0.38 ∼ 0.75. The R2

C of BPNN model is 0.49 ∼ 0.82, and the R2
P is 0.45 ∼ 0.81. Through com-

prehensive analysis of the improvement effect of the three models after R, MSC, SGFD and two-
band and three-band spectral indices processing, it can be concluded that the upper limit of LNC
model estimation accuracy increases with the increase of spectral band dimensions. Overall, the
average R2 of R and its combination with the spectral index is 0.47, and the MSC and SGFD are
0.54 and 0.67, respectively, which shows that SGFD is superior to the overall estimated perfor-
mance of LNC.

In Fig. 9(a), the accuracy results of 63 LNC candidate estimation models corresponding to
the serial numbers are displayed intuitively and efficiently in Taylor diagram. It can be seen from
the figure that the SGFD-TBNDSI-BPNN model (No. 63) is the closest to the straight-line dis-
tance from the reference point, so it has a high model fitting accuracy. Furthermore, the standard
deviation of the estimated value is also more consistent with the numerical fluctuation of the
measured value. Most correlation coefficients between the measured and estimated values of
SVM, RF, and BPNN were between 0.7 and 0.8. Most of the corresponding RMSE ranged from
0.75 to 1.00 g∕kg. In terms of numerical volatility, RF has a relatively smaller standard deviation,
which is basically around 0.75 g∕kg, representing that it can often form more stable results,
while the standard deviation of BPNN is near 1.00 g∕kg, and the corresponding estimated value
changes are relatively unstable.

To further evaluate the changes between the estimated and measured value of the LNC opti-
mal model (i.e., SGFD-TBNDSI-BPNN) in continuous concentration changes, the relationship
between the two is presented in the scatter point plot [Fig. 9(b)]. The results showed that the LNC
estimation model of SGFD-TBNDSI-BPNN had an R2

C of 0.82 and an RMSEC of 0.56 g∕kg in
the calibration set, and had an R2

P of 0.81, and an RMSEP of 0.55 g∕kg in the prediction set. This
explained 82% of the LNC in the training samples and 81% of the unknown LNC samples of
Camellia oleifera. The RPD of 2.29 (>2.00) indicates that the model has a good estimation
ability, which means that the model can better use the characteristic information of canopy hyper-
spectral data to accurately reflect the changes of LNC.

Fig. 9 LNC model performance evaluation. (a) The accuracy comparison results of 63 LNC can-
didate estimation models presented in Taylor diagram. (b) The relationship between the measured
and estimated values of LNC given by SGFD-TBNDSI-BPNN model.
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3.4.2 Evaluation of LNC estimation models based on canopy hyperspectral
reflectance of Camellia oleifera

Through the correlation analysis of LPC and R, MSC, and SGFD spectral reflectance, and the
analysis combined with three two-band spectral index forms and three three-band spectral index
forms, 63 machine learning models were constructed. The result showed that the R2

C is
0.29 ∼ 0.81, and RMSEC is 0.05 ∼ 0.10 g∕kg in calibration set. The R2

P is 0.20 ∼ 0.79,
RMSEP is 0.06 ∼ 0.11 g∕kg, and the RPD is 1.13 ∼ 2.18 in prediction set. The overall perfor-
mance of the three machine learning models was evaluated separately. The R2

C of the SVM mod-
els is 0.29 ∼ 0.80, and the R2

P is 0.20 ∼ 0.77. The R2
C of the RF models is 0.30 ∼ 0.70, and the R2

P

is 0.27 ∼ 0.70. The R2
C of the BPNN models is 0.38 ∼ 0.81, and the R2

P is 0.25 ∼ 0.79. It can be
concluded that the upper limit of LPC model estimation accuracy will increase with the increase
of spectral band dimension. Overall, the average value of R2 in R and its combination with spec-
tral index is 0.43, and the MSC and SGFD are 0.53 and 0.62, respectively, which shows that
SGFD is better for the overall estimated performance of LPC.

The accuracy results of 63 LPC candidate estimation models are visually and efficiently
presented in the form of Taylor plots in Fig. 10(a). It can be seen from the figure that the
SGFD-TBNDSI-BPNN model (No. 63) has the shortest straight-line distance from the reference
point. Thus, it has a high model fitting accuracy. Moreover, the standard deviation of the esti-
mated value is also in line with the numerical fluctuation of the measured value. In general,
most correlation coefficients between the measured and estimated values of SVM, RF and
BPNN were between 0.6 and 0.8. Most of the corresponding RMSE ranged from 0.06 to
0.10 g∕kg. In terms of numerical volatility, RF has a relatively smaller standard deviation, basi-
cally around 0.06 g∕kg, which means that it can often form more stable results. In contrast, the
standard deviation of BPNN is around 0.08 g∕kg, and the corresponding estimated value
changes are relatively unstable.

To further evaluate the changes between the estimated and measured value of the LPC opti-
mal model (i.e., SGFD-TBNDSI-BPNN) in continuous concentration changes, the relationship
between the two is presented in the scatter point plot [Fig. 10(b)]. The results showed that the
LPC estimation model of SGFD-TBNDSI-BPNN had an R2

C of 0.81, and an RMSEC of
0.55 g∕kg in calibration set, and had an R2

P of 0.79, and an RMSEP of 0.06 g∕kg in the pre-
diction set. This explained 81% of the LPC in the training samples and 79% of the unknown LPC
samples of Camellia oleifera. The RPD of 2.18 (>2.00) implies that it has good estimation abil-
ity, which means that the model can better use the characteristic information of canopy hyper-
spectral data to accurately reflect the changes of LPC.

Fig. 10 LPC model performance evaluation. (a) Taylor diagram presenting the accuracy compari-
son results of 63 LPC candidate estimation models. (b) The relationship between the measured
value and the estimated value of LPC given by SGFD-TBNDSI-BPNN model.
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4 Discussions

4.1 Response Relationship Between LNC and Spectral Transformation
Characteristics of Camellia oleifera

According to the correlation analysis results between the raw spectral characteristics and LNC,
the sensitive regions of leaf nitrogen at canopy scale are mainly located in the green, red, and
SWIR2 bands of the visible spectral region. In the wavelength range of visible light and near-
infrared light, chlorophyll content is the dominant factor affecting the spectral reflectance of
vegetation, and nitrogen, as an important nutrient element in plants, is the main component
of chlorophyll. These three response positions correspond to the strong reflection and absorption
bands of chlorophyll and the reflection bands of water, revealing that the significant spectral
response of nitrogen level in fresh leaves at canopy scale is dominated by chlorophyll and water,
which is consistent with Wang et al.’s33 view. The spectral response characteristics of canopy
scale are affected by various factors, such as photosynthetic pigment concentration, canopy struc-
ture, and background radiation, thus the corresponding spectral characteristics associated with
nitrogen components will be weakened to a certain extent in information expression. MSC and
SGFD respectively corrected the scattering difference by linear methods and decomposed the
spectral characteristics by differential techniques to weaken the influence of background noise
from raw spectra with physicochemical and structural information of single plant canopy, and
then highlighted the response sensitive regions of LNC. Both preprocessing methods increased
the response in the visible spectral region, NIR, and SWIR1 bands, yet reduced the linear
response of some bands of SWIR2 band. This indicates that background noise has a strong inter-
ference on the expression of information about photosynthetic pigments and canopy structure in
spectral features. In addition, the linear gain effect of SGFD on the relationship between spectral
characteristics and LNC response is better than that of MSC. The reason may be that the spectral
transformation characteristics of SGFD can counteract the influence of soil background, while
MSC is mainly targeted at the scattering interference of the surrounding environment. In the
process of acquiring ground canopy hyperspectral data in this study, the influence of the soil
background in the vertical observation field was significantly greater than that of the surrounding
environment.34

The spectral indices have the characteristics of amplifying weak correlation between reflec-
tion information and minimizing the influence of external factors. The combination of MSC and
SGFD with different algebraic operation forms of spectral indices can more effectively enhance
the linear measurement of LNC with spectral transformation characteristics. Obviously, the cor-
relation analysis results of the two-band spectral indices and three-band spectral indices of R all
verify this point. The combination results of MSC and SGFD with spectral indices also show
obvious synergistic gain effects. The combination of pretreatment methods and spectral indices
increases the sensitivity of spectral transformation characteristics to the response of LNC. One
important reason is that the constructed spectral index is insensitive to interference factors, form-
ing complementary advantages of different methods.35

4.2 Response Relationship Between LPC and Spectral Transformation
Characteristics of Camellia oleifera

In this paper, the sensitive areas of canopy-scale Camellia oleifera LPC on the R spectrum are
basically similar to the LNC results, including the green, yellow, orange, red, and SWIR2 bands
in the visible spectral region. The difference is the change of the correlation coefficient curve in
the visible spectral region. The two low points of LNC fall at 561 and 710 nm, and those of LPC
fall at 629 and 696 nm. There is no general rule about the difference in the specific location of the
response wavelength, which involves the complex biochemical activities of phosphorus metabo-
lism itself and its interaction with nitrogen. In addition, the canopy spectral response of LPC in
this paper is weakly correlated, which may be the nutritional status of Camellia oleiferamaterials
selected in this study. There is no typical effect of phosphorus deficiency, and only some indi-
vidual phosphorus deficiency affects chlorophyll synthesis, which in turn weakens the response
relationship with LNC overlap. The spectral transformation characteristics of MSC and SGFD
and the response area of Camellia oleifera LPC are basically similar to LNC, indicating that the
preprocessing method is to filter out the interference information with fixed functional attributes
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and to increase the information proportion of cell and canopy structure in NIR and SWIR1 bands.
The combination effect of the two-band spectral indices (i.e., MSC-RSI and MSC-NDSI) of LPC
will be worse than that of MSC-DSI, which is not consistent with the conclusion of LNC, indi-
cating that the synergy between pretreatment and spectral index will also have a negative effect. It
is possible that the difference in performance between MSC-DSI and MSC-RSI/MSC-NDSI is
due to the calculation methods used. MSC-DSI is based on the calculation of difference spectra,
which can highlight the differences between different bands and is highly sensitive to specific
spectral features. On the other hand, MSC-RSI and MSC-NDSI are based on ratio spectra or
normalized difference spectra, which analyze the ratios or normalized differences between differ-
ent bands. In the case of LPC, the calculation of difference spectra in MSC-DSI may be more
suitable for capturing information related to leaf pigment content because difference spectra can
better reflect the absorption and reflection characteristics of different pigments in different bands.
MSC-RSI and MSC-NDSI may be more sensitive to other targets, such as vegetation indices.
Furthermore, this study also found that the effect of different spectral preprocessing strategies
will vary with the increase of spectral index dimension, and the phenomenon of weakening with
the increase of spectral dimension also appears in other research results.36

This study constructed LNC and LPC estimation models using three machine learning algo-
rithms. The best overall performance was achieved by the SGFD-TBNDSI-BPNN model. The
evaluation results of the model’s generalization ability were LNC-R2

P ¼ 0.81 and LPC-
R2
P ¼ 0.79. The differences in performance were consistent with the variations in the maximum

linear metrics of the spectral responses to the target variables. This highlights that the upper limit
of a model’s learning capability often depends on the effective information carried by the data
features. This implies that the accuracy of machine learning models is not solely determined by
the complexity of the model but also directly related to the optimization of the spectral feature
variables.

4.3 Response Mechanism of Plant Leaf Nutrients to Spectral Characteristics
The spectral reflectance can reflect the light absorption ability of vegetation. The more the
absorption, the lower the spectral reflectance, the higher the light energy utilization rate of veg-
etation, and the spectral absorption ability of vegetation is closely related to the physiological and
biochemical characteristics of leaves. The nutrient content in the leaves can effectively reflect the
nutrient status of the whole plant, and the content of these nutrients determines the physiological
condition of the plant. In particular, nitrogen and phosphorus content accounted for about 5% of
the dry matter proportion of plant leaves, they have an impact on the synthesis of biological
pigments such as chlorophyll, anthocyanins, and carotenoids in leaves, which in turn affect the
physiological state of plants.37 Nitrogen is involved in regulating the photosynthesis of plants,
and nitrogen deficiency can seriously affect the growth and yield of plants, but excessive use of
nitrogen fertilizers can cause a series of environmental problems. Phosphorus deficiency can
easily lead to the production of anthocyanins, change the content of chlorophyll, and signifi-
cantly affect the structural arrangement of leaf cells and the synthesis of organic matter. In addi-
tion, changes in nutrient content can be quickly reflected on spectral curves, so remote sensing
technology can be used to quickly monitor and assess plant growth.

The canopy spectrum is affected by changes in the content of trace elements nitrogen and
phosphorus, which are due to the influence of these elements on the light absorption and scatter-
ing processes. Nitrogen atoms have strong absorption bands in the ultraviolet band, while phos-
phorus atoms have absorption bands in the visible band, and nitrogen and phosphorus atoms can
also scatter light, thus changing the intensity and shape of the canopy spectrum.38 The absorption
bands and scattering signatures of nitrogen and phosphorus may overlap, which makes it difficult
to quantify their content separately, and the presence of background noise from other substances
(e.g., chlorophyll, water) in the canopy spectrum can mask the weak signals of nitrogen and
phosphorus. Atmospheric scattering and absorption can affect the shape and intensity of the
canopy spectrum, introducing additional interferences. In order to mitigate and correct the effects
of canopy spectral interference, we use multivariate scattering correction and SGFD, which can
effectively mitigate and correct the effects of canopy spectral interference, thereby improving the
accuracy and reliability of nitrogen and phosphorus content inversion.
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5 Conclusions
This paper focused on the influence of the combination of two-band and three-band spectral
indices on the response relationships and the differences in model calibration and prediction
accuracy. It is clear that VCPA-IRIV strategy can efficiently extract spectral transformation
features and effectively improve model estimation accuracy. The main conclusions are as
follows.

1. The response relationship between LNC, LPC, and raw spectra (R) was similar. The sen-
sitive intervals were mainly concentrated in the green and red bands of the visible spectral
regions related to chlorophyll and the short-wave infrared long-wave region related to
moisture. After MSC and SGFD preprocessing, the background noise interference in the
spectral information was significantly reduced, and the overall processing effect of SGFD
was better than that of MSC. The combined effect of different pretreatment methods and
spectral indices had different performances in LNC and LPC with the increase of spectral
dimensions. The upper limits of Pearson correlation coefficient can reach 0.56 and 0.49,
respectively in all treatment combinations.

2. The VCPA-IRIV variable selection strategy had a very high variable space compression
rate for spectral transformation characteristics and can fully consider the interaction
between variables. The selected spectral variables contained both strong and weak infor-
mation variables, which were beneficial to describe the nonlinear relationship between
canopy hyperspectral data and LNC. The sequence ranked by model stability was as fol-
lows: RF > SVM > BPNN, but the BPNN model had the highest accuracy.
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