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ABSTRACT. Understanding the impact of climate change on Earth presents a significant scientific
challenge. Monitoring changes in terrestrial ecosystems, including leaf water con-
tent, is essential for assessing plant transpiration, water use efficiency, and physio-
logical processes. Optical remote sensing, utilizing multi-angular reflectance
measurements in the near infrared and shortwave infrared wavelengths, offers a
precise method for estimating leaf water content. We propose and evaluate a new
index based on multi-angular reflection, using 256 leaf samples from 10 plant
species for calibration and 683 samples for validation. Hyperspectral indices
derived from multi-angular spectra were assessed, facilitating efficient leaf water
content analysis with minimal time and specific bands required. We investigate the
relationship of leaf water content using spectral indices and apply linear and
nonlinear regression models to calibration data, resulting in two indices for each
indicator. The newly proposed indices, ðR1 − R2Þ∕ðR1 − R3Þ for linear and ðR1905 −
R1840Þ∕ðR1905 − R1875Þ for nonlinear, demonstrate high coefficients of determination
for leaf water content (>0.94) using multi-angular reflectance measurements.
Published spectral indices exhibit weak relationships with our calibration dataset.
The proposed leaf water content indices perform well, with an overall root mean
square error of 0.0024 ðg∕cm2Þ and 0.0026 ðg∕cm2Þ for linear and nonlinear indices,
respectively, validated by Leaf Optical Properties Experiment, ANGERS, and multi-
angular datasets. The ðR1 − R2Þ∕ðR1 − R3Þ bands show promise for leaf water con-
tent estimation. Future studies should encompass more plant species and field data.
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1 Introduction
The water content in plant leaves is crucial for photosynthesis and can serve as an indicator of
water stress at various growth stages.1–4 Monitoring leaf water conditions is vital for assessing
plant physiological status,5 detecting drought,6 predicting wildfires,7 and other ecological,
agricultural, and forestry applications.8,9 However, traditional methods for obtaining leaf water
content data are time-consuming, destructive, and restricted to small study areas, lacking spatial
variability information across larger regions.

By analyzing absorption characteristics across different wavelengths, optical methods
present a practical approach to assessing the water status of plants.10–16 Utilizing both theoretical
radiative transfer models17,18 and empirical models,19,20 researchers can determine leaf water
content through spectral reflectance factors. Early investigations established a clear link between
leaf and canopy levels.15,19,21,22 Optical measurements offer diverse means to estimate leaf water
content23–28 facilitating non-destructive monitoring for drought and fire risk assessment.29–33

Spectral indices, derived from reflectance factor measurements at specific wavelengths, are
predominantly utilized for measuring leaf water content.31,32,34–36 These indices can be applied
across the ground, airborne, and spaceborne scales, offering insights into leaf water content varia-
tion with varying levels of accuracy.23,32,33,35 With advancements in remote sensing technologies,
driven by increased spectral and spatial resolution data, the estimation of leaf water content and
biochemical parameters has become more precise.25,35–38 Enhanced geographical coverage and
the availability of valuable time series data are facilitated by high-spatial-resolution images cap-
tured by aerial or space-based sensors.25,39,40

Challenges arise when analyzing leaf or vegetation cover using high spectral and spatial
resolution reflectance data. Existing indices for estimating leaf water content are often tailored
to specific plant species or measurement conditions.26,41 Furthermore, in canopy measurements,
high-spatial-resolution detectors can distinguish light reflecting from individual leaf compo-
nents.39,42 The significance of the multi-angular reflectance factor has been acknowledged in
estimating leaf biochemical properties, owing to the variable positions of leaves and diverse
illuminating angles.43–45 The distribution pattern and extent of directional reflectance are influ-
enced by leaf surface specular reflection, which is unrelated to leaf biochemistry.46–49 However,
the impact of multi-angular reflectance on estimating leaf water content is commonly over-
looked, as most leaf reflectance measurements are conducted from a single angle, using leaf
clips, or integrating spheres.15,26,34,41 In addition, the anisotropic reflectance of vegetation cover
can alter spectral index values due to view-illumination effects,50,51 posing challenges for the
broader adoption of empirical methods. Further exploration into hyperspectral reflection at vari-
ous viewing angles is necessary to enhance the accuracy of high spectral bandwidth and spatial
resolution in predicting leaf water content for ecological, agricultural, and forestry applications.

This study conducted laboratory measurements of multi-angular spectral reflectance factors
using leaf samples collected from 10 different plant species. The objective was to introduce a
novel spectral index for estimating leaf water content, focusing specifically on equivalent water
thickness (EWT). The proposed index was designed to establish a consistent correlation with
EWT across varying illumination and viewing angles, enabling precise estimation of EWT from
diverse datasets. This angle-independent index provides a convenient and non-destructive
approach for accurately determining leaf water content, facilitating rapid assessment of EWT.

2 Material and Methodology

2.1 Reflectance Measurements from Various Leaf Viewing Angles
We measured the multi-angular reflectance parameters of leaves in the lab from April to October,
when leaves were in their full growth phase. Our dataset comprised 256 leaf samples from 10
different species (Fig. 1). The samples were collected at Northeast Normal University,
Changchun, Jilin Province, China (Table 1). To ensure accuracy, we only selected fresh leaves
with a consistent color with no obvious signs of illness.52,53 We randomly collected leaves at
different stages of growth, including young, mature, and senescent leaves, representing a wide
range of EWT (Table 1). Leaves undergoing senescence and aging show resemblances to those
from plants exposed to diverse stressors such as pollutants, extreme temperatures, drought, and
diseases. As a result, our leaf samples represent a broad spectrum of growth conditions.52 Due to
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variations in leaf surface structures among different species, the reflection patterns under differ-
ent incident or observational angles may vary. Leaf reflectance characteristics were assessed from
various angles in a controlled laboratory setting (Fig. 1).

After harvesting, leaves were placed in sealed plastic bags, along with moist paper towels,
to maintain moisture during transportation. To detect spectrum reflection, we utilized the
Northeast Normal University Laboratory Goniospectrometer System (NENULGS), as described
by Refs. 4, 54, and 55. NENULGS incorporates a source of artificial light, an Analytical Spectral
Devices FieldSpec 4, and a goniometer. It offers the capacity to measure reflection spectra over a
broad range of directions within its hemisphere, capturing wavelengths from 350 to 2500 nm.
NENULGS has been extensively applied in studies examining the optical features of leaves.56–58

Leaf measurements were undertaken in the principal plane to explore how varying combi-
nations of incident angles and viewing zenith angles (VZAs) impact the estimation. Three inci-
dence zenith angles (30, 40, and 50 deg) and VZAs from −60 to 60 deg with a 10-deg gap were
covered by the measurements (Fig. 1). Due to the NENULGS apparatus’ constraints, measure-
ments were not possible when the incident and viewing angles coincided in the direction of
backward scattering since the least measured phase angle was 8 deg. To calculate reflectance

Fig. 1 Primary plane measurement system in the lab. The sun and VZAs are represented by SZA
and VZA, respectively.

Table 1 Samples with varying measurement geometries and EWT statistics. The calibration data
were used to derive the links between spectral indices and EWT (n ¼ 256).

Species
Measurement

condition
Sample
number

SZA
(30 deg)

SZA
(40 deg)

VZA
(deg) Mean Mini Maxi

Prunus padus L. Laboratory 23 — 23 −60 to 60 0.0078 0.0059 0.0097

Swida alba Opiz Laboratory 20 — 20 −60 to 60 0.0090 0.0068 0.0122

Acer saccharum Marsh Laboratory 20 — 20 −60 to 60 0.0077 0.0054 0.0094

Armeniaca vulgaris Lam. Laboratory 22 — 22 −60 to 60 0.0106 0.0077 0.0150

Populus L. Laboratory 20 — 20 −60 to 60 0.0101 0.0065 0.0149

Epipremnum aureum Laboratory 24 — 24 −60 to 60 0.0248 0.0184 0.0293

Schefflera microphylla Merr. Laboratory 57 36 21 −60 to 60 0.0319 0.0161 0.0433

Pachira aquatica Laboratory 41 41 −60 to 60 0.0113 0.0077 0.0152

Juglans Laboratory 13 — 13 −60 to 60 0.0088 0.0070 0.0103

Citrus limon (L.) Burm. f. Laboratory 16 16 −60 to 60 0.0147 0.0095 0.0189

Total 256
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factors, we obtained measurements at 12 VZAs, where measurements marked with “−” were
associated with forward, whereas the others were associated with backward directions.

The leaf sample was placed on an object stage covered with black tape during the measure-
ments. The black background had a reflectance factor smaller than 0.05, ensuring that it had a
minimal impact on the leaf reflection and eliminating background effects. The bidirectional
reflectance factor (BRF) was calculated as the ratio of the reflected radiance (dLSample) from
the leaf sample surface to the reflected radiance (dLReference) from the reference surface (a
Spectralon) under the same viewing geometry. This calculation followed the definition provided
by59

EQ-TARGET;temp:intralink-;e001;114;628BRFðλ; θs; θv;φs;φvÞ ¼
dLSampleðλ; θs; θv;φs;φvÞ
dLReferenceðλ; θs; θv;φs;φvÞ

ρλ: (1)

The variables θs (solar zenith angle of irradiance), θv (VZAs), φs (incident azimuth angle),
φv (viewing azimuth angle), and λ (wavelength) were considered in our study. The reflectance
factor ρλ ranged from 0.9284 to 0.9954.

Further consideration was given to the Leaf Optical Properties Experiment (LOPEX),
ANGERS, and multi-angular datasets for the validation of the indices suggested in this work
to examine the reliability and generalization of the proposed indices.31,55

AViewSpec software from the analytical spectral device (ASD) manufacturer to resolve the
discontinuity problem at 1000 nm attributed to constraints in the ASD spectrometer’s configu-
ration.60,61 In addition, to accomplish spectrum smoothing over the 400- to 2500-nm range, we
utilized a Savitzky–Golay polynomial least-square algorithm with a second-order and 20-nm
bandwidth window.62

2.2 Measurement of Biochemical Properties
Leaf water status can be assessed using various methods, among them is EWT. In this study,
EWT was utilized to evaluate the leaf water status. EWT refers to the amount of water content
closely associated with the absorption of energy per unit leaf area.63 The equation for EWT is
mentioned as

EQ-TARGET;temp:intralink-;e002;114;386EWT ðg∕cm2Þ ¼ ðWF −WDÞ∕LA; (2)

where WF denotes the fresh weight (grams), which was measured within 20 min after clipping,
andWD represents the dry weight (grams), obtained by drying at 80°C for 36 h. LA stands for the
leaf area (square centimeter). The statistics for the leaves, which were collected at various stages
of growth that produce a wide range of EWT values, are presented in Table 1.

2.3 Validation Datasets from Different Sources
Validation of the algorithm, based on correlations between spectral indices and EWT derived
from multi-angle reflectance measurements, utilized three distinct datasets (refer to Table 2).
These datasets encompassed a range of developmental stages, leaf surface characteristics, and
diverse measurement techniques, including integrating spheres, leaf clips, and multi-angle
measurements.

Table 2 Datasets for validation that were utilized in this work to estimate EWT. Table 3 demon-
strates an extensive overview of the multi-angle dataset.

LOPEX ANGERS Multi-angle

Spectrophotometer Perkin Elmer Lambda 19 ASD FieldSpec ASD FieldSpec 4

Measurement Laboratory Laboratory Laboratory

Spectral range (nm) 400 to 2500 350 to 2500 400 to 250

Number of samples 45 43 78

Reference 64 65
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The LOPEX, conducted by the European Commission’s Joint Research Center, comprised
330 leaf samples from 45 plant species.66 The ANGERS dataset, from an experiment conducted
at National Institute for Agriculture Research in Angers, France, in June 2003, included reflec-
tance and transmittance measurements from 275 leaf samples representing 43 plant species,
alongside corresponding biochemical and physical measurements.64

The multi-angle dataset, compiled in Changchun, China, in 2020, consisted of 163 leaf sam-
ples from 10 plant species, measured in the principal plane. In addition, measurements were
conducted on 78 leaves from seven other plant species at random, with further details provided
in Table 3.

These datasets, acquired using integrating spheres, leaf clips, and goniometers with spec-
trometers, encompassed woody and herbaceous species in controlled laboratory conditions. The
inclusion of diverse leaf internal and surface structures, EWTs, and optical properties in this
study underscores its robustness and applicability. The diversity of plant species and their various
growth stages renders this method suitable for evaluating the capability to estimate EWT using
both established and newly developed spectral indices.4,55

2.4 Spectral Indices for Estimating EWT
In this study, a comprehensive analysis was undertaken using a range of published spectral indi-
ces, namely, simple difference, simple ratio, normalized difference, and difference ratio (DR), as
outlined in Table 4. These indices have been previously recognized as highly effective in esti-
mating EWT and various other forms of leaf water content across diverse plant species.
Importantly, some indices were observed to exhibit minimal sensitivity to variations in leaf sur-
face structure, further highlighting their suitability for accurate EWT estimation.

Ref. 69 employed two DR indices, specifically ðR850 − R2218Þ∕ðR850 − R1928Þ and
ðR850 − R1788Þ∕ðR850 − R1928Þ, for estimating EWT in a limited number of Eucalyptus species.
In addition, a VZA was incorporated to diminish specular reflection from leaf surfaces. More
recently, DR indices have been demonstrated to be effective in reducing the impact of specular
reflection on leaf chlorophyll content estimation56 and multi-angular reflectance factor.70 Here,
we proposed new DR indices based on laboratory-measured BRF to account for the spectral
reflectance impact in the 400- to 2500-nm range. The new index is a ratio of reflectance factors
at three specific wavelengths, with one representing specular light reflection from leaves [λ1 in
Eqs. (3) and (4)]. The denominator utilizes a wavelength that is sensitive to EWT, and the numer-
ator employs a wavelength that is insensitive to EWT.36 After analyzing reflectance–EWT rela-
tionships, the linear index utilized 1905, 1840, and 1875 nm [Eq. (3)]. The nonlinear index used
1845, 1880, and 1910 nm [Eq. (4)]

EQ-TARGET;temp:intralink-;e003;117;102DR ¼ ðRλ1 − Rλ2Þ∕ðRλ1 − Rλ3Þ ¼ ðR1905 − R1840Þ∕ðR1905 − R1875Þ; (3)

Table 3 Multi-angle dataset comprises measurements of 78 samples from seven plant species.
This dataset was used to construct connections between spectral indices and water indicators.

Species
Measurement

condition
Sample
number SZA (40 deg) SZA (50 deg) VZA (deg)

Syzygium aromaticum Laboratory 9 −60 to 60

Pachira aquatica Laboratory 4 −60 to 60

Juglans Laboratory 4 −60 to 60

Epipremnum aureum Laboratory 11 7 4 −60 to 60

Swida alba Opiz Laboratory 17 17 −60 to 60

Acer saccharum Marsh Laboratory 25 13 12 −60 to 60

Populus L. Laboratory 8 8 −60 to 60

Total 78
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EQ-TARGET;temp:intralink-;e004;114;482DR ¼ ðRλ1 − Rλ2Þ∕ðRλ1 − Rλ3Þ ¼ ðR1845 − R1880Þ∕ðR1845 − R1910Þ: (4)

For selecting the three wavelengths in the DR index, it is essential to eliminate wavelength-
independent specular reflection from the leaf surface. Deep absorption bands, often found in blue
and red wavelengths, are typically chosen as representative of the specular reflection of leaves.36

Specular reflection wavelengths must also have constant reflection values and be unaffected by
variations in EWT. This ensures their suitability and reliability in spectral index calculations for
EWT estimation.

This study aimed to identify wavelengths within the 400- to 2500-nm range that are capable
of effectively removing specular reflection that originates from the surface of the leaf. Each
wavelength in the range was tested for its suitability in achieving this goal. During the selection
process, the reflectance factor at each wavelength in the 400- to 2500-nm spectrum was sub-
tracted from the reflectance at another wavelength within the same range. The obtained sub-
tracted reflectance factor was subsequently correlated with EWT to identify the wavelengths
that are most relevant for estimating leaf water content. As specular reflection does not relate
to the leaf’s EWT, we expected the R2 values (R2

reduce specular reflection) at each wavelength to

increase compared with the original R2 values (R2
original) obtained without accounting for specular

reflection. Subsequently, the cumulative rise in R2 across the entire 400- to 2500-nm range was
evaluated to gauge the influence of specular reflection from the leaf surface. Equation (5) defines
the cumulated R2 increase as follows:

EQ-TARGET;temp:intralink-;e005;114;241cumulatedR2 increase ¼ ðR2
reduce specular reflection − R2

originalÞ: (5)

A suitable wavelength for eliminating specular reflection from the leaf surface is expected to
exhibit a higher cumulative R2 increase across the 400- to 2500-nm range than other wave-
lengths. Our wavelength optimization method differs from previous studies36,68 as we account
for the removal of specular reflection from the leaf surface effect. By reducing specular effects,
our approach enables more accurate estimations of leaf biochemical parameters, particu-
larly EWT.

3 Results

3.1 Leaf Reflection Factors: Spectral Features and Distribution
Spectral reflectance factors at various EWTs for the nadir VZA are depicted in Fig. 2, alongside
laboratory-measured BRFs. An increase in EWT results in a noticeable decrease in reflectance,

Table 4 Spectral indices utilized to estimate EWT.

Index Formula References

Normalized differential water index (NDWI) ðR860 − R1240Þ∕ðR860 þ R1240Þ 67

Normalized differential water index (NDWI) ðR860 − R1640Þ∕ðR860 þR1640Þ 66

ðR850 − R2218Þ∕ðR850 − R1928Þ 68

ðR850 − R1788Þ∕ðR850 − R1928Þ 68

Moisture stress index (MSI) R1600∕R820 13

Simple ratio water index (SRWI) R860∕R1240 46

Normalized difference water index
centered at 1640 nm (NDWI1640)

ðR858 − R1640Þ∕ðR858 þ R1640Þ 66

Normalized difference water index
centered at 2130 nm (NDWI2130)

ðR858 − R2130Þ∕ðR858 þ R2130Þ 66

Difference ratio (linear) ðR1905 − R1840Þ∕ðR1905 − R1875Þ Proposed in this study

Difference ratio (nonlinear) ðR1845 − R1880Þ∕ðR1845 − R1910Þ Proposed in this study

Yasir et al.: Spectral index for estimating leaf water content. . .

Journal of Applied Remote Sensing 042603-6 Oct–Dec 2024 • Vol. 18(4)



particularly in the near-infrared and shortwave infrared wavelengths, particularly above 1300 nm,
due to significant leaf water absorption (Fig. 2). These spectral characteristics lay the ground-
work for estimating EWT using spectral indices. In addition, analyzing the distribution of multi-
angular reflectance factors aids in understanding leaf reflection properties across different
species.

Moreover, Fig. 3 illustrates the BRFs acquired from 10 plant species at seven different wave-
lengths. The figure highlights distinct angular distributions observed among the various species,
strategically positioned at prominent peaks and valleys within the reflection spectra. While this
study did not include an analysis of leaf surface structure, the diverse distribution of BRFs sug-
gests variations in surface properties across plant species. By establishing a reliable spectral
index applicable across diverse plant species, the study aims to ensure accurate estimates of

Fig. 2 Leaves BRF at nadir direction with variable EWT. (a) Schefflera microphylla Merr.
(b) Pachira aquatica. (c) Juglans. (d) Epipremnum aureum. (e) Citrus limon (L.) Burm. f.
(f) Prunus padus L. (g) Armeniaca vulgaris Lam. (h) Populus L. (i) Acer saccharum Marsh.
(j) Swida alba Opiz.

Yasir et al.: Spectral index for estimating leaf water content. . .

Journal of Applied Remote Sensing 042603-7 Oct–Dec 2024 • Vol. 18(4)



EWT. Utilizing multi-angular reflectance factors with varying values and distribution patterns,
the effectiveness of existing spectral indices for EWT estimation was evaluated.

3.2 Lab-Measured Multi-angular Reflectance for Examining Spectral Indices
and EWT

In the lab-measured multi-angular reflectance analysis to examine spectral indices and EWT,
Fig. 4 illustrates the relationships between the examined spectral indices (measured using
BRF) and EWT for leaves with recorded VZAs. Among the eight existing spectral indices, weak
relationships with EWT were observed, particularly influenced by viewing angles in forward
scattering directions. Specifically, R2 values for most spectral indices decreased at −30, −40,
or −50 degVZAs, with a slight increase at −60 deg. Conversely, near the nadir and in backward
scattering directions, the existing spectral indices displayed relatively high R2 values with a weak
dependence on VZAs.

The results suggest that the recently suggested DR indices, ðR1905 − R1840Þ∕ðR1905 − R1875Þ
and ðR1845 − R1880Þ∕ðR1845 − R1910Þ, exhibit a strong connection with EWT and are not influ-
enced by VZAs, as indicated by the laboratory measurements of multi-angular reflectance factors
(BRF). The R2 values for each spectral index, obtained by combining spectral measurements
across all VZAs and including data from the principal plane (Table 1), are shown in the right
column of Fig. 4. The proposed DR indices exhibit the strongest relationship with EWT, with an
R2 value of 0.95. On the other hand, other indices show weaker relationships with EWTwhen all
multi-angular reflectance factors are considered, mainly due to weak connections in the forward
scattering direction or different slopes of the formula at each VZA. The study suggests

Fig. 3 In laboratory measurements, the BRF of leaves was distributed angularly. “−” denotes for-
ward. The chosen wavelengths were typically used to describe regular reflectance factor peaks
and valleys in the electromagnetic spectrum (350 to 2500 nm). (a) Prunus padus L. (b) Swida alba
Opiz. (c) Acer saccharum Marsh. (d) Armeniaca vulgaris Lam. (e) Populus L. (f) Epipremnum aur-
eum. (g) Schefflera microphylla Merr. (h) Pachira aquatica. (i) Juglans. (j) Citus limon (L.) Burn. f.

Yasir et al.: Spectral index for estimating leaf water content. . .

Journal of Applied Remote Sensing 042603-8 Oct–Dec 2024 • Vol. 18(4)



limitations in applying previously published spectral indices to samples with reflectance factors
from different VZAs. The proposed DR indices stand out with a high R2 value and consistent
slopes at each VZA. Furthermore, the consistent performance of the proposed DR indices across
all laboratory samples indicates their robustness.

3.3 EWT Estimation from Validation Dataset
To assess the predictability of the newly proposed DR indices, which exhibited the strongest
relationship with leaf EWT, three datasets were utilized. These datasets comprised measurements
taken from both single angles and multi-angles, as detailed in Tables 2 and 3. Furthermore, the
performance of all eight existing spectral indices was compared with the proposed DR indices.
The calibration dataset (the rightmost column in Fig. 4) was used to develop algorithms for each
spectral index, considering reflectance factors of leaf samples from all samples and VZAs.
Table 5 demonstrates the root mean square error (RMSE) values for the eight spectral indices
across each database.

–60 –50 –40 –30 –20 –10 0 10 20 30 40 50 60
0.0

0.2

0.4

0.6

0.8

1.0

Viewing zenith angle (deg)

R
2

(R1905 - R1840) / (R1905 - R1875)

(R1845 - R1880) / (R1845 - R1910)

(R860 - R1240) / (R860 + R1240)

(R860 - R1640) / (R860 + R1640)

(R850 - R2218) / (R850 - R1928)

(R850 - R1788) / (R850 - R1928)

R1600 / R820

R860 / R1240

(R858 - R1640) / (R858 + R1640)

(R858 - R2130) / (R858 + R2130)

R2 = 0.95, y = 51.98x + 1.181

R2 = 0.73, y = 6.716x + 0.106

R2 = 0.73, y = 11.01x + 0.367

R2 = 0.95, y = 1.386 e21.96x

R2 = 0.64, y = 1.624x + 0.017

R2 = 0.73, y = 6.718x + 0.105

R2 = 0.72, y = 7.773x + 0.561

R2 = 0.74, y = 8.994x + 0.321

R2 = 0.73, y = -9.093x + 0.758

R2 = 0.64, y = 3.636x + 1.032

Fig. 4 Depicts spectral index–EWT relationships for all calibration samples at various VZAs.
Laboratory-measured multi-angular BRFs were used. The right column displays R2 values and
equations derived from the spectral index–EWT relationship across all viewing directions
(n ¼ 256).

Table 5 RMSE values for the eight spectral indices calculated in the validation dataset. Estimated
EWT was determined using algorithms (Fig. 4) developed based on calibration data and spectral
index. The combined results from the validation datasets are presented in the last column.

Indices LOPEX ANGERS Multi-angle Combined

(1) 0.0026 0.0024 0.0041 0.0041

(2) 0.0037 0.0032 0.0059 0.0060

(3) 0.0049 0.0043 0.0049 0.0053

(4) 0.0053 0.0059 0.0057 0.0064

(5) 0.0061 0.0062 0.0061 0.0071

(6) 0.0026 0.0028 0.0063 0.0051

(7) 0.0039 0.0034 0.0072 0.0079

(8) 0.0057 0.0053 0.0046 0.0051

Proposed DR linear index 0.0019 0.0015 0.0021 0.0024

Proposed DR nonlinear index 0.0018 0.0015 0.0023 0.0026
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After consolidating all validation datasets, we observed that the algorithm based on
the proposed DR indices (Fig. 4, top right) demonstrated the highest estimation accuracy, yield-
ing the lowest RMSE when combining all three validation databases, specifically RMSE ¼
0.0024 ðg∕cm2Þ and 0.0026 ðg∕cm2Þ. As indicated in Table 5, the proposed DR indices emerged
as the most effective for estimating EWT. Furthermore, our findings revealed that these DR indi-
ces not only exhibited insensitivity to VZAs within the principal plane but also demonstrated
independence from directions outside the principal plane, thus providing precise estimations of
EWT in the multi-angle dataset (Fig. 5). These results suggest that the algorithm derived from the
proposed DR indices is accurate and consistent in estimating EWT across diverse plant species
with varying leaf structures under different measurement conditions

4 Discussion

4.1 Stability of the Indices for Defining Leaf Water Status
The proposed EWT linear index, calculated as ðR1905 − R1840Þ∕ðR1905 − R1875Þ, and EWT non-
linear index, calculated as ðR1845 − R1880Þ∕ðR1845 − R1910Þ, were thoroughly tested using various
odd combinations within the calibration dataset, covering wavelengths up to 61 nm in both for-
ward and backward directions. A total of 29 combinations of the proposed indices were gen-
erated, with increments of odd numbers (5, 7, 9, 11, 13, and so on, up to 61 nm) to obtain an
average.

These combinations demonstrated stability and a strong determination coefficient, validating
their accuracy and reliability, as illustrated in Figs. 6 and 7. The same testing process was adopted
by Ref. 71 to assess how the proposed index responds to different wavelength combinations. For
the nonlinear index, a similar methodology was employed, and the changes in wavelength (Δλ) at
the corresponding regions of the proposed index were represented in Figs. 6 and 7. The results
indicate that the proposed EWT linear and nonlinear indices are robust and dependable for the
intended purpose.

4.2 Correlation Coefficients of the Individual Wavelength of the Proposed
Indices

The optical properties of leaves underwent changes, characterized by a gradual increase in rel-
ative reflectance at different wavelengths. However, several published studies presented conflict-
ing findings regarding leaf reflectance alterations, with some showing irregularities, an overall
increase in leaf reflectivity,72,73 a decrease,74 and others reporting no significant changes in
reflectance.28,75

Fig. 5 RMSE of eight spectral and the proposed EWT indices in the principal plane for all validation
samples at VZAs (13 directions). The blue and red indices in the left column (top two) represent
linear and nonlinear indices, respectively.
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To address this variability, we adopted a meticulous approach, which involved carefully
defining each band of the indices and examining their relationship with reflectance, as depicted
in Fig. 8. This method allowed us to gain deeper insights into the impact of the indices on leaf
reflectance and provided a more comprehensive understanding of the observed changes in optical
properties.

4.3 Importance of Understanding Multi-angle Leaf Reflectance Variables
The distribution of leaf reflectance factors, influenced by specular reflection from the leaf sur-
face, exhibits significant anisotropy, particularly in forward directions within the principal plane.
This anisotropy has a pronounced effect on the BRF of leaves, particularly those with prominent
specular reflections. Previous studies have consistently shown that leaf structure tends to result in
lower reflectance in forward directions.51,61,76,77

At moderate or low remote sensing resolutions, averaging leaf reflectance factors across
different directions can mitigate the impact of specular effects on leaf water content (EWT) esti-
mation. However, for high spatial resolution data, considering multi-angular leaf reflection
becomes imperative.21,42,47,78 With advancements in technology, it is now feasible to obtain high
spatial resolution data for small leaf sections,79 allowing for the measurement of reflected light
from various viewing directions.21,42,47,78

Specular reflection from the leaf surface influences the distribution and intensity of multi-
angular reflectance factors, although it does not directly correlate with the leaf’s biochemical

Fig. 7 Stability of the proposed bandwidth index for linear nonlinear ðR1845 − R1880Þ∕
ðR1845 − R1910Þ of EWT.

Fig. 6 Stability of the proposed bandwidth in the linear index ðR1905 − R1840Þ∕ðR1905 − R1875Þ of
EWT.
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properties. Nevertheless, individual leaf-level spectroscopic studies contribute to our understand-
ing of plant-radiation interactions, which can be extrapolated to the canopy level.80–83 Therefore,
conducting comprehensive studies to examine the correlations between EWT and spectral indi-
ces, using multi-angular reflectance factors from diverse plant species in laboratory settings,
holds significant importance for remote sensing experts.

Distinct patterns of reflectance factors in leaves from different plant species, as illustrated in
Fig. 3, are largely attributed to variations in leaf surface features, which differ between species or
developmental stages and affect the occurrence of specular reflection from the leaf surface.46,84

Specular reflection primarily occurs in the forward direction and, to a lesser extent, in the back-
ward or nadir directions. Consequently, weak specular reflection in nadir directions minimally
affects the relationships between most spectral indices and EWT (Fig. 4).

Conversely, when specular reflection dominates the overall reflection, particularly in for-
ward scattering directions (Fig. 3), the associations between spectral indices and EWT weaken
(Fig. 4), resulting in diminished accuracy in EWT estimation. The accuracy of estimation typ-
ically deteriorates in practical applications when data from a single pixel are predominantly
affected by specular reflection from the leaf surface. Therefore, there is a need for a viewing
angle-independent spectral index with an effective relationship to EWT for remote sensing appli-
cations across various fields.

4.4 Strengths and Limitations of the Proposed Indices
Existing EWT estimation spectral indices are primarily based on leaf reflectance or reflectance
factors, measured through integrating spheres, spectrometers with leaf clips, or spectrometers in
the nadir direction. These approaches have been employed in previous studies by researchers
such as Refs. 13, 26, and 85. However, specular reflection from the leaf surface in these meas-
urement directions has not been extensively addressed by scholars who are working on EWT
estimation. Although this form of reflection has little impact on spectral measurements, taking it
into account is essential for increasing the reliability of EWT measurement.

The newly proposed DR indices offer significant advancements in minimizing the impact of
specular reflection from the leaf surface across diverse plant species and illumination-viewing
geometries, resulting in a stronger correlation with EWT than other existing indices investigated
in this research. Moreover, the DR indices demonstrate no sensitivity to multi-angular reflectance
factors, thereby enhancing their accuracy and robustness for EWT estimation. Their reduced
sensitivity to viewing angles makes them reliable and applicable across various environmental
conditions, making the DR indices a promising choice for EWT estimation.

An additional advantage is their applicability to diverse measured and simulated datasets,
covering various plant species and regions. This adaptability is attributed to the multi-angular
reflectance factors, which incorporate reflection values similar to leaf clip or integrating sphere
measurements while considering the influence of specular reflection from the leaf surface. These
DR indices are versatile, facilitating EWTestimation using hyperspectral data and sensor design.

Fig. 8 Relationship between EWT and reflectance from calibration data set at (a) linear (bands):
R1905, R1840, and R1875 (nm) and (b) nonlinear (bands): R1845, R1880, and R1910 (nm). The graphs
indicate the correlation coefficients (r ).
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While the individual wavelength was not specifically validated in this study, we are confident in
accurate EWT predictions with sensors having the same wavelength as the ASD (ranging from
3 nm in the 400- to 1000-nm region to 6 nm in the 1000- to 2500 nm region). The wide-ranging
applicability of the proposed DR indices makes them suitable for diverse datasets and settings,
holding promise for accurate EWT estimation and sensor design in future applications.

The indices have the potential for reducing specular reflection and reliably estimating EWT
across viewing angles. However, it is vital to recognize limitations, such as restricted species
representation, variances between lab and field conditions, and the influence of spectral band
choice and instrument sensitivity. Addressing these through broader species inclusion, field val-
idations, and sensitivity analyses would bolster the robustness and practicality of our method.

5 Conclusion
In this study, we introduced two novel DR indices, namely, ðR1905 − R1840Þ∕ðR1905 − R1875Þ for
linear measurements and ðR1845 − R1880Þ∕ðR1845 − R1910Þ for nonlinear measurements. These
DR indices present a double advantage: they efficiently reduce the impact of specular reflection
from the leaf surface, and they furnish precise EWTestimations for multi-angular measurements.
Furthermore, a theoretical rationale for the selection of specific wavelengths in the DR indices.
The chosen wavelengths were carefully considered to optimize the reduction of specular reflec-
tion while retaining essential spectral information relevant to EWT estimation. By combining
these innovative DR indices with the theoretical justification for wavelength selection, this study
presents a valuable contribution toward improving the accuracy and reliability of EWT estima-
tion in diverse measurement scenarios, making it a promising development in the field of plant
spectral analysis.

Furthermore, we conducted a comprehensive validation of both existing spectral indices and
the newly proposed indices for EWT estimation. This validation involved using multi-angular
reflectance factors from 10 diverse plant species in a controlled laboratory environment. Our
findings revealed that existing spectral indices exhibited a satisfactory correlation with EWT
in nadir and backward directions. However, their correlation was notably lower in forward direc-
tions, indicating the influence of specular reflection from leaf surfaces. In contrast, the newly
proposed indices effectively mitigated the impact of specular reflection, resulting in more con-
sistent and reliable EWT estimations across varying viewing angles. This underscores the impor-
tance of considering specular reflection in multi-angular measurements and highlights the
superiority of our proposed indices. These insights contribute to our understanding of factors
influencing spectral indices’ performance in EWT estimation and offer valuable guidance for
future research and applications in plant spectral analysis.

The proposed indices demonstrate stable and robust relationships with EWTacross all view-
ing angles. The algorithm based on multi-angular reflectance factors enables accurate EWT esti-
mation across various datasets without the need for re-parameterization for each plant species.
This generic algorithm streamlines EWT estimation from reflection measurements, offering a
reliable and practical approach applicable to measurements from any angle. Thus, our approach
provides an efficient and accurate method for calculating EWT across a range of plant species,
with potential applications in forestry and botanical studies

Code and Data Availability
Data will be provided upon request.
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