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ABSTRACT. In recent years, algorithms for fast and accurate recognition and detection of circular
markers have become crucial in the field of high-speed videogrammetry. However,
most existing techniques often necessitate a manually selected region of interest
that encompasses the full information of the circular marker. This manual box
selection method is inefficient and unsuitable for practical engineering applications.
To address this issue, we propose a global automatic recognition and detection
approach that employs multi-level constraints for identifying circular markers in
high-speed videogrammetry. First, an edge detection method based on the Canny
algorithm is employed to extract candidate edges containing all circular markers.
Subsequently, two geometric constraints—general geometric condition and round-
ness metric constraint—are applied to eliminate a large number of non-circular
marker edges. Finally, pseudo-edges of circular markers are removed, and the
corresponding accurate edges are retained by applying an extrema point condition
constraint. The performance of the proposed method is evaluated using several
high-speed videogrammetry image datasets. Experimental results demonstrated
that our method can accurately detect and recognize all circular markers, outper-
forming comparable methods. The proposed method holds promise for efficient
and wide-ranging applications in the recognition and detection of circular markers
in high-speed videogrammetry.
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1 Introduction
High-speed videogrammetry, as a specialized form of close-range photogrammetry, has garnered
considerable attention in recent years. This technique is especially advantageous for monitoring
the spatial information of moving objects across various engineering applications such as bridge
monitoring, wind tunnel tests, and civil engineering construction.1–5 One of its key benefits is
its ability to provide non-contact, high-precision measurements. Typically, moving objects are
affixed with circular markers at strategic locations to facilitate tracking. These markers are then
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detected and recognized to analyze the movement trajectory in either two- or three-dimensional
space. Consequently, fast and accurate target recognition and circular marker detection are
critical steps in the high-speed videogrammetry process. The quality of these initial steps
significantly impacts the accuracy and efficiency of subsequent tasks, including object tracking
and three-dimensional reconstruction.

Recently, target recognition and detection are widely used in various fields of remote sensing
optical image,6–8 synthetic aperture radar (SAR) image,9–11 multi- and hyper-spectral image,12–14

video image,15,16 etc. Moreover, in the field of high-speed videogrammetry, target recognition
and detection of circular markers have also gained significant attention in the field of image
processing, as the resulting data offer valuable insights into geometric measurements. The accu-
racy and computational efficiency of target recognition and detection are critical, especially in
applications requiring high precision. Consequently, this area has become a focal point for
research to enhance performance metrics. Kim et al.17 employed the fast line extraction algorithm
in conjunction with the least squares fitting approach to provide a rapid and robust method for
ellipse extraction. Mai et al.18 introduced a hierarchical strategy for robust ellipse extraction,
leveraging line segments, connectedness, curvature requirements, and the random sample con-
sensus algorithm. Their method demonstrated excellent performance in handling occlusions and
overlapping ellipses through experiments on both synthetic and real images. Von Gioi et al.19

developed a line segment detector (LSD) method that required no parameter adjustment and
included false detection control. Experimental findings indicated that this approach yielded more
accurate results than prior methods, with a lower rate of false positives and false negatives. Chia
et al.20 proposed an ellipse detector with a self-correcting capability based on edge-following,
outperforming comparative methods in terms of recall and precision scores under challenging
conditions such as background clutter, salt-and-pepper noise, and partial occlusions. Fornaciari
et al.21 addressed the real-time performance trade-off between detection effectiveness and exe-
cution time, proposing a fast and effective ellipse detector for real-world images. Ellipse and line
segment detector, with continuous formulation (ELSDc), introduced by Pătrăucean et al.,22

employed an enhanced LSD version that improved candidate generation, validation, and model
selection, significantly reducing the false-positive rate. Furthermore, ELSDc based on the given
possible region was adopted by Ye et al.23 and Tong et al.24 in the ellipse detection of video-
grammetric monitoring. However, ELSDc’s performance in processing complex primitives
remains limited owing to its candidate generation stage. Lu et al.25 proposed a circle detection
method that refines Arc-Support line segments using a combination of gradient direction, polar-
ity, region restriction, mean shift clustering, and twice circle fitting. The centroid search algo-
rithm in the PhotoModeler software26–30 and other adaptive methods based on image block with
interest region4,31–33 offer accurate identification of circular marker edges based on manual box
selection in high-speed videogrammetry; therefore, they may cause the failure of high-efficiency
detection. Lu et al.34 introduced the Arc-Support detection framework, which employed Arc-
Support line segments to detect ellipses through four stages: Arc-Support group formation, initial
ellipse set generation, clustering, and candidate verification. Quantitative studies revealed that
this method successfully balanced accuracy and efficiency. Furthermore, Liu et al.35 employed
the Arc-Support method to detect the ellipse target of the region of interest (ROI) in the high-
speed videogrammetric measurements. However, the Arc-Support method is sensitive to com-
plex backgrounds and noise. Meng et al.36 proposed an arc adjacency matrix–based ellipse detec-
tion (AAMED) technique that employed cumulative factor–based matrices and adaptive
constraints. Experimental results across nine datasets showed that AAMED outperformed 12
comparative methods in terms of recall, precision, F-measure, and time consumption. However,
the AAMED method cannot effectively detect small ellipses and may easily yield false small
ellipses.

There are several limitations with most existing methods for target recognition and detection.
These often necessitate a manually selected ROI and dependence on synthetic and simplistic
background settings, among other factors. Such requirements make it challenging to achieve
efficiency and precision under complicated conditions commonly encountered in real-world
applications of high-speed videogrammetry. Alternatively, methods employing deep learning for
target recognition and detection require the generation of large datasets, which can be impractical
without large sample datasets. To address these challenges, this study introduces an automatic
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recognition and detection method utilizing multi-level constraints based on a single image.
This approach aims to rapidly and reliably identify all circular markers within a high-speed vid-
eogrammetry image. First, the Canny detection algorithm is employed to extract candidate edges.
Subsequently, two geometric constraints based on the general characteristic of the ellipse are
applied to remove edge information related to non-circular markers. Finally, an extrema point
condition constraint is further implemented to eliminate pseudo-edges associated with circular
markers, retaining only the accurate edge information. The main contributions of this study are
summarized as follows: (1) a global automatic detection method based on multi-level constraints
is proposed for circular markers of a whole image in high-speed videogrammetry, (2) the region
growth algorithm is introduced in general geometric constraint that effectively removes several
non-candidate edges, and (3) an extrema point condition constraint based on the number and
grayscale difference of extrema points is developed to accurately refine the identification of
circular mark edges.

The remainder of this paper is organized as follows: Section 2 outlines the proposed method,
detailing the edge detection and multi-level constraints, which encompass geometric and
grayscale constraints based on the region growth algorithm, morphological methods, roundness
metrics, and extrema point condition constraints. Section 3 presents the experiments conducted
using the proposed method and compares them to the current state-of-the-art methods. Section 4
presents the conclusions based on this study.

2 Methodology
The current methods for target recognition and detection, particularly those focused on circular
markers (Fig. 1) in high-speed videogrammetry, often rely on manually selecting the ROI
and require algorithms specifically tailored for circular marker recognition. As shown in Fig. 1,
two varieties of circular markers, which have been extensively utilized in the previous
studies,5,31,33,35,37–44 were tested in this work. The circular markers shown in Figs. 1(a) and
1(b) are often regarded as tracking and control targets, respectively. The tracking target is a white
circle on a black background, with a size of ∼20 × 20 to 40 × 40 pixels in the obtained image.
Based on the tracking target, the control target incorporates a modest cross-wire, an inner-circle
configuration, and retro-reflective material at the center of the designated region. The two types
of circular markers exhibit notable differences in the gray value within and outside the circle.
This necessitates that the pixel value within the circle exceeds that outside the circle, a requisite
for the subsequent detection process, which aims to extract the complete edge contour of circular
markers.

These approaches, often semi-automated or requiring manual intervention, are inefficient
and do not meet the demands for high-efficiency processing in practical high-speed videogram-
metry applications. To address these limitations, we propose a global automatic recognition and
detection method with multi-level constraints, which operates on the entire image to identify
circular markers. This approach incorporates two geometric constraints and one grayscale con-
dition constraint to automatically and accurately extract all circular markers within a high-speed
videogrammetry image. The proposed method consists of four key processing steps: (1) Canny

Fig. 1 Circular markers in high-speed videogrammetry. (a) Tracking target. (b) Control target.
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detection, (2) general geometric constraint, (3) a second geometric constraint based on roundness
metric conditions, and (4) extrema point condition constraint. The detailed workflow of the
proposed approach is illustrated in Fig. 2.

2.1 Canny Detection
The Canny operator45 is employed for detecting all circular markers across the image. This
choice is influenced by its features, such as non-maximum suppression and dual-threshold
processing, which are based on improved Sobel and Prewitt operators. The Canny detection
process comprises several key steps: Gaussian filter smoothing, gradient magnitude and direction
calculation, non-maximum suppression, and dual-threshold algorithm. Gaussian filter smoothing
uses a two-dimensional Gaussian function [as shown in Eq. (1)] to smooth the image and reduce
the effects of the noise. The gradient magnitude and direction calculation are defined as shown in
Eqs. (2) and (3). Non-maximum suppression is used to accurately acquire a one-pixel width of
each edge. The dual-threshold algorithm is adopted to reduce the influence of noise after the
process of non-maximum suppression. Therefore, this approach swiftly and accurately approx-
imates true edge information. Importantly, it ensures that candidate edges containing circular
markers are effectively preserved, minimizing the likelihood of missing any circular markers.

Fig. 2 Flowchart of the proposed method for circular mark in high-speed videogrammetry.
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where σ represents a parameter of the Gauss filter, and Gx and Gy represent the partial derivation
of the x-direction and y-direction, respectively.

2.2 General Geometric Constraint
In the imaging process, a circular mark is typically projected as an ellipse. The properties of this
ellipse, such as length, radius, eccentricity, and region size, served as the initial constraint
conditions. These constraints filtered out a large portion of non-edge information by iterating
through all identified candidate edges. The initial constraint criteria for the length radius,
eccentricity, and region size are as follows:

EQ-TARGET;temp:intralink-;e004;117;541

8<
:

amin ≤ a ≤ amax

emin ≤ e ≤ emax

Rmin ≤ R ≤ Rmax

; (4)

where a; e, and R represent length radius, eccentricity, and region size, respectively. The
corresponding min and max separately represent the minimum and maximum values of the
variable set, respectively.

In addition, a region growth algorithm is employed to assess the grayscale value of the eight
neighboring regions around each pixel in a region. This is used to ascertain whether the edge
points in a region exhibit closed connectivity, thereby further eliminating irrelevant edge infor-
mation. For the region growth algorithm, the upper-left corner point of each region is automati-
cally selected as the initial seed point. The same gray-level count in eight neighboring regions is
determined based on the circle’s closed characteristics. The condition for closed connectivity is
that the same gray number of the eight neighborhood regions around each seed point is greater
than or equal to 2. This looping process iteratively filters all additional edge regions, preserving
only those that meet the closed connectivity condition. As a result, a significant amount of non-
candidate edges is removed.

2.3 Second Geometric Constraint Based on Roundness Metric Condition
Some pseudo-edges may persist even after applying the general geometric constraint and region
growth algorithm. To address this issue, we employ a two-pronged approach: morphological
reconstruction based on geodesic distance46 and a roundness metric condition. These techniques
further refine the edge information by identifying and removing pseudo-edges that mimic the
characteristics of circular markers.

The morphological reconstruction method, grounded in geodesic distance, fills in any gaps
in the edge information of the preceding binary image. Concurrently, the roundness metric
condition is applied to evaluate the geometric characteristics of the filled area. This condition
helps ascertain whether the filled region approximates a circular shape, allowing for more accu-
rate and robust detection of circular markers.

2.3.1 Morphological reconstruction based on geodesic distance

First, the geodesic distance of closed connectivity is defined. Suppose that the connected region
is A, and the path P between points c and d in the connected region A is completely included in A;
then, the geodesic distance between two points c and d can be defined as dAðc; dÞ. At this time,
the geodesic distance between two points c and d in the connected region A is the shortest path
among all paths. If P does not exist, then dAðc; dÞ ¼ ∞. Then, the geodesic expansion is calcu-
lated according to the geodesic distance defined earlier. Suppose that a discrete set X is defined
and the equation is to satisfy Y ⊆ X; Y is the identification image, and X is the mask image.
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For scale n (n≧0) in X, the result δðnÞX ðYÞ of geodesic expansion of Y is the set of pixels whose
geodesic distance from point p to Y in X is less than or equal to n. The corresponding equation is
as follows:

EQ-TARGET;temp:intralink-;e005;114;697δðnÞX ðYÞ ¼ fp ∈ XjdXðp; YÞ ≤ ng: (5)

For the geodesic expansion δðnÞX ðYÞof scale n, the geodesic expansion with a unit of scale 1
can be obtained by iterating n times.

EQ-TARGET;temp:intralink-;e006;114;646

(
δðnÞX ðYÞ ¼ δð1ÞX ∘ δð1ÞX · · · ∘ δð1ÞX

δð1ÞX ¼ ðY � BÞ ∩ X
; (6)

where B is a 3 × 3 connection matrix (four connection matrix or eight connection matrix),
� is the expansion operation, and ∩ is the intersection operation.

Therefore, the image reconstruction based on geodesic distance can obtain the result of
filling the hole through the iterative calculation of the basic geodesic expansion.

2.3.2 Roundness metric condition

A roundness threshold is defined on the basis of the circular characteristics. Subsequently,
the roundness metric is applied to evaluate the quality of each filled area generated through
morphological reconstruction. This evaluation determines whether the shape is approximately
circular, thereby facilitating the removal of pseudo-edges from circular markers. The equation
for this judging condition is as follows:

EQ-TARGET;temp:intralink-;e007;114;458m ¼ 4πS
P2

; (7)

where m represents roundness, S represents the area of each region, and P represents the
perimeter of each region.

2.4 Extrema Point Condition Constraint
The extrema point condition constraint aims to refine the identification of circular mark edges by
judging the number of extrema points and grayscale differences with inside and outside pixel
values for each candidate region. First, the extremal method proposed by Haralick and Shapiro47

is employed to identify eight distinct extremal pixels for each candidate region. These extremal
points are situated at various positions around the oriented bounding rectangle of the region,
specifically at the top-left, top-right, right-top, right-bottom, bottom-right, bottom-left, left-
bottom, and left-top corners. Figure 3 illustrates the extrema of two different regions. Each
extrema point is distinct in the region on the left of Fig. 3(a). In the region on the right of
Fig. 3(b), certain extrema points (such as top-right and right-top) are identical. Typically, ellipses
and circles have eight different extreme points [similar to Fig. 3(a)]. Subsequently, the centroid
coordinates for each candidate region are calculated using the binary centroid algorithm.48 For
each region, eight straight-line equations are constructed by connecting the centroid to each
extremal point. Two points are then selected on either side of each extremal point along these
lines, as detailed in Eq. (8). The arrangement of these eight straight lines for each candidate
region is illustrated in Fig. 4. To finalize the identification process, the pixel values at the two
selected points around each extremal point are compared. Specifically, the condition for iden-
tifying a region as a circular mark is that the pixel value closer to the centroid must be greater than
the pixel value further away. In this case, it can effectively be determined that the gray value
within the circle of eight distinct is consistently greater than the corresponding gray value outside
the circle, with the constraint of eight extrema points exhibiting a relatively uniform distribution.
This ensures the reliability and robustness of the judgment. This guarantees that only legitimate
circular markers are considered, thereby enhancing the precision of the overall detection process.
Consequently, the circular marks can be obtained accurately through the constraint of the number
of extrema points and grayscale difference based on the extrema point condition.
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where (x0; y0) represents the pixel position of the centroid, (x1; y1) represents the pixel position of
each extremal point, (x; y) represents the pixel position of two points on both sides of each
extremal point, k represents the slope of the straight-line equation, and b represents the intercept
of the straight line equation.

3 Results and Discussion
Experiments were conducted using five real-world high-speed videogrammetry image datasets to
assess the performance of the proposed method; the experiments include (1) a five-layer frame
model, (2) a three-story frame model, (3) a vibration generator experiment, (4) a high-rise build-
ing model, and (5) a brick and concrete structure wall model. All datasets were captured by one of
two CamRecord CL600 high-speed cameras (Optronis, Kehl, Germany), which has a resolution
of 1280 × 1024 pixels. Here, the settings of high-speed cameras often meet the following
requirements: (1) the field of view of measuring range should cover the specified range structure,
and (2) the position of the camera should not be affected by the external environment of the
structure.

3.1 Datasets Descriptions

3.1.1 Five-layer frame model (FFM) dataset

This dataset was generated during a shaking table experiment involving an FFM and was
captured using the Optronis CamRecord CL600 camera. The model is a core tube structure
composed of reinforced concrete, with dimensions measuring 2.42, 1.62, and 4.5 m in the
X, Y, and Z directions, respectively. A total of 16 circular markers were strategically placed
on the surface and periphery of the structure. The dataset includes images of regions from the
second to the third stories and surrounding areas, as shown in Fig. 5(a).

Fig. 3 Extrema of two different regions. (a) Distinct situation. (b) Identical situation.

Fig. 4 Judgment process of circular mark edge. (a) Candidate edge (yellow). (b) Extremal points
(red) and centroid position (magenta). (c) Straight line construction (cyan). (d) Two selected points
(orange). (e) Circular mark edge (red).
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3.1.2 Three-story frame model (TSF) dataset

This dataset, depicted in Fig. 5(b), features a TSF model constructed of concrete. The base
dimensions are 4.5 m × 1.8 m, and the model has an overall height of 4.26 m, with each story
measuring 1.42 m in height. Approximately 12 circular markers were attached to the surface of
the model. In addition, six stable iron rods were positioned around the model, and 10 circular
markers were affixed to its surface.

3.1.3 Vibration generator experiment (VGE) dataset

This dataset focuses on a vibration generator with a base measuring 0̃.86m × 0.55m and a maxi-
mum height of 0.9 m. The generator was placed on a platform measuring 1.2 m × 0.8 m.
Fourteen circular markers were affixed to the vibration generator; their distribution is illustrated
in Fig. 5(c).

3.1.4 High-rise building model (HRB) dataset

This dataset, shown in Fig. 5(d), is taken from the lower half of two high-rise building model. The
plane size of each high-rise building model is 9.84 m × 3.2 m, with a height exceeding 10 m.
On the surface of the structure model, 22 circular markers were affixed at their corresponding
key position.

3.1.5 Brick and concrete structure wall (BCSW) dataset

This dataset was obtained through a shaking table experiment utilizing a brick and concrete
structure wall model. In addition, the model was also a scaling-down model structure of an actual
wall and was also captured using the Optronis CamRecord CL600 camera. A total of 27 circular
markers were affixed to the corresponding surface of the wall.

3.2 Experimental Setup and Parameter Settings
To further validate the effectiveness of the proposed method, two state-of-the-art ellipse detection
methods—AMMED36 and Arc-Support34—were chosen for comparative analysis. These

Fig. 5 Experiments on five different datasets. (a) Five-layer frame model dataset. (b) Three-story
frame model dataset. (c) Vibration generator experiment dataset. (d) High-rise building model
dataset. (e) Brick and concrete structure wall dataset.
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methods are among the most commonly used for ellipse detection in image processing and
computer vision. Performance metrics such as precision, recall, and F-measure34,36 were used
to evaluate detection and recognition performance. Precision = TPs/(TPs + FPs), recall = TPs/
(TPs + FNs), and F-measure = 2∕ðprecision−1 þ recall−1Þ. Here, TPs, FPs, and FNs represent
true positives, false positives, and false negatives, respectively. The publicly available source
codes of AMMED and Arc-Support were used to ensure a reliable comparative analysis. All
experiments were conducted on a computer equipped with an Intel(R) Xeon(R) W-2235
CPU at 3.80 GHz and 64 GB of memory, running Windows 11 64-bit. The proposed method
was implemented in MATLAB. In the five datasets, detailed parameters of the proposed method
include length radius (a), eccentricity (e), region size (R), and roundness (m), where
15 pixel ≤ a ≤ 60 pixel, 0 < e ≤ 0.7, 20 pixel ≤ R ≤ 150 pixel, and m ≥ 0.915. In addition,
to verify whether the extracted edge of the circular markers are accurate, the extracted edges
of aforementioned methods are to further obtain the corresponding center coordinates. These
coordinates are then to be compared with the results of the centroid search algorithm in the
PhotoModeler software.26–30

3.3 Results and Analysis
A detailed analysis of the proposed method’s recognition process was conducted to offer an
intuitive assessment its performance, as depicted in Figs. 6–10. Both qualitative and quantitative
analyses were conducted to compare the detection and recognition results of the proposed
method against AMMED and Arc-Support. Detailed comparative outcomes are presented in
Figs. 11–13 and Tables 1 and 2.

Fig. 6 Recognition process results of FFM. (a) Canny. (b) General geometric properties constraint.
(c) Roundness metric constraint. (d) Grayscale condition constraint.
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3.3.1 Recognition process analysis of the proposed method

Figure 6 provides a detailed overview of the optimal recognition process for the dataset FFM
using the proposed method. Figure 6(a) reveals extensive edge information captured using the
Canny detector. A general geometric constraint was applied to effectively filter out numerous
non-candidate edges, as shown in Fig. 6(b). Accurate detection results of all circular markers
obtained using the roundness metric constraint are depicted in Fig. 6(c). Figure 6(d) further
confirms that only those candidate edges meeting the grayscale condition constraint are retained.
The recognition results for the dataset TSF, displayed in Fig. 7, align closely with those from
Fig. 6. Figures 7(a)–7(c) detail the process involving Canny detection, general geometric con-
straints, and roundness metric constraints, respectively. The final ensemble of edges correspond-
ing to all circular markers is presented in Fig. 7(d).

With regard to the third experiment using the VGE dataset, Fig. 8(a) illustrates the initial
edge detection results using the Canny detector. This includes both candidate and non-candidate
edges. Figure 8(b) shows the removal of numerous non-candidate edges via general geometric
constraints. Figure 8(c) indicates that a few residual non-candidate edges are further removed,
although some pseudo-edges, highlighted by red rectangles, remain. These residual pseudo-edges
are ultimately eliminated in Fig. 8(d) through the application of the grayscale condition constraint.

For the last two datasets of the high-rise building model (HRB) and BCSW datasets, as
illustrated in Figs. 9(a) and 10(a), respectively, demonstrate a comprehensive presentation of
edge information extracted by the Canny detector. Figures 9(b) and 10(b) illustrate the elimi-
nation of all non-candidate edges from both datasets in accordance with the general geometric
constraints. Figures 9(c) and 9(d) and Figs. 10(c) and 10(d) illustrate the further judgement
processing using the roundness metric constraints and the extrema point condition constraint,
respectively.

Fig. 7 Recognition process results of TSF. (a) Canny. (b) General geometric properties constraint.
(c) Roundness metric constraint. (d) Grayscale condition constraint.

Zheng et al.: Global automatic detection method employing multi-level constraints. . .

Journal of Applied Remote Sensing 016501-10 Jan–Mar 2025 • Vol. 19(1)



3.3.2 Recognition accuracy comparison

To assess the recognition and detection performance of the proposed method, its performance
was compared against two other well-established techniques: Arc-Support and AAMED. The
final recognition results from all three methods are displayed in Figs. 11–13 for visual interpre-
tation. Subsequently, evaluation metrics—including precision, recall, and F-measure—were
employed to quantitatively analyze these results.

A review of the experimental outcomes across the three datasets, as depicted in Figs. 11–13,
demonstrates that the proposed method outperforms Arc-Support and AAMED in terms of
recognition accuracy. As illustrated in Fig. 11, instances of undetected features are apparent
in the results generated by the Arc-Support method [as indicated by the yellow rectangles in
Figs. 11(a)–11(e)]. A similar pattern emerges in the results yielded by AAMED, where
both missed detections and false positives are present [noted within yellow rectangles in
Figs. 12(a)–12(e)]. Specifically, two blue rectangles in Fig. 12(c) illustrate false detections
by AAMED in the VGE dataset, which are likely the result of an oversight regarding circular
mark features. In contrast, the proposed method demonstrated high detection accuracy in the
FFM and HRB dataset, with only one missed detection of a yellow rectangle and two false
detections of a blue rectangle. Furthermore, it successfully identified all circular markers in
the other three datasets, as presented in Fig. 13. This superior performance can be attributed
to the method’s comprehensive utilization of both the geometric and grayscale characteristics
of the markers.

In addition, a detailed statistical analysis of the recognition results across the five datasets
was performed, with the results presented in Table 1. The results demonstrated that both
AAMED and Arc-Support yielded relatively low values for precision, recall, and F-measure.
In particular, Arc-Support registered precision values of 100.00%, 100.00%, 100.00%,

Fig. 8 Recognition process results of VGE. (a) Canny. (b) General geometric properties con-
straint. (c) Roundness metric constraint. (d) Grayscale condition constraint.
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100.00%, and 100.00% across the five experiments. The corresponding recall figures were 75%,
59.09%, 85.71%, 50.00%, and 81.48%, with F-measure values of 85.71%, 74.28%, 92.31%,
66.67%, and 89.80%, respectively. These suboptimal metrics are primarily attributable to missed
detections inherent to the Arc-Support method. Similarly, for AAMED, the precision values
were 100%, 100%, 75.00%, 100.00%, and 100.00%, with the recall values at 81.25%, 40.91%,
42.86%, 9.09%, and 70.37%, and the F-measure values at 89.66%, 58.07%, 54.55%, 16.67%,
and 82.61%, respectively, across the five datasets. The shortcomings of AAMED can be attrib-
uted to both false detections and missed detections observed in the experiments. In contrast,
the proposed method successfully identified almost all circular markers in each of the five
experiments. This included 15 markers (with only one missed detection) in the FFM dataset,
22 markers in the TSF dataset, 14 markers in the VGE dataset, 23 markers (with only one missed
detection and two false detections) in the HRB dataset, and 27 markers in the BCSW dataset. It is
noteworthy that the method’s statistical values for precision, recall, and F-measure exhibited a
marked superiority over those of the other two methods, reflecting a high level of accuracy.
Specifically, significant improvements were observed in both recall and F-measure metrics.
This provides substantial evidence to support the effectiveness of the proposed method for the
recognition of circular markers in high-speed videogrammetry applications.

Moreover, the computational time required for each method on the three datasets is sum-
marized in Table 2. The execution time for Arc-Support on the datasets was 2.08, 1.38, 1.09,
3.45, and 5.08 s. In comparison, AAMED required 0.25, 0.30, 0.71, 0.32, and 0.33 s. In contrast,
the proposed method required a shorter amount of time, with processing times of 0.59, 0.68,
0.54, 0.32, and 0.45 s for each dataset. Therefore, our proposed method demonstrates superior
time efficiency compared with Arc-Support and AAMED. Nevertheless, the processing effi-
ciency of our proposed method represents a significant improvement over manual box selection
methods.

Fig. 9 Recognition process results of HRB. (a) Canny. (b) General geometric properties con-
straint. (c) Roundness metric constraint. (d) Grayscale condition constraint.

Zheng et al.: Global automatic detection method employing multi-level constraints. . .

Journal of Applied Remote Sensing 016501-12 Jan–Mar 2025 • Vol. 19(1)



Fig. 10 Recognition process results of BCSW. (a) Canny. (b) General geometric properties
constraint. (c) Roundness metric constraint. (d) Grayscale condition constraint.

Fig. 11 Recognition result obtained by the Arc-Support on different datasets. (a) FFM. (b) TSF.
(c) VGE. (d) HRB. (e) BCSW.
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Finally, to further analyze the edge results of circular markers obtained by the above detec-
tion methods, the least squares fitting method is used to obtain the center coordinates of the
common circular markers (illustrated in Fig. 14) and evaluate their accuracy, which are then
compared with the results obtained through the centroid search algorithm. The corresponding
results are shown in Fig. 15 and Table 3. As illustrated in Fig. 14, the center coordinates obtained
for the common circular markers across all experimental datasets are consistent with those
obtained by the centroid search algorithm. The corresponding RMSE results of all experimental
datasets in Fig. 15 are largely within a 0.5-pixel range, which suggests that the edges extracted by
the various methods are of superior accuracy. In particular, the title N for the x axis represents the
point number of the common circular markers in Fig. 15. However, it is evident that the center

Fig. 12 Recognition result obtained by the AAMED on different datasets. (a) FFM. (b) TSF.
(c) VGE. (d) HRB. (e) BCSW.

Fig. 13 Recognition result obtained by the proposed method on different datasets. (a) FFM.
(b) TSF. (c) VGE. (d) HRB. (e) BCSW.
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coordinates yielded by our proposed method (such as point 5 of the VGE dataset in Fig. 16) are
superior to those obtained by other methods, due to the minimal deviation observed in the edges
extracted by the Arc-Support and AAMEDmethods. Table 3 also presents the mean and standard
deviation (STD) values for the results of each dataset in Fig. 15. The mean and STD values for
our proposed method are all smaller than those of other methods, indicating that the center
coordinates obtained by our proposed method are more accurate and robust than those of other
comparison methods.

4 Conclusions
This study presents a global automatic detection method employing multi-level constraints
designed to accurately recognize and detect circular markers in high-speed videogrammetry.
The proposed approach fully integrates both geometric features and grayscale characteristics
of circular markers to mitigate false and missed detections. Experimental results on three
high-speed videogrammetry datasets validated the efficacy of the p roposed method, demonstrat-
ing its ability to overcome the limitations associated with state-of-the-art methods. Thus, the
proposed method holds promise for efficient and wide-ranging applications in the recognition

Table 1 Statistical results obtained by three considered methods on five datasets.

Dataset Evaluation metric AAMED (%) Arc-Support (%) Proposed method (%)

FFM Precision 100.00 100.00 100.00

Recall 81.25 75.00 93.75

F -measure 89.66 85.71 96.77

TSF Precision 100.00 100.00 100.00

Recall 40.91 59.09 100.00

F -measure 58.07 74.28 100.00

VGE Precision 75.00 100.00 100.00

Recall 42.86 85.71 100.00

F -measure 54.55 92.31 100.00

HRB Precision 100.00 100.00 91.30

Recall 9.09 50.00 95.45

F -measure 16.67 66.67 93.33

BCSW Precision 100.00 100.00 100.00

Recall 70.37 81.48 100.00

F -measure 82.61 89.80 100.00

Table 2 Time consumption results obtained by three considered
methods on five datasets (time/s).

Dataset AAMED Arc-Support Proposed method

FFM 0.25 2.08 0.59

TSF 0.30 1.38 0.68

VGE 0.71 1.09 0.54

HRB 0.32 3.45 0.32

BCSW 0.33 5.08 0.45
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Fig. 14 Common circular markers obtained by all comparison methods. (a) FFM dataset. (b) TSF
dataset. (c) VGE dataset. (d) HRB dataset. (e) BCSW dataset.

Fig. 15 Center coordinates results obtained by all compared methods. (a) FFM dataset. (b) TSF
dataset. (c) VGE dataset. (d) HRB dataset. (e) BCSW dataset.

Table 3 Center coordinates results obtained by three considered
methods on five datasets (pixels).

Dataset

AAMED Arc-Support
Proposed
method

Mean STD Mean STD Mean STD

FFM 0.219 0.227 0.169 0.142 0.130 0.140

TSF 0.092 0.065 0.294 0.342 0.086 0.043

VGE 0.690 0.667 0.513 0.494 0.074 0.041

HRB 0.057 0.014 0.294 0.113 0.123 0.001

BCSW 0.114 0.136 0.105 0.123 0.099 0.089
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and detection of circular markers in high-speed videogrammetry. For future work, the proposed
method will be further improved and tested to automatically detect circular markers under differ-
ent complex scenes in high-speed videogrammetry.
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