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ABSTRACT. With the rapid development of artificial intelligence technology, deep learning has
achieved significant advantages in synthetic aperture radar automatic target recog-
nition (SAR-ATR). However, previous research showed that the addition of small
perturbations not easily detected by the human eye can lead to SAR-ATR model
recognition errors; that is, they are affected by adversarial attacks. To solve the prob-
lem of long computation time in existing SAR sparse adversarial attack algorithms,
we propose a SAR fast sparse adversarial attack (FSAA) algorithm. First, an end-to-
end sparse adversarial attack framework is developed based on the lightweight
generator ResNet model using two different upsampling modules to control the ampli-
tude and position of the adversarial perturbation. A loss function for the generator is
then constructed, which mainly consists of the linear addition of the attack loss, the
amplitude distortion loss, and the sparsity loss. Finally, the SAR image is mapped
through the trained generator model in a one-step process to generate sparse adver-
sarial perturbations quickly and effectively. Compared with the existing SAR sparse
adversarial attack algorithm, the experimental results show that the generation speed
of the proposed method is at least 30 times higher when the perturbation is less than
0.05% of the pixels in the entire image, and the recognition rate of the model is >13%.
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1 Introduction
Synthetic aperture radar (SAR) is advantageous as it can acquire target images under all weather
conditions; hence, it is widely used in military and civilian applications.1–3 Recently, deep neural
network (DNN) models have achieved remarkable results in SAR automatic target recognition
(ATR).4–10 However, the latest research shows that SAR-ATR based on DNNmodels has security
issues; that is, they are vulnerable to attacks by adversarial examples.11 Research on SAR image
adversarial attack algorithms helped to better understand the working mechanisms and internal
decision-making of the SAR-ATR model and contributed to developing a more robust SAR-
ATR model.

In a previous study, researchers first examined adversarial examples of attacks on neural
network models in optical images.12 Szegedy et al.13 were the first to effectively reduce the
success rate of DNN model recognition by adding tiny, carefully crafted perturbations to the
original images. To solve the problem of perturbed pixels, which constitute a large proportion
of existing adversarial example generation methods, some researchers have devoted themselves

*Address all correspondence to Wei Liu, greatliuliu@163.com

Handling Editor: Nicola Acito, Associate Editor

Journal of Applied Remote Sensing 016502-1 Jan–Mar 2025 • Vol. 19(1)

https://orcid.org/0009-0005-4146-3567
https://orcid.org/0000-0002-3395-6696
https://doi.org/10.1117/1.JRS.19.016502
https://doi.org/10.1117/1.JRS.19.016502
https://doi.org/10.1117/1.JRS.19.016502
https://doi.org/10.1117/1.JRS.19.016502
https://doi.org/10.1117/1.JRS.19.016502
mailto:greatliuliu@163.com
mailto:greatliuliu@163.com


to the study of sparse adversarial attack algorithms in recent years. Such algorithms only need to
change a small number of pixels in an image to perform an adversarial attack. Su et al.14 proposed
a single-pixel adversarial perturbation generation method based on differential evolution. They
considered an extreme condition where changing just one pixel in the image could enable an
effective attack on a DNN model. Modas et al.15 proposed the SparseFool algorithm. The exper-
imental results showed that SparseFool could effectively improve the success rate of the attacks.

In recent years, SAR-ATR adversarial example generation methods have gradually become
key research areas. Huang et al.11 used the fast gradient sign method16 and basic iterative
method17 algorithms to prove that SAR images are vulnerable to adversarial example attacks.
To improve stealth attacks, researchers have limited the perturbation area to the target area. Meng
et al.18 proposed the target region perturbation generator (TRPG) algorithm, which first uses the
Gabor algorithm to perform texture segmentation on the SAR image to obtain the mask of the
target area and then constructs the perturbation in the target area. Du et al.19 used the maximum
between-class variance method to complete the labeling of target and background regions
at the pixel level, which enabled attackers to generate SAR image adversarial examples by adding
small-scale perturbations to specific regions. Peng et al.20 proposed a SAR target-segmentation-
based adversarial attack (TSAA), which added perturbations only in the target area and
successfully attacked the mainstream DNN model. Zhou et al.21 further narrowed the scope
of perturbations and successfully attacked the mainstream DNN model on the moving and sta-
tionary target acquisition and recognition (MSTAR) dataset using an algorithm from Ref. 15. In
recent studies, Huang et al.22 proposed a new method called intra-class transformation and inter-
class nonlinear fusion attack. Meanwhile, Wan et al.23 introduced the transferable universal
adversarial network, which is based on the concept of generative adversarial networks. This
method utilizes a dual-game framework between a generator and a discriminator to construct
adversarial perturbations. However, both approaches are classified as global attacks, which come
with the drawback of large perturbation ranges.

However, existing SAR sparse adversarial attack algorithms require a lot of time for iteration
and optimization and are therefore not suitable for SAR adversarial attack scenarios with high
real-time requirements. This study proposes a fast sparse adversarial attack (FSAA) algorithm
that designs a generator-based sparse adversarial attack framework and uses two different upsam-
pling modules to control the amplitude and location of the perturbations. The constructed loss
function was used to guide the generator to update the parameters. This effectively reduced the
amplitude of the perturbation and the number of perturbation pixels and improved the attack
concealment of the adversarial samples. In addition, after the generator is trained, it only needs
to map the input sample through the generator model in one step to quickly and effectively gen-
erate sparse adversarial perturbations in the SAR image.

The main contributions of this study are as follows:

1. In contrast to existing iteration-based sparse adversarial attack algorithms, this study uses
the designed generator model to obtain adversarial perturbations by mapping the input sam-
ples in one step, which saves considerable time and improves the efficiency of the attack.

2. In the construction of the loss function, the proposed algorithm uses the L2-norm and
L1-norm to reduce the amplitude of the perturbation and the number of perturbed pixels
to further improve the concealment of adversarial examples.

3. The MSTAR dataset was used to evaluate the proposed algorithm. The experimental
results show that FSAA can effectively attack the DNN model by perturbing less than
eight pixels within 0.0025 s. At the same time, the recognition rate of the DNN model
is less than 13%.

The remainder of this paper is organized as follows: Sec. 2 explains the principle of the
algorithm in detail, Sec. 3 presents the experimental results and analysis, and Sec. 4 presents
the conclusions.

2 Method
A general flowchart of the FSAA proposed in this study is shown in Fig. 1. First, the original
SAR image x is input into the generator Gð·Þ to obtain the adversarial perturbation image δ,
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following which the adversarial example ~x is obtained by adding x and δ to effectively attack the
DNN-based SAR-ATR model fvð·Þ. The designed generator includes one downsampling module
and two upsampling modules. The upsampling module of the upper-branch D1 is mainly used to
generate the amplitude value of the adversarial perturbation, and the upsampling module of the
lower-branch D2 is mainly used to generate the position information of the adversarial
perturbation.

2.1 Structure of the Generator
The essence of the generator is an encoder and decoder model. In this paper, the choice of this
structure mainly considers the following two factors: First, as the size of the adversarial pertur-
bation should match the size of the original SAR image, the input and output sizes of the
generator must be consistent; second, to improve the real-time performance of SAR attacks, the
structure of the generator must be designed to choose a lightweight model. As shown in Fig. 2
and Table 1, the FSAA algorithm selects the ResNet24 model as the main structure of the gen-
erator and modifies it based on this structure to fit the algorithm in this paper. Specifically, the
upsampling module of the generator is divided into two parts, D1 and D2. The output of D1 is a
vector diagram representing the amplitude of the perturbation. This module is mainly used to
control the perturbation amplitude of each pixel in the perturbation image. The main purpose of
D2 is to generate a sparse perturbation image. The output ρ is converted into a binary discrete
vector R ∈ f0;1g by setting a hyperparameter γ. The specific equation is as follows:

Fig. 1 Overall framework of the FSAA algorithm.

Fig. 2 Schematic of the generator structure.
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EQ-TARGET;temp:intralink-;e001;114;557Ri ¼
�
0; Ri ≤ γ

1; Ri > γ
; (1)

where Ri represents the binary value of the i’th position.

2.2 Loss Function Design
A loss function LG was designed for the generator, which is mainly composed of the linear
addition of the attack loss LG1, amplitude distortion function LG2, and sparse loss LG3. We set
the weight value for each part of the loss function. The specific equation for the loss function is as
follows:

EQ-TARGET;temp:intralink-;e002;114;441LG ¼ λ1 · LG1 þ λ2 · LG2 þ λ3 · LG3; (2)

where λ1, λ2, and λ3 are the weights of LG1, LG2, and LG3, respectively.
First, the attack loss function LG1 is introduced. To improve the effectiveness of the adver-

sarial examples, it is necessary to increase the confidence of the DNN model in identifying ~x as
other categories and decrease the confidence of ~x being identified as the true category Ctr.
Therefore, the equation of LG1 is as follows:

EQ-TARGET;temp:intralink-;e003;114;358LG1ðfvðx̃Þ; CtrÞ ¼ − log

 P
i≠Ctr

expðfvðx̃ÞiÞP
i
expðfvðx̃ÞiÞ

!
: (3)

Next, the amplitude distortion loss is defined as LG2. In this study, the L2 norm was introduced to
measure the degree of distortion of the original SAR image x and the adversarial example ~x to
ensure that the adversarial example generated by the algorithm in this study cannot be detected by
the human eye. The equation is expressed as follows:
EQ-TARGET;temp:intralink-;e004;114;263

LG2ðx; x̃Þ ¼ kx̃ − xk2
¼
�X

i

jΔxij2
�1

2

: (4)

Finally, to improve the sparsity of adversarial perturbations, as shown in Eq. (5), the L1-norm
is used in this paper to limit the number of non-zero elements in the binary discrete vector R. As
R only contains the values 0 and 1, a value of 1 indicates that the pixel value at that position is
perturbed, and a value of 0 implies that the pixel value at that position is not perturbed

EQ-TARGET;temp:intralink-;e005;114;157LG3 ¼ kRk1: (5)

2.3 Training Process of the Generator
In this section, the entire training process of the generator is described in detail. Specifically, a
dataset χ and training batch size M are provided. χ is randomly divided into N batches
fs1; s2; : : : ; sNg according to M. si represents all SAR images in each batch in dataset χ.
The loss function defined in Sec. 2.2 is then used to continuously update the parameters of the

Table 1 Input–output relationships for each module of ResNet.

Module Input size Output size

Input 1 × 128 × 128 64 × 128 × 128

Downsampling_1 64 × 128 × 128 128 × 64 × 64

Downsampling_2 128 × 64 × 64 256 × 32 × 32

Residual_1∼6 256 × 32 × 32 256 × 32 × 32

Upsampling_1 256 × 32 × 32 128 × 64 × 64

Upsampling_2 128 × 64 × 64 64 × 128 × 128

Output 64 × 128 × 128 1 × 128 × 128
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generator Gð·Þ. Finally, the parameter information of the generator is saved. Therefore, in the test
phase, only a one-step mapping of the generator is required to generate sparse adversarial
perturbation images.

3 Experiments

3.1 Dataset and Implementation Details

3.1.1 Dataset

The experiment used the MSTAR25 dataset. This dataset was published by the Defense Advanced
Research Projects Agency in 1996 and contains SAR images of Soviet military vehicles at
different azimuths and depression angles. As shown in Table 2, the MSTAR dataset contains
10 categories of military targets under standard operating conditions (SOCs). The training dataset
contained 2747 images acquired at a depression angle of 17 deg, and the test dataset contained
2426 images acquired at a depression angle of 15 deg. Figure 3 shows the SAR images of each
target category in the MSTAR dataset.

Algorithm 1 Complete training process of the generator.

Input:Dataset χ; surrogate model f v ð·Þ; batch sizeM ; true classC tr; training
iteration number T ; learning rate η; training loss function of the generator LG .

Output: The parameter θG of the well-trained generator.

1: Randomly initialize θG

2: For t ¼ 1 to T do

3: According to M , randomly divide χ into N batchesfs1; s2; : : : ; sNg
4: For n ¼ 1 to N do

5: Calculate LGðθG; f v ; sn; C trÞ
6: Update θG ¼ θG − η · ∂∕∂θG · LG

7: End For

8: End For

Table 2 Details of the MSTAR dataset under SOCs.

Target class

Training data Testing data

Depression
angle (deg) Number

Depression
angle (deg) Number

2S1 17 299 15 274

BMP2 17 233 15 196

BRDM2 17 298 15 274

BTR60 17 256 15 195

BTR70 17 233 15 196

D7 17 299 15 274

T62 17 299 15 273

T72 17 232 15 196

ZIL131 17 299 15 274

ZSU234 17 299 15 274
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3.1.2 Implementation details

For the selection of the DNN model, the proposed algorithm was evaluated with five typical
DNN models: DenseNet121,26 GoogLeNet,27 InceptionV3,28 ResNet50,29 and Shufflenet.30

For data preprocessing, all images of the MSTAR dataset in the experiment were resized to
128 × 128 pixels, and 10% of the training dataset was randomly sampled to obtain the validation
dataset. When training the DNN recognition model, the number of training rounds and the batch
size were set to 50 and 32, respectively, and the learning rate was set to 0.001. As shown in Fig. 4,
the classification accuracies of the five DNN models of the MSTAR test dataset are 98.72%,
98.06%, 96.17%, 97.98%, and 96.66%, respectively.

In the baseline comparison method setting, to verify the effectiveness of the algorithm in this
study, four SAR sparse adversarial attack algorithms were selected for comparative analysis:
Local aggregative attack (LAA),19 SparseFool,7,16 TRPG,18 and TSAA.20 The parameters of the
individual algorithms were set according to the literature. A Windows 10 operating system,

Fig. 3 SAR images of the MSTAR dataset.

Fig. 4 Confusion matrix of DNNmodels on the MSTAR dataset. (a) DenseNet121; (b) GoogLeNet;
(c) InceptionV3; (d) ResNet50; and (e) Shufflenet.
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PyTorch deep learning development framework, and Python as the development language were
used for the experiment. The CPU used in the experiment was an Intel Core i9-11900H and the
GPU was an NVIDIA GeForce RTX 3080 Laptop GPU.

3.2 Evaluation Metrics
First, the effectiveness of the attack was measured based on the attack success rate ~Acc. The value

of ~Acc reflects the probability that the DNN model recognizes the adversarial example ~x as a true
category Ctr. Hence, the smaller the value, the higher the attack success rate of the adversarial
example. The specific equation is as follows:

EQ-TARGET;temp:intralink-;e006;117;625Ãcc ¼ 1

N

XN
n¼1

Zðargmaxiðfvðx̃nÞiÞ ¼¼ CtrÞ; (6)

where Ctr represents the true category of the input sample, N represents the number of samples,
and Zð·Þ represents the discriminant function. When this condition is met, the output value is 1;
otherwise, it is 0.

The second is the concealment of attacks. As shown in the following equation, the structural
similarity (SSIM)31 is used to measure the similarity between the original input sample and the
adversarial example. The higher the structural similarity, the better the concealment of the attack.
The equation is expressed as follows:

EQ-TARGET;temp:intralink-;e007;117;499SSIMðx; x̃Þ ¼ ð2μxμx̃ þC1Þð2σxx̃ þC2Þ
ðμ2x þ μ2x̃ þC1Þðσ2x þ σ2x̃ þC2Þ

; (7)

where μx, μ~x and σx, σ ~x are the mean and standard deviation of the corresponding images, respec-
tively; σx~x represents the covariance; C1 and C2 are constants used to maintain the stability of the
metric and are generally set to values close to 0.

In addition, the sparsity S is introduced to calculate the proportion of changed pixel points to
the total number of image points:

EQ-TARGET;temp:intralink-;e008;117;401S ¼ Nδ

Ntotal

; (8)

where Nδ represents the number of modified pixels, and Ntotal represents the total number of
pixels in the image.

Finally, to evaluate the real-time performance of the attack, Tattack is introduced to measure
the time required to generate a single adversarial example. The equation is as follows:

EQ-TARGET;temp:intralink-;e009;117;318Tattack ¼
Time

N
; (9)

where Time represents the total time required to generate N adversarial examples.

3.3 Attack Performance Comparison
To verify the attack effectiveness and concealment of the FSAA algorithm proposed in this paper,
the attack performance of the different algorithms on the five DNN models in Sec. 3.1.2 is exam-
ined in this section. Table 3 lists the attack effectiveness of the different algorithms. Overall, the
proposed algorithm shows the strongest attack effectiveness for each DNN model. Taking the
GoogLeNet model as an example, the recognition rate of the DNN model on the adversarial
example constructed by the proposed algorithm was 4.58%, and the lowest recognition rate
of the baseline algorithm was 12.24%. Compared with the baseline algorithm, the proposed algo-
rithm improved the attack effectiveness by 7.66%. We believe this improvement originates from
the attack loss function designed in this study, which can effectively guide the generator to con-
struct adversarial examples with strong attack performance. Second, the experimental results in
terms of attack concealment are listed in Table 4. The proposed algorithm achieved the best
concealment when attacking each DNN model. Taking the attack on the InceptionV3 model
as an example, the SSIM value between the adversarial example generated by the algorithm
in this study and the original example was 0.9896, and the highest SSIM value of the comparison
algorithm was 0.9892. Thus, the higher the SSIM value, the higher the similarity between the
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adversarial example and original sample, that is, the better the concealment of the adversarial
example. Compared with the baseline algorithm, the proposed algorithm improved the attack
concealment by 0.0004. We believe that this improvement arises from the amplitude distortion
loss function, which can greatly reduce the amplitude of the perturbation, thereby improving the
similarity between the adversarial example and original sample. The experimental results for
perturbation sparsity are listed in Table 5. The sparsity of the algorithms proposed in this study
was less than 0.05%, whereas the lowest sparsity of the comparison algorithm was 0.15%. Thus,
the proposed algorithm significantly improved the sparsity of the perturbation. This is because
the loss function LG3 uses the L1-norm to limit the number of perturbed pixels, thereby greatly
improving the sparsity of the perturbation.

The following conclusions can be drawn from the analysis of the above experimental results:
First, compared with the other four SAR sparse adversarial attack algorithms, the proposed algo-
rithm can construct the best adversarial attack examples in terms of attack effectiveness. Second,
in this study, to conceal the attack, the SSIM was introduced to measure the similarity between
the adversarial examples and the original samples. The experimental results show that the

Table 4 Attack concealment of different algorithms on DNN models.

Model DenseNet121 GoogLeNet InceptionV3 ResNet50 Shufflenet

LAA 0.9865 0.9854 0.9887 0.9885 0.9825

SparseFool 0.9802 0.9811 0.9827 0.9830 0.9840

TRPG 0.9872 0.9832 0.9892 0.9829 0.9838

TSAA 0.9884 0.9819 0.9879 0.9873 0.9822

FSAA 0.9885 0.9860 0.9896 0.9893 0.9858

Note: bold values indicate the optimal values.

Table 5 Sparsity of adversarial perturbations generated by different algorithms.

Model
DenseNet121

(%)
GoogLeNet

(%)
InceptionV3

(%)
ResNet50

(%)
Shufflenet

(%)

LAA 0.19 0.21 0.20 0.19 0.15

SparseFool 0.16 0.19 0.31 0.18 0.25

TRPG 0.48 0.62 1.41 0.40 1.34

TSAA 4.37 4.31 4.36 4.56 4.14

FSAA 0.04 0.02 0.02 0.03 0.02

Note: bold values indicate the optimal values.

Table 3 Attack effectiveness of different algorithms on DNN models.

Model
DenseNet121

(%)
GoogLeNet

(%)
InceptionV3

(%)
ResNet50

(%)
Shufflenet

(%)

LAA 22.75 12.77 14.47 14.41 27.18

SparseFool 18.91 15.34 15.69 14.18 14.88

TRPG 10.53 12.24 25.97 10.33 28.26

TSAA 24.21 26.53 20.78 14.67 17.39

FSAA 10.18 4.58 11.38 9.69 12.82

Note: bold values indicate the optimal values.

Wan et al.: Fast sparse adversarial attack for synthetic aperture radar target. . .

Journal of Applied Remote Sensing 016502-8 Jan–Mar 2025 • Vol. 19(1)



proposed algorithm has the highest SSIM. Therefore, the adversarial examples constructed by the
proposed algorithm can maintain a high degree of similarity with the original samples; that is, the
concealment is good. Third, in terms of the sparsity of the perturbation, to improve the physical
feasibility of the algorithm, the proposed algorithm focuses on reducing the number of perturbed
pixels when constructing the loss function; that is, it improves the sparsity of the adversarial
perturbation. The results show that the proposed algorithm only needs to perturb less than eight
pixels to perform an effective attack on the DNN model. Therefore, the proposed algorithm has
the strongest sparsity among all SAR sparse adversarial attack algorithms.

3.4 Comparison of Real-time Performance
Following the defined equation for the attack time loss Tattack in Sec. 3.2, this section further
evaluates the time loss of the different algorithms in constructing adversarial examples for the
five DNN models. The experimental results are listed in Table 6. The time taken by the proposed
algorithm to construct adversarial examples on all DNN models was less than 0.0025 s, and
the fastest time among the compared algorithms was 0.0971 s. Therefore, the time cost of the
proposed algorithm was the lowest when constructing a single adversarial example, and the
computational speed increased by at least 30 times. This is because other SAR sparse adversarial
attacks require numerous iterative operations to generate perturbed images. The proposed algo-
rithm fully uses the mapping relationship of the generator in the design, and only needs to map
the input example through the generator model in one step to obtain the adversarial perturbation
image, effectively reducing the operation time.

3.5 Visualization of the Adversarial Examples
In this section, Shufflenet is used as an example to visualize adversarial perturbations and
examples generated by different sparse adversarial attack algorithms on the MSTAR dataset,
as shown in Fig. 5. Combined with the experimental conclusions in Sec. 3.3, the perturbed image
is shown in the second row of Fig. 5. Compared with other SAR sparse adversarial attack
algorithms, the perturbation constructed by the proposed algorithm requires the least number
of image pixels to be changed. As shown in the figure, less than eight pixels need to be perturbed
to perform an adversarial attack on the DNNmodel. In practical applications, an attacker can alter
the image resulting from SAR imaging by adding absorbing or highly scattering materials around
the target. Therefore, the sparse adversarial perturbation constructed in this study is physically
feasible while reducing the time cost.

3.6 Ablation Study
In this section, the effect of amplitude distortion and loss of sparsity on the perturbations is
further investigated. The experimental results are listed in Table 7. The SSIM, sparsity, and time
loss are selected to measure the attack performance of the adversarial examples under different
loss functions. From the data in the table, it is evident that when the amplitude loss function is
missing, the SSIM of the adversarial examples constructed by the generator becomes lower than
that of the original samples, and the sparsity and generation speed remain similar to those of
FSAA. When the sparsity loss function is absent, the sparsity of the adversarial perturbation

Table 6 Time cost of generating a single adversarial example.

Model
DenseNet121

(s)
GoogLeNet

(s)
InceptionV3

(s)
ResNet50

(s)
Shufflenet

(s)

LAA 61.2398 36.1987 49.5689 31.8370 33.5758

SparseFool 1.3638 0.2581 0.2859 0.1368 0.0971

TRPG 1.9560 0.8819 0.9922 0.9920 0.7665

TSAA 7.5996 1.9757 2.4517 1.6717 1.5936

FSAA 0.0022 0.0021 0.0022 0.0024 0.0021

Note: bold values indicate the optimal values.
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increases to 100%; that is, it becomes a global perturbation. At the same time, the SSIM is
slightly lower than that of FSAA, but the generation speed remains at a similar level. Based
on the above analysis, the amplitude distortion and sparse loss proposed in this study can effec-
tively limit the amplitude of the perturbations and increase the sparsity, respectively.

Table 7 Ablation study of FSAA on the MSTAR dataset.

Model Attack SSIM Sparsity (%) Time (s)

DenseNet121 W/o magnitude loss 0.9176 0.04 0.0021

W/o sparsity loss 0.9761 100 0.0022

FSAA 0.9885 0.04 0.0022

GoogLeNet W/o magnitude loss 0.9045 0.03 0.0021

W/o sparsity loss 0.9722 100 0.0024

FSAA 0.9860 0.02 0.0021

InceptionV3 W/o magnitude loss 0.9682 0.04 0.0022

W/o sparsity loss 0.9801 100 0.0026

FSAA 0.9896 0.02 0.0022

ResNet50 W/o magnitude loss 0.8883 0.03 0.0024

W/o sparsity loss 0.9778 100 0.0025

FSAA 0.9893 0.03 0.0024

Shufflenet W/o magnitude loss 0.9197 0.02 0.0021

W/o sparsity loss 0.9821 100 0.0023

FSAA 0.9858 0.02 0.0021

Note: bold values indicate the optimal values.

Fig. 5 Original SAR images, adversarial examples, and adversarial perturbations generated by
different algorithms. The words in green represent the original correct label category, and the
words in red represent the incorrect label category.
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4 Conclusion
In this paper, a fast sparse SAR adversarial attack algorithm called FSAA is proposed. The
designed end-to-end sparse adversarial attack framework was used to quickly obtain adversarial
perturbations from the input samples through one-step mapping. Compared with existing iter-
ation-based SAR algorithms for sparse adversarial attacks, this algorithm significantly improved
the speed of adversarial sample generation. In addition, a loss function for the generator was
developed, which effectively guaranteed the success rate, concealment, and sparsity of the attack.

In the future, we will further investigate the SAR sparse adversarial attack algorithm in a
black-box environment.
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