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Abstract. Recently many software-based approaches have been sug-
gested for improving the range and accuracy of Hartmann-Shack aber-
rometry. We compare the performance of four representative algorithms,
with a focus on aberrometry for the human eye. Algorithms vary in
complexity from the simplistic traditional approach to iterative spline
extrapolation based on prior spot measurements. Range is assessed for
a variety of aberration types in isolation using computer modeling, and
also for complex wavefront shapes using a real adaptive optics system.
The effects of common sources of error for ocular wavefront sensing
are explored. The results show that the simplest possible iterative al-
gorithm produces comparable range and robustness compared to the
more complicated algorithms, while keeping processing time minimal
to afford real-time analysis. C©2010 Society of Photo-Optical Instrumentation Engineers.
[DOI: 10.1117/1.3516706]
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1 Introduction
Hartmann-Shack aberrometry is one of the most common meth-
ods used to characterize the wavefront aberrations of an optical
system,1 most especially the aberrations of the human eye.2 In
its most common implementation, an array of lenslets is used
to form an array of images of a point source that has passed
through some optical media. Each subimage, or “spot,” is devi-
ated away from the axis of its lenslet by an amount proportional
to the average wavefront slope across the lenslet. Measuring
these deviations across the pupil enables the wavefront shape to
be reconstructed and/or an appropriate adaptive optics correc-
tion to be determined.1

Locating the position of each spot is relatively trivial using
standard image processing techniques. The more challenging
task is to ensure that each spot is assigned to the correct lenslet,
a process referred to as “sorting” the Hartmann-Shack pattern.
The easiest way to accomplish this is to assume that each spot
image is formed on the detector plane within the bounds of
its lenslet. The problem is then reduced to a series of small
search windows of fixed location and size. We refer to this as
the “conventional” algorithm. With this algorithm, when the
local wavefront slope is too steep, a spot will appear outside
the bounds of its lenslet and therefore be ascribed to the wrong
lenslet. This causes errors in the wavefront fit and in any adaptive
optics correction.

The range of this conventional algorithm is sufficient for the
majority of normal human eyes when measuring aberrations
close to the optical axis. However, the algorithm can fail when
measurements are sufficiently off-axis, when refractive error is
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moderate to high, or when pathology is present that distorts the
refractive components of the eye.

Several hardware changes to Hartmann-Shack systems have
been proposed to circumvent the limitations of the conventional
approach. Larger magnification of the pupil can be used to re-
duce wavefront slope and hence spot deviation, but this requires
a wider detector.2 Lenslet focal length can be shortened to again
provide less deviation at the detector plane, but this decreases
accuracy due to pixelation effects.2 Lenslet size can be made
larger, but at the expense of reduced lateral spatial resolution
of the wavefront.2 Yoon et al. suggested a rapidly translating
plate that could block certain lenslets in alternating frames, al-
though this sacrifices temporal resolution.3 Lindlein and Pfund
suggested an array of astigmatic lenslets with different orienta-
tions to uniquely identify each spot in a local area.4 Ares et al.
described the use of an array of astigmatic lenslets together with
a software algorithm that was able to trace the resultant line
foci outside the bounds of the conventional search area.5 For
aberrometry on the human eye, appropriate trial lenses are often
put into place. This can inject unwanted reflections and is time
consuming in that a refraction must be performed first, and it
does not help with imaging the peripheral fundus where refrac-
tion changes markedly,6 or for higher order effects such as in
patients with corneal disease.

Software-based approaches can also increase the range, while
avoiding alterations to existing systems and minimizing the
cost of system construction. For example, Pfund et al. de-
scribed a sorting algorithm that was inspired by a common
approach used in unwrapping phase images in interferometry.7

Groening et al.8 and Lundström and Unsbro9 described more
complex algorithms where a spline surface was fit to central
spots, and then iteratively extrapolated to predict the locations
of subsequent spots. Leroux and Dainty used a similar ap-
proach but fit Zernike polynomials to the spot displacement data
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instead of a spline, producing a smoothing effect that suppresses
noise.10 Lee et al.4 and Smith and Greivenkamp12 each described
algorithms in which spots are located in a predetermined or-
der in such a way as to reduce ambiguity as to lenslet-spot
correspondence.

These software methods generally reported dramatic im-
provements in the range of aberrometry, but it is difficult to com-
pare algorithms directly due to differences in system parameters,
aberrations considered, and criteria for failure. In particular, no
range data at all appeared with the Smith and Greivenkamp12

algorithm. The major aim of this review is to facilitate the direct
comparison of several of these algorithms by providing fur-
ther range data obtained under consistent conditions. We also
explore the robustness of the considered algorithms in the con-
text of ocular aberrometry by considering the effects of poorly
sensed spots, decentration of the pupil (in the absence of a pupil
monitor), and decentration of the input beam.

2 Methods—The Algorithms
Three of the preceding algorithms were selected to reflect the
most modern tactics that provide large increases in range over
the conventional approach, and to cover a range of complexity
in terms of processing required.9, 10, 12 For each algorithm, it is
assumed that the spot positions are already known via some
image processing method, and that the only remaining problem

is the assignment of the spots to their corresponding lenslets.
Figure 1 depicts the order in which spots are located for each
algorithm. For a more thorough treatment of a given algorithm,
the reader should consult the original paper.

It is noteworthy that each of the algorithms explored here
approach the spot allocation process in a generally similar way.
An initial assumption is made in each case that a small number
of spots nearest to the pupil center correspond to their directly
overlying lenslets. This is a valid assumption since aberrations
are smallest at the pupil center. From this anchor point, each
algorithm expands iteratively outward from the pupil center. On
a given iteration only spots that are adjacent to previously allo-
cated spots are sorted, which enables the algorithms to proceed
with minimum uncertainty since the wavefront changes mini-
mally from one lenslet to the next.

2.1 Lundström and Unsbo9—“B-Spline”
This algorithm assumes that the central nine spots of the
Hartmann pattern correspond to their overlying lenslets. A
B-spline function is fit to the spot displacements and extrap-
olated to predict the locations of surrounding spots that have
not yet been ascribed a lenslet. This is followed by a new
B-spline fit and further gradual extrapolation, until all spots
have been sorted. We refer to this as the “B-spline” algorithm.
The B-spline algorithm is the most general in its processing—it

Fig. 1 Order in which lenslets of a square lenslet array are unwrapped for each of the algorithms explored here. The zero entries indicate the initial
location of central spots before the main part of the algorithm takes effect. Subsequent numbers indicate iterations of each algorithm. The quoted
terms are used to reference each algorithm in the text.
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is therefore predicted to offer the greatest range, but the slowest
processing time. Upon request, the authors generously supplied
us with a MATLAB implementation of their algorithm, which
was used to generate data here.

2.2 Leroux and Dainty10—“Zernike”
This algorithm follows an approach similar to that of Lundström
and Unsbo.9 In place of a B-spline fit, Zernike polynomials are
fit to the actual wavefront data. A second-order fit is employed
for the central nine spots, and a fourth-order fit beyond that. The
smoothing effect of the Zernike fit was reported to improve per-
formance in the presence of noisy measurements and/or missing
spots. We refer to this as the “Zernike” algorithm. The code for
this algorithm was kindly made available on the author’s web-
site, and was used to generate results here after making some mi-
nor changes to match the parameters of our chosen lenslet array.

2.3 Smith and Greivenkamp12—“Spiral”
This algorithm was originally published using a hexagonal
lenslet array, but is equally valid for the square lenslet array
considered here. The algorithm initially assigns the three spots
closest to the pupil center to their directly overlying lenslets.
Following this, the algorithm selects each new lenslet one at a
time in a predetermined order that spirals outward from the
pupil center and matches the geometry of the lenslet array.
The location of the spot for each new lenslet is predicted using
the spot locations of the closest three lenslets that have already
been sorted. The closest actual spot that matches this prediction
is then assigned to the lenslet, as long as it is within some max-
imum distance from the prediction (e.g., one lenslet diameter).
The geometry of an outward spiral from the pupil center ensures
that changes in wavefront slope between subsequent lenslets are
kept as gradual as possible, enabling the algorithm to correctly
sort spots even in the presence of high levels of aberration. We
refer to this as the “spiral” algorithm.

We adopted an approach in our aberrometry software
virtually identical to that suggested by Smith and Greivenkamp;
MATLAB code can be downloaded from our website
at http://www.optometry.unimelb.edu.au/research/biophotonics.
html. Our implementation of this algorithm is simplified further
in that only the closest two spots are used to predict the location
of each new spot in the series. The use of two spots represents
the maximum computational simplicity for any solution in
which previously located spots are used to predict subsequent
spot locations. The other difference in our implementation
is that when no spot is found for a given lenslet, instead of
recording no data we record the predicted spot location as a
“dummy” entry that can be used to make future spot predictions.
Such entries enable the algorithm to robustly skip over poorly
sensed spots within the pupil (e.g., due to media opacities or
low signal strength), and also aid in navigating the circular edge
of the pupil with a square-shaped spiral.

2.4 A Note on Fourier-Based Algorithms
The preceding approaches operate in the spatial domain, di-
rectly on the Hartmann-Shack images. The strong periodicity
of Hartmann-Shack images make them amenable to Fourier

analysis also. For example, the first harmonic in the x and y
directions can be isolated and shifted to the origin, at which
point the inverse Fourier transform is calculated. The phase of
the resulting complex array, when scaled appropriately, gives the
wavefront slope across the image.13, 14 However, this slope data
is “wrapped” modulo 2π and must be “unwrapped.” In a highly
analogous way to the spot sorting problem already described,
this can be done by stepping in a fast, simple manner through
each data point or by adopting more advanced approaches that
begin in the pupil center and work outward.15 The core problem
therefore remains the same as for the other approaches, and so
we do not specifically investigate Fourier-based methods here.
Note that Fourier-based methods become more desirable when
the array size and number of spots is large (due to savings in
processing time), and when there is significant noise or a large
number of poorly sensed spots.13

3 Methods—Analysis
To initially compare each of the preceding algorithms, custom
MATLAB code was used to simulate double-pass Hartmann-
Shack images obtained from a human eye. Monochromatic aber-
rations were simulated at 830 nm using a phase plate located in
the pupil plane, with the retina located 20.2 mm behind this. The
retinal space refractive index was 1.33. Fourier optics was used
to propagate a 1.0-mm-diam entry beam to form a realistically
blurred point source on the retina. Light from a point on this
retinal object was then propagated back out of the “eye” with an
exit pupil diameter of 6.0 mm. The pupil plane wavefront was
sectioned into 0.4-mm-diam squares to simulate a 0.4-mm-pitch
square lenslet array. For each section, the point spread function
was computed for a lenslet with a 24.0-mm focal length, and
convolved with the retinal spot to simulate the double-pass im-
age of the spot on the detector.

Spot centroids were located by standard image processing
functions in MATLAB in two steps. First, a binary image was
generated by thresholding at intensity levels of 20% and the
MATLAB function “bwlabel” was used to label the centers of the
resulting binary spots. Second, these approximate labels were
supplied as arguments to the MATLAB “regionprops” function,
along with the original gray-scale image, to determine the center
of mass for each spot.

To quantify the range for a given aberration, the aberration
was varied in magnitude with a trial-and-error approach until
the cut-off point was reached (to within 0.05 μm) at which
spots began to be incorrectly assigned to a lenslet. Only nega-
tive Zernike coefficients were considered—e.g., the results for
defocus represent a myopic eye. Negative units were chosen be-
cause the range with the improved algorithms is much larger for
hyperopic defocus; since spots do not overlap here it is actually
the size of the detector array that limits the range.

As well as determining range for a well-centered eye, we
modeled the effects on the achievable range of some common
sources of errors in ocular aberrometry. First, without a sepa-
rate pupil monitor, there may be as much as a 0.2-mm error in
lateral pupil alignment for our 0.4-mm-pitch lenslet array; we
considered the effects of a 0.2-mm displacement on the range.
Second, the incident beam is usually displaced from the op-
tical axis in ocular aberrometry to avoid the corneal reflection.
This causes the least-displaced Hartmann-Shack spot to lie away
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from the pupil center, which can introduce errors if not taken
into account.10 To simulate this effect we modeled a 1.2-mm
error in the deviation of the beam from the optical axis. Finally,
when the SNR is low, some spots may not be adequately de-
tected. We randomly excluded 10 of the 177 spots in the pupil
from the analysis and measured the range achievable (the same
10 spots were excluded for each analysis).

Following the computational modeling just described, we
employed a real adaptive optics system to offer a more
“real-world” test of each algorithm. The system consisted of a
Hartmann-Shack wavefront sensor with identical parameters to
that modeled here, in combination with a Mirao 52-d deformable
mirror from Imagine Eyes. A model eye was used, consisting of
a + 20 D lens positioned 3 mm in front of an adjustable aperture
(the pupil). A piece of white paper acted as the retina.

To sample the large number of wavefront shapes achievable
with the deformable mirror, we systematically applied random
voltage signals to the 52 actuators. The random commands were
generated on the range –1 to + 1 (the maximum signal possible
to send to the mirror), scaled by some scaling factor. Scaling
factors from 0.05 to 0.50 were used, in increments of 0.05. This
means that in the highest amplitude condition it was possible
for neighboring actuators to have a difference in voltage of
1.0. For each scaling factor, 100 random sets were generated
and applied to the mirror actuators, and the resulting Hartmann-
Shack image was recorded. We therefore recorded 1000 separate
images resulting from the mirror undergoing various shapes and
amplitudes of deformation. Each image was processed in the
same way as for the preceding modeling (a higher threshold was
used due to the presence of noise in the real images) and analyzed

with each of the algorithms. In the case of the Zernike algorithm,
it is critical to know the location of the input beam; to measure
this we placed a white card in the pupil plane and estimated
the centre of the ∼1.2-mm-diam spot that was produced on the
wavefront sensor CCD.

Since in this real system case we did not have definitive
knowledge of spot-lenslet correspondence, we relied on the in-
ternal error checking of each algorithm to reject spots that were
probably not correctly assigned. This is a possible source of er-
ror, although each of the algorithms used rejects spots in a similar
and generally sensible way (primarily by comparing predicted
positions to found positions and rejecting those that are greater
than a certain number of pixels away). Relying on this inter-
nal error checking, we arbitrarily defined failure as 5 or more
spots being missed of the ∼280 spots across the 7.5-mm pupil.
This criterion is slightly more lax than the single-spot criterion
used in the preceding computational modeling, but it seemed
necessary to account for occasional poorly sensed spots.

4 Results and Discussion
The results for the computational modeling are graphed in Fig. 2
under the various conditions already described for defocus,
horizontal-vertical astigmatism, vertical coma, and spherical
aberration. Data for the various aberration types were stacked
to aid visualization. All units are normalized Zernike coeffi-
cients in micrometers, in accordance with reporting standards
for vision science,16 and were fit over a 6.0-mm pupil. Coeffi-
cients are all negative in sign (e.g., the defocus term represents a
myopic eye).

Fig. 2 Range for each Hartmann-Shack sorting algorithm for various types of aberration, expressed in units of (negative) normalized Zernike
coefficients for a 6.0-mm pupil. Astigmatism is horizontal-vertical and coma is vertical. In the “decentered pupil” case, there was a 0.2-mm error in
assessment of the pupil center; in the “decentered beam” case there was an uncompensated 1.2-mm decentration of the input beam to the eye; in
the “spots missing” case there were 10 randomly chosen spots missing from across the pupil.
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For the well-centered “normal” configuration, the ranges of
each iterative algorithm were greatly improved over the conven-
tional algorithm and were generally comparable to each other.
As predicted, the B-spline algorithm showed the greatest range.
Up to 16.6 D of defocus and 32.9 D of astigmatism could be
accurately measured with this algorithm and our chosen lenslet
array. Compared to the B-spline algorithm, the spiral algorithm
showed identical range for defocus and coma, but 15 to 17%
less range for astigmatism and spherical aberration. The Zernike
algorithm showed equivalent range for coma and spherical aber-
ration, but 16 to 18% less range for defocus and astigmatism,
again compared to the B-spline algorithm.

The robustness of each algorithm to common sources of
error is also explored in Fig. 2. We can see that none of the
algorithms suffered a significant decrease in range when random
spots were missing in the pupil; despite their serial nature, there
were no downstream errors for poorly sensed spots. This is by
virtue of the large number of spots considered when making
each prediction for the B-spline and Zernike algorithms, and by
the use of the “dummy” grid for the spiral algorithm. In fact,
the B-spline and spiral algorithms were also highly robust in
the presence of the other error types considered; range decrease
was no more than 6 to 10% across all of the error conditions
for these two algorithms. The Zernike algorithm was not robust
against decentrations in the estimated position of either the pupil
or the input beam, making it advisable when using this method
to use a calibrated scale when decentering the input beam,10 and
possibly a separate pupil monitor if maximal range is desired.

It is of interest to know whether the range limits shown
here could be improved on with some other as yet undiscov-
ered sorting algorithm, or whether the obtained limits were a
result of physical spot overlap (i.e., limited by image process-
ing difficulties rather than the sorting algorithm). To test this,
we repeated the range measurements by using the predicted
spot locations from geometric optics rather than relying on the
MATLAB centroiding functions. The range for the B-spline al-
gorithm increased by 22 to 42%, depending on the aberration
type, confirming that for the isolated aberrations considered here
this algorithm surpassed the practical limit set by the overlap-
ping of spots. We can therefore confidently state that any future
algorithm would not provide a greater range. For reference, the
Zernike algorithm showed minimal improvement in range un-
der the same conditions, and the spiral algorithm showed an
improvement only for defocus. This means that as far as a pure
sorting task is concerned the B-spline algorithm is superior to
the other two algorithms, but that this advantage is diminished
under practical conditions due to spot overlap.

It is also important to consider the range results in the con-
text of the maximum levels of each type of aberration that the
algorithm must be able to measure. For ocular aberrometry it
is desirable to be able to measure as many eyes in the popu-
lation as possible, both on- and off-axis. For astigmatism, the
ranges given here are equivalent to ∼30 D for the improved
algorithms (the conversion factor between Zernike coefficient
and ophthalmic prescription is ∼0.77 for defocus and ∼1.09
for astigmatism at a pupil size of 6.0 mm). This is far in ex-
cess of any case of astigmatism ever reported to our knowledge,
even in eyes with severe corneal distortion17 or far away from
the optical axis.18 The defocus results for the improved algo-
rithms correspond to ∼13.3 to 16.6 D of refractive error. Even

allowing for a ∼2-D variation over the central 40 deg of the
visual field,18 this is still sufficient to account for >99.9% of the
normal human eye population. Since we have already shown that
the improved algorithms operate at or close to the hard limit set
by the physical overlap of spots, a larger range would require a
lenslet array with a shorter focal length (or some other hardware
alteration as discussed in Sec. 1). The range for defocus for each
algorithm can be adjusted as a linear function of the focal length
of the lenslet array used. For example, if a lenslet array with
half the focal length were used instead, a roughly equivalent
spot pattern would result only when twice as much defocus is
present. This is because the wavefront slope, and therefore the
spot displacement, for pure defocus varies linearly in x and y
across the pupil.

Spherical aberration is very rarely greater than ∼0.4 μm over
a 6.0-mm pupil in the normal population,19 and changes little
off-axis,18 although it may reach ∼1.0 μm in eyes suffering
from corneal pathology.17 This is well within range of the 2.4
to 2.9 μm shown for the improved algorithms here. Coma is
very rarely greater than ∼0.5 μm in the normal population19

and can change by as much as ∼0.6 μm over the central 40 deg
of the visual field,18 which is similarly well within the improved
ranges seen here of ∼4.6 to 4.8 μm. However, keratoconic eyes
have been reported to feature up to ∼3.6 μm of vertical coma,17

which may give any of the algorithms considered here difficulty
when combined with other aberration types, due to potential
spot overlap. If it were desirable to accommodate a keratoconic

Fig. 3 Example wavefront from the set of 1000 randomly generated
wavefronts. This wavefront was generated with the maximum ampli-
tude considered here. Large circles indicate spots that were correctly
located according to the internal error checking of each algorithm. We
can see that in this specific example, the spiral algorithm was able to
correctly sort the spots; the other algorithms show varying amounts
of error.
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Fig. 4 Average failure rate for the randomly generated wavefronts. Error bars indicate standard error of the mean. We can see that the spiral and
B-spline algorithms were most robust to the irregular aberrations that were generated; the Zernike algorithm was significantly less so, and the
conventional algorithm was significantly worse again.

population of eyes, a lenslet array with a shorter focal length
may be desirable.

The preceding results quantify the performance of each algo-
rithm for particular aberration types in isolation. We next used
a real adaptive optics system with a model eye to simulate a
worse-case scenario—randomized, irregular wavefronts com-
posed of many different types of aberration. The amplitude of
the random wavefronts was varied systematically by altering
the allowed amplitude of the commands applied to the de-
formable mirror, with 100 different wavefronts generated for
each of the 10 amplitude conditions. Figure 3 shows an example
Hartmann-Shack image that was generated using the maximum
amplitude, and illustrates the attempts of each algorithm to an-
alyze it. Closed symbols denote spot positions located by the
image processing routine. Circles indicate spots that a given al-
gorithm judged were unambiguously assigned to a lenslet. In
this particular example, the spiral algorithm did not make any
errors, the B-spline made a small number of errors, and the
conventional and Zernike algorithms made a large number of
errors.

Figure 4 plots the average rate of failure for each algorithm
as a function of the maximum allowed actuator amplitude. The
failure criterion was met if 5 or more spots (of the ∼280 in
the pupil) were missed. The error bars indicate standard error of
the mean.

The spiral and B-spline algorithms achieved similar results
over much of the amplitude range tested; the spiral algorithm
was superior at the highest end of the scale. This is probably
because the spiral algorithm is far more local in nature and so
is somewhat better suited to handle large wavefront deviations
that are not well correlated with deviations in other parts of the
pupil (the wavefront measured in Fig. 3 is a good example of
this). There is a large difference evident between the Zernike
algorithm and the spiral and B-spline algorithms. This is likely
because the randomly generated mirror shapes would not of-

ten have been well represented by the Zernike expansion. Note
that this algorithm still performed significantly better than the
conventional algorithm, and that the high-amplitude, irregular
aberrations produced here are unlikely to be seen in eyes without
significant disease affecting the ocular media.

Finally, we report on the processing time for each algorithm.
Absolute processing times, of course, depend highly on the
computer hardware used. However, even the relative processing
times given here should be taken as a rough approximation, since
the MATLAB code for each algorithm has not necessarily been
optimized for speed. With that in mind, with 10 trials for the
well-centered case on an Intel Core i7 2.66 GHz processor with
2 GB RAM and using a 17×17 lenslet array (i.e., detector size of
6.8 mm), we obtained processing times of 2.3, 4.2, 28, and 41 ms
for the conventional, spiral, Zernike, and B-spline algorithms,
respectively. This excluded components of each algorithm that
involved the initialization of variables, which would optimally
be performed only once in a session. The spiral algorithm was
faster than the other improved algorithms, as predicted due to the
maximally simplistic calculations involved in predicting each
spot location.

However, the magnitude of temporal variations in ocular
aberrations for a given retinal point are generally small and well
within the range of the conventional algorithm. A fast frame
rate could therefore be achieved by employing a single iteration
of any improved algorithm and feeding these results into the
conventional algorithm to guide its search. This approach offers
a clear benefit to frame rate because of the unique ability of the
conventional algorithm to take advantage of parallel processing
and so achieve even greater speed than reported here.

5 Conclusion
The range of aberrometry was similar for the improved algo-
rithms considered here, despite the differences in processing
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complexity. These algorithms approached the physical limits to
the achievable range imposed by the overlap of Hartmann-Shack
spots. The results presented here show that each algorithm is
more than sufficient to accurately characterize the vast majority
of human eye aberration, both on- and off-axis, with our cho-
sen lenslet array parameters. The B-spline algorithm produced
a high range and was highly robust to error, but was an order of
magnitude slower than simpler algorithms. The Zernike algo-
rithm was somewhat faster, but care must be taken to accurately
estimate decentration of the pupil and of the input beam, and per-
formance is noticeably reduced for wavefronts that are not well
approximated by the Zernike expansion. The spiral algorithm
was highly robust to error and to irregular aberration types. It
was also 7 to 10 times faster than the other improved algorithms,
affording the potential for real-time analysis. Real-time analysis
for ocular aberrometry could alternatively be achieved by em-
ploying only a single initial iteration of any improved algorithm
to inform subsequent iterations of the conventional algorithm,
since the vast majority of human eye aberration is static.
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