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Abstract. Diabetic retinopathy is a major cause of blindness, and its earliest signs include damage to the blood
vessels and the formation of lesions in the retina. Automated detection and grading of hard exudates from the
color fundus image is a critical step in the automated screening system for diabetic retinopathy. We propose novel
methods for the detection and grading of hard exudates and the main retinal structures. For exudate detection,
a novel approach based on coarse-to-fine strategy and a new image-splitting method are proposed with overall
sensitivity of 93.2% and positive predictive value of 83.7% at the pixel level. The average sensitivity of the blood
vessel detection is 85%, and the success rate of fovea localization is 100%. For exudate grading, a polar fovea
coordinate system is adopted in accordance with medical criteria. Because of its competitive performance and
ability to deal efficiently with images of variable quality, the proposed technique offers promising and efficient
performance as part of an automated screening system for diabetic retinopathy. C©2011 Society of Photo-Optical Instrumentation
Engineers (SPIE). [DOI: 10.1117/1.3643719]
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1 Introduction
The most serious eye condition associated with diabetes af-
fects, among other things, the retinal structures. This condition
is called diabetic retinopathy (DR) and is the main cause of vi-
sual impairment and usually affects both eyes. Early detection of
DR is essential for the prevention of visual loss. In some people
with DR, retinal blood vessels may swell and leak fluid while in
others, abnormal new blood vessels grow on the surface of the
retina. Hard exudates (HEs), which are lipid leaks from blood
vessels of abnormal retinas, are one of the most commonly oc-
curring lesions in the early stages of DR.1, 2 Figure 1 shows a
retinal fundus image with the main structures and HEs.

Such lesions are normally detected and graded manually
from retinal fundus images in intensive and time-consuming
processes by clinicians. Computer-aided HE detection and grad-
ing from the retinal fundus images could facilitate immediate
and accurate diagnosis. Thus, the main aim of this work is to de-
velop a computer-aided system as a part of a medical screening
scheme for evaluating the condition of the retina from the color
fundus image.

Several researchers have proposed different techniques for
HE detection, such as Osareh et al.3 who used fuzzy C-means
for region segmentation followed by an artificial neural network
technique to classify the segmented regions in terms of lesion-
based classification. This method works well in Luv color space,
but the accuracy in the case of nonuniform illumination is low.
Walter et al.4 proposed an approach based on morphological
reconstruction techniques and texture analysis to detect exu-
dates. The results of this technique are encouraging, but the
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distinction between hard and soft exudates is not possible with
this technique. Sánchez et al.5 proposed a method based on
mixture models to threshold images in order to separate exu-
dates from the background. A limitation of this method is that
it sometimes misses faint exudates. Garcia et al.6 employed a
combination of local and global thresholding for exudate seg-
mentation and investigated three neural network classifiers to
classify HEs, whereas Sopharak et al.7 employed naive Bayes
and support vector machine classifiers for feature selection and
exudate classification, but both classifiers occasionally fail to
detect faint exudates. A method based on mathematical mor-
phology for exudate detection was proposed by Welfer et al.8

with encouraging performance in terms of specificity but with
low positive predictive value (PPV). Kose et al.9 proposed a rela-
tively simple adaptive region growing method with background
correction for bright-lesion detection and a background-based
method for dark-lesion detection.

In this paper, we present an automated approach for the de-
tection of retinal structures and HEs from color fundus images.
Grading is achieved by first establishing a coordinate system
centered at the fovea. This necessitates the prior detection of
such fundus landmarks as the blood vessels, optic disk, and
fovea. A morphological multiscale technique is proposed for
the detection of the blood vessels, and the Hough transform
is employed to localize the optic disk. The fovea is localized
based on its features and geometric relation with the other reti-
nal structures. For HE detection, a novel coarse-to-fine strategy
is proposed.

This paper is organized as follows: image preprocessing,
detection of retinal structures, and HE detection and grading are
presented in Sec. 2. Section 3 introduces the databases used,
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Fig. 1 Fundus image with the main structures of the retina and HEs.

experimental results, performance evaluation, and discussion.
Conclusions are presented in Sec. 4.

2 Methods
2.1 Image Preprocessing
Like most camera-acquired images, retinal fundus images suf-
fer from nonuniform illumination and variable visual contrast.
Accordingly, preprocessing operations aim to prepare the im-
age with better properties using shade correction and contrast
enhancement. The RGB and HSI color spaces were compared,
and the RGB space was found to be more suitable for HE detec-
tion. A color fundus image is provided as the input; it includes
color information for each pixel in RGB color space. In this
work, the image is initially resized to 640×480 pixels so that
the proposed method could be applied to a variety of databases.
The green channel component (G) is used for the detection of
retinal structures and HEs because their contrast is greatest in
this channel.

To correct for the nonuniform illumination of the image, a
morphological top hat operation was used. This is based on
producing a reasonable estimate of the background across G us-
ing morphological opening and closing operations with a large-
enough structuring element to avoid entirely fitting within small
candidate regions. To avoid unexpected bright areas at the bor-
ders and around the optic disk, alternating sequential opening
and closing is used to calculate the approximation of the back-
ground E(G) as follows:4

E(G) = γ nς1 [ψnς1 (. . . {γ 1ς1 [ψ1ς1 (G)]})], (1)

where γ refers to opening operator, ψ refers to closing operator,
ς1 refers to structuring element, and n is the number of repeti-
tions. Based on many experimental tests, we found that selecting
ς1 as a disk-shaped structuring element with fixed radius of 3
pixels and n = 8 can give good shade correction results. E(G)
is then subtracted from G to produce a new image (G′) with a
reasonably uniform background.

To enhance the contrast of image features, we employed a
fuzzy enhancement algorithm, called minimum of fuzziness.10

The selection of this algorithm is based on computational ef-

ficiency expense. For clarity and immediate relevance, some
aspects are summarized below. The gray levels of G′ are “fuzzi-
fied” by the membership function as follows:

μ = F(G ′) =
[

1 + G ′
max − G ′

Fd

]−Fe

, (2)

where G ′
max is the maximum gray level value and parameters

Fe and Fd denote the exponential and denominational fuzzifiers,
respectively. Fe is commonly taken up to 2 and Fd is calculated
with respect to the transition point of the membership function
as follows:

Fd = G ′ − Xc

21/Fe − 1
, (3)

where Xc is the crossover point, suitably selected from the image
plane, where the brightness distribution is used as a measure of
image quality. To modify the membership values, the intensifi-
cation operator is applied to the membership function as follows:

T1(μ) = μ′ =
{

2[μ]2 0 ≤ μ ≤ 0.5

1 − 2[1 − μ]2 0.5 ≤ μ ≤ 1
. (4)

Successive application of the nonlinear transformation (Tr)
is used to enhance the membership function as follows:

Tr (μ) = T1{Tr−1(μ)} r = 1, 2, . . . . (5)

The parameter r refers to the number of iterations and allows
the user to set an appropriate level of enhancement. A new
gray level, as a preprocessed image (Gp), can be generated from
the modified membership values using the inverse membership
function as follows:

G p = F−1(μ′) = G ′
max − Fd

(
(μ′)

−1
Fe − 1

)
, (6)

Figure 2(a) shows the green channel component image, and
Fig. 2(b) shows the image after the enhancement of luminosity
and contrast between the background and image features.

2.2 Blood Vessel Detection
Information provided by blood vessels can serve to localize
the optic disk and fovea as well as provide vital diagnosis and
follow-up information. Retinal blood vessels appear as dark
line structures with different ranges of diameter, length, and
orientation. Consequently, the multiscale approach is suitable to
isolate features of blood vessels from the background.

Detection of linear structures using multiscale techniques
have been attempted by some researchers, such as Gelman
et al.11 Osareh and Shadgar,12 and Mendonca and Campilho.13

These systems work well on predefined image specifications,
but they are not able to provide accurate outcomes when image
quality is variable. Consequently, we propose a computation-
ally fast method by applying a morphological closing opera-
tion to the preprocessed image, twice, with two different scales
of disk-shaped structuring elements ς2 and ς3. On the basis
of many experiments on different sizes and shapes of struc-
tural elements, we found (for the image resolution adopted)
that the most suitable radii for the larger and smaller disk-
shaped structure elements are 8 and 2 pixels, respectively. Then,
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Fig. 2 Preprocessing and retinal structure results: (a) Green channel image, (b) result of preprocessing, (c) initial blood vessel image, (d) blood vessel
image, (e) initial boundary of the optic disk, (f) localization result of the optic disk, (g) region of interest for fovea localization, and (h) localization
result of the fovea.

the closed image with the smaller structuring element is sub-
tracted from the larger one followed by thresholding to ob-
tain an initial blood vessel image (Bv), shown in Fig. 2(c), as
follows:

Bv = THα1{ψς2 (Gp) − ψς3 (Gp)} , (7)

where TH is a thresholding operator, α1 is a threshold value,
and ψ is a closing operator. Empirically, it was found that the
appropriate threshold is ∼90% of the maximal intensity. The
idea behind this approach is that the dilation process expands
bright regions and shrinks small dark regions, and the subsequent
erosion operator will shrink the dilated bright regions to their
original sizes, while the shrunk dark regions do not respond to
the erosion operation. Thus, a subtraction process between the
two resulting images will highlight dark regions, including the
blood vessels.

Because of the variability of the condition and quality of
images, the initial blood vessel image may include other types
of dark regions. Discrimination of the true blood vessels from
these other dark regions was achieved using a classification
technique based on regional features, such as major axis length,
minor axis length, aspect ratio (ratio of major axis length to
minor axis length), area, perimeter, circularity, and eccentricity.
A series of experiments on feature selection and vessel classi-
fication were carried out using a rule-based system, based on
a number of quantities and logical rules. A rule-based system
consists of if-then rules, which are used to formulate the condi-
tional statements that comprise the complete knowledge base. In
our work, these rules are empirically derived from the training
data by a series of comparisons between many pairs of features
from the feature vector and looking for functions of every two
features. A number of such rules based on empirical constraint
criteria were incorporated into the image-analysis and quantifi-
cation program. These operations lead to an effective classifier.
The final binary blood vessel image is shown in Fig. 2(d), clearly
showing a reduction in the number of false-positive blood vessel
regions.

2.3 Optic Disk Localization
The location and size of the optic disk are important because
they can aid in the location of the fovea, which itself is important
for grading the severity of retinopathy. Moreover, the bright
optic disk normally exhibits similar visual features to HEs, often
resulting in misclassification. Thus, optic-disk localization is
important to prevent it being detected as an exudate during
grading.

Several researchers have attempted the localization of the
optic disk, such as can be found in Li and Chutatate,14 who
used a technique of principal component analysis, which has
the advantage of the top-down strategy to extract the common
characteristics among training images. Niemeijer et al.15 used
a KNN regressor to predict the distance in pixels in the image
to the object of interest at any given location based on a set of
features measured at that location. Because it is easy to imple-
ment and computationally fast, the method described by Sekhar
et al.16 was followed in this work. A circular region of interest
is used to find the contour of the optic disk. The region of in-
terest is computed using the magnitude gradient of the image
by morphological closing and opening operations. The image
is reconstructed using morphological reconstruction, and then
the gradient is calculated by subtracting the eroded image from
the dilated one. The boundary of the optic disk and its center
are determined by applying the circular Hough transform to the
gradient image as shown in Fig. 2(e). The result of optic disk
localization is illustrated in Fig. 2(f).

2.4 Fovea Localization
Because the fovea contains the largest concentration of pho-
toreceptor cells, it is the most specialized part of the retina.
Determining the location of the fovea is therefore essential to
grade the severity of lesions. In other words, the detection and
diagnosis of lesions can provide a more precise and meaningful
evaluation of risk when their spatial locations are described with
reference to the location of the fovea. Several techniques have
been proposed to localize the fovea using variable strategies,
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such as can be found in Sinthanayothin et al.,17 who proposed
a method to identify the fovea location using matching corre-
lation together with characteristics typical of a fovea. In many
retinal images, the fovea may be partially obscured by lesions or
artifacts, or subject to nonuniform illumination or other distor-
tions. Li and Chutatape18 and Welfer et al.19 attempt to exploit
the known anatomy of the relative locations of the other retinal
structures to localize the fovea center.

In this paper, the fovea is located by defining a candidate
region of interest with reference to the established retinal land-
marks, followed by a shape and intensity search. The two main
retinal blood vessels (known as the arcade), together, can be
approximated as a parabola, and in most retinal images, the
fovea is located within this arcade. The position and shape of
this parabola is estimated using a combination of the Hough
transform and linear least-squares fitting.18

On the basis of the parabola information, the candidate region
for the fovea is defined as a circle with a diameter of twice that
of the optic disk (DD) along the main axis of fitted parabola
and centered at a distance of 2DD from the vertex. Although
the fovea is approximately equal in size to the optic disk,20 we
select the region of interest four times as large to ensure that
all fovea pixels are within this region. The threshold value is
calculated within this region in such a way that the segmented
area has the same area as the optic disk. In the case of obscured
foveal features due to any of the aforementioned reasons, the
method may fail in finding a suitable threshold value, in which
case the fovea is approximated as a circle of diameter DD at the
center of the candidate region, as illustrated in Fig. 2(g). The
result of fovea localization is shown in Fig. 2(h).

2.5 Detection of Hard Exudates
Variations in contrast and brightness inside most retinal images
make it difficult to distinguish HEs from other bright features
in the image. Fortunately, most bright regions due to HEs are
characterized by having distinct borders in different degrees,

depending on the degree of retinopathy, while bright regions
due to light reflection do not.4 Based on this, a novel two-step
algorithm for exudate detection is proposed as follows:

1. Coarse exudate segmentation to outline bright candidates
with distinct borders

2. Fine exudate segmentation to fine-tune the result of
coarse exudate segmentation

2.5.1 Coarse hard exudate segmentation

To delimit HE candidates as regions of interest, the distinctness
of their borders is exploited. To achieve this, the standard devi-
ation around each pixel is calculated to get the local variation
image. To avoid detecting the high contrast blood vessels and
the optic disk as HEs, they must be eliminated before applying
the local variation operator. To eliminate the optic disk, its lo-
cation is masked with a color equal to the average background
intensity, as shown in Fig. 3(a).

The blood vessels are eliminated by applying a morpholog-
ical closing operator with a structuring element larger than the
maximal width of the blood vessels so that all vessels get closed.
Experimentation with different sizes and shapes of the structural
element has shown that a disk (ς4) of radius 8 pixels is most suit-
able for images of the resolution adopted. The resulting image
(G1) is shown in Fig. 3(b),

G1 = ψς4 (Gp) . (8)

The local variation operator was applied on G1 and the re-
sulting image is denoted by G2 as follows:

G2(x) = 1

N − 1

∑
i∈w(x)

[G1(i) − μ(x)]2 , (9)

where x is a set of all pixels in a subwindow w(x) of N pixels
and μ(x) is the mean value of G1(i). The selection of win-
dow size is based on the necessary balance between the most

Fig. 3 Steps of HE detection: (a) Preprocessed image after optic disk removal, (b) result of blood vessel removal, (c) result after applying local
variation, thresholding and morphological operations, (d) result after classification, (e) combination of images from (a) and (d), and (f) final fine HE
segmentation.
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Table 1 Rules for the rule-based classifier to discriminate true coarse HEs. “rows” refers to the horizontal
size of the image (in pixels), Iavg is the average intensity of the whole image and σG is the standard
deviation of the whole image.

Features A C = 4πA/p2 R = L/W L Im Std

Rules >25 ≥0.5 <2 <(rows/3) >1.2Iavg <0.8σG

informative performance measures, namely, the sensitivity and
PPV, as discussed in Sec. 4. A window size of 9×9 was found
most appropriate for the images studied here. In order to refine
G1 from artifacts and objects that have low local variation (soft
exudates), an automatic Otsu thresholding was applied. Then, a
morphological dilation operator with a disk-shaped structuring
element (ς5) of radius 3 pixels was applied to the thresholded
image to ensure that the majority of neighboring pixels are in-
cluded in the candidate regions,

G3 = Dς5 [THα2 (G2)], (10)

where TH is a thresholding operator with automatic level α2 and
D is a dilation operator.

Figure 3(c) illustrates the result of the first phase of coarse
segmentation, and although it has been successful at isolating
the HEs, some artifacts remain due to residual contrasted ves-
sels and bright regions around the retina and masked optic disk.
Coarse HEs can be distinguished by many features, such as
color, shape, size, and texture. We have tried to keep a reason-
able and adequate number of features because misclassification
probability and classifier complexity tend to increase with the
number of features. A set of eight binary and gray-scale repre-
sentation features are extracted for every candidate to be used
as input to a rule-based classifier. The binary features are area
(A), perimeter (P), circularity (C) (measure of roundness from
perimeter and area), length (L), width (W), and aspect ration
(R) (ratio of length to width). The gray-scale features are mean
intensity (Im) and standard deviation (Std). Empirically, the rules
listed in Table 1 were found most suitable for coarse HE dis-
crimination. The result of coarse HE detection after applying
the rule-based classifier is shown in Fig. 3(d).

2.5.2 Fine hard exudate segmentation

Fine image segmentation aims to precisely extract or threshold
objects from the previously delimited areas in the coarsely seg-
mented image. In this stage, an algorithm based on region-based
segmentation is applied only to the coarsely detected areas to
fine-tune them. The idea behind using two stages of HE seg-
mentation is to achieve a reasonable balance between the per-
formance measures, namely, the sensitivity and PPV, and to trade
off easily between them on the basis of medical requirements.

Algorithm motivation. A pure splitting algorithm is proposed
here that achieves efficient region-based segmentation in a man-
ner superior to pure merging and split-and-merge approaches.
In the literature, a pure splitting algorithm is normally carried
out by considering the entire image as an initial segmentation
followed by successive splitting into quarters, and then a ho-
mogeneity test is performed to decide further splitting if the
segment is not homogeneous enough. Although it is efficient
and accurate, the pure splitting algorithm has a practical draw-

back, namely, the assumption that the image information is
equally distributed throughout the image, and this may result
in oversegmentation.21 To remedy this drawback, a novel pure
splitting method based on successively pure splitting the image
was proposed by Jaafar et al.22 In this paper, a newly developed
technique is proposed on the basis of successive pure image
splitting and introducing a novel procedure [referred to as par-
titioning regions of interest (PROI)]. This is based on assigning
regions of interest inside the image in advance to be used later
as constraints in the decision of splitting limit.

Proposed partitioning regions of interest procedure. The
coarse HE image G3 is applied to the preprocessed image Gp by
means of a morphological AND operation, reducing all back-
ground pixels to zero. Regions of the other pixels in the new
image (G4) are called region-of-interest (ROI) zones. The new
image is shown in Fig. 3(e).

The PROI procedure is presented as follows:

1. The image G4 is viewed as the initial segmentation.

2. The image G4 is partitioned into four subregions called
nodes.

3. All nodes are tested to appoint two types of nodes: infor-
mation nodes represented by resulting nodes, which con-
tain element(s) from the ROI zone(s), and empty nodes
represented by resulting nodes, which do not contain any
element from ROI zone(s).

4. Every information node is evaluated to determine
whether or not it needs to be divided in accordance with
predefined homogeneity criteria on the basis of standard
deviation and mean intensity.

5. Steps 3 and 4 are successively iterated only for the new
nodes until achieving the predefined criteria (explained
in the next paragraph) or a size threshold (ε).

The homogeneity test is an essential step to any region-based
segmentation to avoid over or under segmentation. For this, the
method described by Chen et al.23 was followed on the basis
of feature analysis. In this method, histogram analysis is used
for analyzing the characteristics of regions and mapping the
frequencies of the desired features, such as gray-level distribu-
tion and local texture measures. If the histogram consists of a
number of distinct modes, then the region is nonhomogeneous
and needs to be segmented, and if the histogram is single mode,
then the region is homogeneous. The threshold ε in the proposed
PROI procedure is specified in such a way that the smallest node
should not be less than 1/64 of the whole image area.

Segmentation. Thresholding is widely used to segment dis-
tinct modes in a histogram by determining a set of threshold
values THk ∈ TH, k = 0,1, . . . , m – 1, where m is the number of

Journal of Biomedical Optics November 2011 � Vol. 16(11)116001-5



Jaafar, Nandi, and Al-Nuaimy: Decision support system for the detection and grading of hard exudates...

Fig. 4 Fovea coordinate system for a right eye.

distinct modes in the histogram. In our work, the image is divided
into homogeneous subimages, thus being with the single mode
in the histogram. Accordingly, a global thresholding can now
be applied to each individual node to successfully segment the
required objects. For this, a histogram-based thresholding was
applied to all nodes separately. Let a partition Q of the image
be defined as a subset of G4 with respect to uniform illumi-
nation criterion. Hence running a histogram-based thresholding
throughout all the nodes with automatic threshold value α3 will
produce a new binary image (fine HE image) represented by G5

as follows:

G5 =
∑
l∈k

THα3(Ql ) , (11)

where k is the number of the nodes, l is the number of information
nodes. Fine HE segmentation as a final detection result is shown
in Fig. 3(f).

2.6 Grading of Hard Exudates
In addition to size and number, a description of spatial locations
of detected HEs can provide a more precise evaluation of clinical
risk. Ophthalmologists usually use a polar coordinate system,
centered either at the optic disk or the fovea, to estimate the
grade of severity of HEs with a laborious and time-consuming
process. To safely reduce the burden of manual grading, we
adopt a foveal coordinate system (FCS) centered at the fovea,
the center of vision, to assess the severity of HEs on the patient’s
vision. According to the brief description presented by Li and
Chutatape18 and information provided by a medical information
source,20 the retinal image is divided into ten fields. as illus-
trated in Fig. 4. The center of the fovea is used as the center
of three circles of radii 0.33DD, 1DD, and 2DD. Four coordi-
nates are used to divide each of the two bigger circles into four
fields.

After detection of HEs, their spatial locations are calculated
throughout the fields of FCS to enable clinicians to assess the
degree of harm to the vision, where this increases with HE
proximity to the inner fields and center. The result of this stage
is represented by a table of the ten fields with numbers of HE
pixels in each field to be then evaluated by the clinician.

3 Results and Discussion
3.1 Materials
A database of color retinal images, known as DIARETDB0, has
been made publicly available by Kauppi et al.24 This consists of
130 color images of which 110 contain different signs of DR ac-
cording to the evaluation of clinical experts. These were captured
at a 50-deg field of view and a resolution of 1500×1152 pixels.
A set of ground truths for the different types of lesions, such
as the microaneurysms, hemorrhages, and HEs that are reported
by experts, are provided as a description of visual appearance of
the DR findings with this database. Another database by Kauppi
et al.,25 known as the DIARETDB1 database, is also publicly
available. This consists of 89 further images of which 38 con-
tain HEs. These images have the same specifications of those
in DIARETDB0. Images of HEs manually annotated by human
experts are provided with this database, which can be used in
testing the proposed method.

A set of 30 images, of which 17 images contain HEs, from
the Messidor database,4 were also used in this paper. These
images are captured at a 45-deg field of view with a size of
640×480 pixels. We have selected these 30 images among all
images of the Messidor database because they are available with
their ground truth. Thus, it is possible to use them for validation
purposes.

3.2 Performance Calculation
The proposed methods for blood vessel detection, fovea lo-
calization, and HE detection were trained using a set of 130
images from the DIARETDB0. Satisfactory evaluation can be
achieved when the testing images are from another source than
the training source. Thus, a set of 119 images (89 from the DI-
ARETDB1 database and 30 from the Messidor database) with
their ground truth images were used to test the performance of
the proposed method using two criteria: pixel-based calculation
and image-based classification. In the pixel-based calculation,
the performance is assessed based on pixel number of exudates
correctly detected.26 While in the image-based classification,
the algorithm is assessed based on its ability to classify an im-
age without HEs as normal image or with HEs as a pathological
image.26 In pixel-based calculation, four types of pixels are con-
sidered as follows: true positives (TP), false positives (FP), false
negatives (FN), and true negatives (TN). These quantities were
computed for each individual image to measure the following
performance measures:

Sensitivity = TP

TP + FN
, (12)

Specificity = TN

TN + FP
, (13)

Accuracy = TP + TN

TP + FP + TN + FN
, (14)

Positive Preductive Value = TP

TP + FP
. (15)

In terms of pixel basis, we have achieved, for HE detection,
an average sensitivity of 93.2%, specificity of 99.3%, accuracy
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Fig. 5 ROC curves about influence of threshold parameters on performance: (a) Influence of the threshold α2 and α3, separately, and (b) influence
of the threshold α2 and α3 together.

of 99.4%, and PPV of 83.7%. To assess the ability of auto-
mated “HEs/no HEs” grading, the set of 119 images were used
to evaluate the proposed method at image-based classification
and the average sensitivity and specificity were 98.9 and 91%,
respectively. In image-based classification, the sensitivity refers
to the ratio of images correctly detected as abnormal from the
whole abnormal images, while specificity refers to the ratio of
images correctly detected as normal from the whole set of nor-
mal images. With respect to the detection of retinal structure, we
achieved an average sensitivity of 85% and specificity of 90%
for the detection of blood vessels and an average success rate of
100% for the fovea localization.

3.3 Influence of Parameters
In practical application, some error in the full automatic thresh-
olding is inevitable. Hence, the disparity between the actual
thresholding results and the ideal results (ground truth) can be
used to enhance the performance of the algorithms. To do so,
an intervention on some parameters used in our work has been
tried to study their influence on the performance measures.

The number of true negatives that are correctly identified as
non-HEs by both the grader and proposed method is the major
number of image pixels; thus, the specificity and accuracy in
pixel-based calculation are always near 99%. Hence, they are
not very meaningful for the purposes of evaluation or compari-
son. Because the sensitivity and PPV are the most informative
measures in the performance evaluation in the pixel-based cal-
culation, these were used as the basis of assessment of parameter
influence on performance. Several experiments have been car-
ried out on parameters such as the window size w and the coarse
and fine thresholds α2 and α3. Experimental results show that,
as the window size is increased, PPV is increased but at the ex-
pense of the sensitivity, because the smaller HEs are more likely
to be missed.

From these experimental results, we conclude that α2 and
α3 have noticeable influence on the performance measures.
Figure 5(a) shows the receiver operating characteristics (ROC)
curves for the influence of each α2 and α3 separately on the
overall measures. From these curves, it can be seen that, for the
same rate of change, the threshold of the fine segmentation α3

has more positive and less negative influence on the sensitivity
and PPV than those of the coarse segmentation α2. The reason
for this is that a change in the coarse segmentation may sig-
nificantly increase undesired false positives or decrease wanted
true positives more than that in fine segmentation, and because
variation of fine segmentation is limited within the delimited
regions of interest (candidate regions). In other words, as the
coarse segmentation delimits regions of interest, a lack in these
regions can dramatically affect the number of true positives or
an extra increase in these regions may cause an extra increase
in false positives.

The influence of change in α2 and α3 together is also in-
vestigated, and the ROC performance curves are shown in
Fig. 5(b). The optimal percentage changes in the threshold α2

and/or α3 depend on the requested balance between the sensi-
tivity and PPV, and the decision for that is up to clinicians and
decided based on the diagnostic requirements.

Fig. 6 Comparison between two examples in terms of HE grading: (a,b)
HE distribution for example 1 by the proposed method and a clinician,
respectively, and (c,d) same as for (a) and (b) but with the images of
example 2.
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Table 2 Distribution of HEs in example 1 on the fields of the FCS.

FCS fields Inner fields (area in pixels)
Area from Center Superior Nasal Inferior Temporal

Proposed
method – – – 6 52

Ground-truth – – – – 55

FCS fields Outer fields (area in pixels)
Area from Far Temporal Superior Nasal Inferior Temporal

Proposed
method 136 885 – 61 3936

Ground-truth 82 642 – 43 2627

3.4 Importance of Hard Exudate Grading
Grading of HEs is of great importance to help doctors in making
their treatment decisions. To demonstrate the importance of the
grading operation, in Fig. 6 we present two examples of binary
HE detection results of our proposed method and the ground
truth for two retinal images superimposed on the green channel
of their corresponding images, where the FCS are overlaid.

The severity of lesions in a retina depends not only on their
size and number, but also on their spatial distribution through-
out the fields of the FCS. Hence, the visual inspection and the
pixel-based calculation, shown in Table 2 and illustrated in
Figs. 6(a) and 6(b) for example 1 and Table 3, and Figs. 6(c)
and 6(d) for example 2, indicate that, although the number and
size of HEs in example 1 exceed those in example 2, those in
example 2 are more harmful to vision and clinically in more ur-
gent need of treatment because of their spatial distribution and
proximity to the fovea.2, 20

Table 3 Distribution of HEs in example 2 on the fields of the FCS.

FCS fields Inner fields (area in pixels)
Area from Center Superior Nasal Inferior Temporal

Proposed
method 66 98 132 – –

Ground-truth 64 57 78 – –

FCS fields Outer fields (area in pixels)
Area from Far Temporal Superior Nasal Inferior Temporal

Proposed
method 65 – 587 183 86

Ground-truth 41 – 423 178 71

3.5 Performance Evaluation
A comparison between meaningful performance measures,
namely, the sensitivity and PPV (in pixel-based calculation)
and sensitivity and specificity (in image-based classification) for
the proposed and some related recent works is summarized in
Table 4, which shows that the proposed method detects HEs with
equal sensitivity in pixel-level calculation, and competitive sen-
sitivity and specificity in image-based classification. The main
drawback of the proposed method is that the PPV falls short of
that reported by some researchers. The reason for this is that
our method detects more false positives than the other meth-
ods used in comparison. In spite of this shortcoming in terms
of PPV, a more meaningful comparison should include the full
specifications of the proposed method, including the computa-
tional efficiency and the ability to deal with images of variable
quality. Although detection of faint HEs is not urgent for the pur-
pose of treatment, it is important for early tracking of patients;
however, the proposed method can detect faint HEs with better

Fig. 7 Visual comparison of proposed method results and their ground truths for five retinal images. (a–e) Five samples for the green channel
component of the original images, their results produced by the proposed method, and the clinician hand-labeled images.
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Table 4 Comparison of performance measures to the proposed
method and previous related works for HE detection (SE = sensitiv-
ity, SP = specificity).

Pixel-based Image-based
calculation classification

Method Test set SE% PPV% SE% SP%

Osareh et al.3 67 93 – 95 88.9

Walter et al.4 15 92.8 92.4 100 86.7

Sanchez et al.5 80 90.2 96.8 100 90

Garcia et al.6 67 87.6 83.5 100 90

Sopharak et al.7 39 92.3 53.1 – –

Our method 119 93.2 83.7 98.9 91

performance than the other works cited as demonstrated by sen-
sitivity performance numbers presented in Table 4. For more
information about the proposed method’s performance, five
samples of green channel images, their proposed method
results, and their ground truths are illustrated in Fig. 7.

4 Conclusions
This paper has presented a novel approach to the identification
of retinal structures and the detection of HEs from color fundus
images. A multiscale technique is presented for the detection of
blood vessels, and a morphological approach combined with a
circular Hough transform was used for localization of the optic
disk. The fovea was localized using its own unique features in
addition to its geometric relations with the other retinal struc-
tures. These are necessary steps for the HE detection and grading
technique proposed.

In HE detection, a method based on coarse-to-fine segmen-
tation is proposed where local variation, classification, and re-
fining operations were used. In the fine HE segmentation, a
new technique was developed using region-based segmenta-
tion. The contributions of the proposed method are attributed
to the utilization of mapping and quantifying HEs with respect
to the fovea, the center of vision. Moreover, the novel PROI-
constraint image-splitting technique implemented in coarse-to-
fine HE segmentation has enabled our method to detect HEs
with competitive performance and superior computational ef-
ficiency compared to related works. Future work will address
developments to this system by investigating other types of le-
sions including soft exudates to achieve a comprehensive study
of bright lesions associated with DR.
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