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Abstract. Fluorescence lifetime imaging microscopy (FLIM) plays a significant role in biological sciences, chem-
istry, and medical research. We propose a graphic processing unit (GPU) based FLIM analysis tool suitable for
high-speed, flexible time-domain FLIM applications. With a large number of parallel processors, GPUs can sig-
nificantly speed up lifetime calculations compared to CPU-OpenMP (parallel computing with multiple CPU cores)
based analysis. We demonstrate how to implement and optimize FLIM algorithms on GPUs for both iterative and
noniterative FLIM analysis algorithms. The implemented algorithms have been tested on both synthesized and
experimental FLIM data. The results show that at the same precision, the GPU analysis can be up to 24-fold
faster than its CPU-OpenMP counterpart. This means that even for high-precision but time-consuming iterative
FLIM algorithms, GPUs enable fast or even real-time analysis. © The Authors. Published by SPIE under a Creative Commons
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1 Introduction
Fluorescence lifetime imaging microscopy (FLIM) is a powerful
imaging technique that can not only locate fluorescent mole-
cules (fluorophores) but also provide images based on the tem-
poral decay rate of the fluorescence emitted from fluorophores.
In contrast to traditional intensity imaging, FLIM is insensitive
to the intensities of light sources and probe concentrations.1 As
lifetime characteristics of fluorophores are usually sensitive to
their environment, FLIM can image physiological parameters
such as pH, O2, Ca2+, Cl−, or temperature linked to diseases
or potential therapies. For example, FLIM has been combined
with Förster resonance energy transfer (FRET) techniques
(FLIM-FRET) for assessing drug efficacy and clearance in
tumors,2 cellular temperature in cancerous tissues under treat-
ments,3 and cerebral energy metabolism for understanding brain
functions.4

In order to monitor fast dynamic biological events, it is nec-
essary to build a high-speed or even real-time FLIM system.5–7

FLIM can operate in the time domain or frequency domain.8,9

Wide-field frequency-domain FLIM instruments are capable of
capturing phase images at a high frame rate, but the acquisition
will decrease if more than 10 phase images are required (which
usually happens in realistic laboratory scenarios), and accurate
analysis heavily relies on appropriate software.10 Moreover, if
there is more than one decay component in a fluorescence histo-
gram, excitations at multiple frequencies11 or at a single fre-
quency with a sufficiently narrow pulse (using higher-order
harmonic frequencies) are required,12 greatly reducing the

acquisition rate and increasing the system complexity. Time-
domain techniques, on the other hand, include gated camera13

and time-correlated single-photon counting (TCSPC) methods.
Due to superior temporal resolution and recent developments in
advanced laser sources and cameras, TCSPC techniques have
been the gold standard solutions for FLIM experiments.14–16

Traditional photomultiplier tube (PMT) based TCSPC instru-
ments are capable of single-photon detection, and they can
have multiple channels to boost the acquisition. The latest multi-
channel TCSPC systems16–19 can acquire image raw data in sec-
onds, but the FLIM images are mainly processed by slow
analysis software. Recent advances in semiconductor technolo-
gies have allowed single-photon detectors to be fabricated in
two-dimensional (2-D) arrays in a low-cost silicon process
with integrated on-chip TCSPC modules.20–22 These highly par-
allel single-photon avalanche diode (SPAD) arrays can be con-
figured for wide-field or multifocal multiphoton microscopy
systems to enhance the acquisition rate.16 Faster acquisition
means more image raw data are generated in a shorter period
of time. Similar to the multi-PMT TCSPC system, 2-D
SPAD+TCSPC arrays in a single chip significantly enhance
the parallelism, enabling real-time acquisition.21,23 And the
data throughput of the latest 2-D SPAD arrays can easily exceed
tens of gigabit/s, imposing significant challenges in data han-
dling and image analysis.21 In such systems, lifetime analysis
has become a bottleneck for real-time FLIM applications.

To address this problem, several noniterative fast FLIM algo-
rithms have been developed, including rapid lifetime determina-
tion (RLD),24,25 the integral equation method (IEM),26 the center
of mass method (CMM),23,27 the phasor method (PM),28,29

moment methods,30 and fast bi-exponential solvers, including
bi-exponential centre of mass method (BCMM)31 and the
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four-gate method.32 To boost image generation, high-perfor-
mance hardware can be employed to process the imaging
data. For example, Li et al. have previously implemented
field programmable gate array (FPGA) embedded FLIM pro-
cessors capable of offering video-rate FLIM imaging.23 These
hardware embedded FLIM processors, however, only generate
single-exponential FLIM images and are less flexible than tradi-
tional iterative algorithms, such as maximum likelihood estima-
tion (MLE),33 the least square method (LSM),33,34 and global
analysis (GA).35–37 Compared with noniterative methods, itera-
tive algorithms have the following advantages: (1) they have a
wider working range, so that they can be employed in most sit-
uations; (2) they can support bi- or multiexponential analysis;
and (3) they have better precision and accuracy performances.
But iterative algorithms are generally slow and cannot be sped-
up easily, and are also difficult to realize in hardware.

In this paper, we will focus on how the latest graphics
processing units (GPUs) can be used to increase the lifetime esti-
mation speed for both noniterative and iterative algorithms. The
work developed in this paper can be a fast FLIM processor
between the SPAD-array or multi-PMT acquisition front-ends
and the GPU shown in Fig. 1. The realization of parallel FLIM
analysis and its optimization will be given in Sec. 2, including a
brief introduction of the algorithms. In Sec. 3, we will compare
the GPU analysis with CPU parallel analysis and verify the new
GPU FLIM analysis methods on both synthesized data and
experimental data.

2 Methodology
To generate a lifetime image requires a FLIM analysis algorithm
to process a large number of pixels with each pixel containing a
decay histogram. Instead of calculating lifetimes in a pixel-by-
pixel manner, it is desirable to analyze all histograms in parallel
for real-time applications. Although FPGA technologies have
already been introduced in this emerging area,38 their usage
is still limited since only the hardware-friendly algorithms,
such as RLD, IEM, and CMM,23–27 can be implemented.
GPUs, on the other hand, contain a massive number of cores,

offering significant computing power, and allow more complex
algorithms for data analysis. Therefore, GPUs show great poten-
tial in real-time FLIM applications.

2.1 Fluorescence Lifetime Imaging Microscopy
Algorithms

Assume that the measured densities are fðtÞ ¼ K · expð−t∕τÞ
and fðtÞ ¼ K · ½fD · expð−t∕τFÞ þ ð1 − fDÞ · expð−t∕τDÞ� for
single- and bi-exponential decays, respectively. τ, τF, and τD
are the lifetimes, K is the prescalar, and fD is the proportion,
and the instrumental response function and background noise
are neglected as in the model demonstrated by Leray et al.29

These assumptions allow a proper comparison among different
algorithms. Many FLIM algorithms (both noniterative and iter-
ative methods) have been developed for the past few decades.
This paper examines some single-exponential and bi-exponen-
tial analysis algorithms, including IEM, CMM, LSM, PM,
BCMM, and GA, to demonstrate how GPUs can speed up FLIM
analysis. The fundamental function for each method can be
found in Table 1 for noniterative algorithms and Table 2 for iter-
ative algorithms:
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2.2 Graphic Processing Unit

GPUs, originally used for real-time rendering, have been used
increasingly in general purpose computing (for example, in
many biomedical or clinical applications where image analysis
is expected to be in real time39–44), with the advent of the
Common Unified Device Architecture (CUDA)45 and general
purpose GPUs (e.g., NVIDIA Tesla).46 Due to their highly par-
allel architecture (the NVIDIA Tesla K40 used in this work has
2880 parallel cores), high computational density, and memory
bandwidth (250þ GB∕s), GPUs can accelerate the computingFig. 1 Focus of this paper in assumed FLIM system.

Table 1 Calculation function of fluorescence lifetime imaging microscopy (FLIM) noniterative algorithms.

IEM26 CMM23,27 PM28,29 BCMM1
31 BCMM2 (τD unknown)31

τIEM ¼ h
P
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j¼0
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Note: IEM, integral equation method; CMM, center of mass method; PM, phasor method; BCMM, bi-exponential centre of mass method; M is the
number of time bins; Nj and t j are the photon number and the delay time of the j th bin, respectively; N0 is the count number of the first time bin; h is
the width of the time bin; Cj is the coefficient of Simpson’s rule; and τD is the lifetime of the donor.29
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speed dramatically. The latest GPU can reach over 5500 Gflops
(floating point operations per second).47

2.3 Graphic Processing Unit Implementation

All the algorithms introduced above can be translated into GPU
programs using the CUDA application programming interfa-
ces.46–48 In this section, we describe how to implement noniter-
ative and iterative algorithms on GPUs. From this section, one
can also understand why a GPU works faster than a CPU.

We assume the FLIM image to be analyzed contains
512 × 512 pixels, and the histogram in each pixel has 256
time bins. In GPU programming, the program is launched as
grids of blocks of threads (the left-hand charts of Figs. 2 and
3 show the relationships among thread, block, and grid).47

And instead of being executed only once or a few times in a
regular C program, it is executed N times in parallel by N differ-
ent CUDA threads.47

2.3.1 Thread-based computing for noniterative algorithms

For noniterative algorithms, GPU and CPU programs share sim-
ilar code, except for the specific configurations of hardware
resources and memory accesses in GPU implementations.
The histogram of each pixel is analyzed by an independent
CUDA thread, as shown in Fig. 2, and each block contains
512 threads. This configuration allows analyzing a large number
of pixels simultaneously, the exact number being determined by

the number of streaming multiprocessors (SMPs). In this case,
up to 30,720 pixels can be launched on the NVIDIA Tesla K40
GPU.47 Then, following the single instruction multiple threads
mechanics,49 the lifetime estimations can be realized in parallel,
instead of calculating lifetimes in a serial pixel-by-pixel manner
as on a CPU.

2.3.2 Block-based computing for iterative algorithms

For iterative algorithms, the histogram for each pixel is analyzed
by a separate CUDA block, as shown in Fig. 3 (here, each thread
processes a single time bin, instead of an entire pixel as in non-
iterative algorithms), and each such block contains 256 threads
that correspond to the 256 time bins. This configuration still also
allows a quite large number of pixels to be analyzed simultane-
ously, and 120 pixels are expected on the NVIDIA Tesla K40.
Here, we take LSM as an example to demonstrate how to imple-
ment iterative algorithms on GPUs. The CUDA operations can
be divided into the following two categories.

Thread-independent operation. For those operations that
are independent in each time bin, the CUDA provides a
basic instruction. For example, subtraction or division for
each time bin ðNj − YjÞ∕σj can be finished in only one instruc-
tion cycle of one instruction as shown in Fig. 4(a) (here, we just
take subtraction as an example, since division follows the same
procedure), whereas there are 64 subtraction cycles in the CPU-
OpenMP operation [Fig. 4(b)]. In Fig. 4(a), Nj and Yj are stored
in the variables SubA and SubB, respectively, and every thread
has these two variables, whereas the CPU defines two arrays
(SubA[256] and SubB[256]) for loop operations.

Thread-exchanged operation. Alternatively, the CUDA
provides a special solution for some operations where commu-
nication or data sharing with other time bins (threads) is neces-
sary. As shown in Fig. 5(a),50,51 the data ðNj − YjÞ2∕σ2j of each
time bin is stored in the jth element of a shared memory array
SumA (shared memory is on-chip high-speed memory, which
enables the threads in the same block to access the same
memory content; arrays are defined by: __shared__ SumA[256],

Fig. 2 Relationships among thread, block, and grid, and GPU imple-
mentation of noniterative algorithms for FLIM analysis.

Table 2 Calculation function of FLIM iterative algorithms.

Algorithm Function

LSM33,34 χ2 ¼ PM−1
j¼0 ðNj−Y j

σ i
Þ2 Y j ¼

Pn
k¼1ðAke−t j ∕τk Þ

GA35–37 χ2 ¼ PNGA
i¼1

PM−1
j¼0 ðNi;j−Y j

σi ;j
Þ2

Note: LSM, least square method; GA, global analysis; n is the number
of lifetime components; Ni;j is the photon number of the j th bin of the
i th pixel; andNGA is the number of pixels in the same segment for GA.

Fig. 3 Relationships among thread, block, and grid, and GPU imple-
mentation of iterative algorithms for FLIM analysis.
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in CUDA programming47). In step 1, the first 256∕2 ¼ 128
threads compress the array SumA into 128 elements by combin-
ing the jth and (jþ 128)th units (j ¼ 1; : : : ; 128) simultane-
ously, followed by several similar steps. Finally, after only
log2 256 ¼ 8 steps (it is not a requirement that the number of
threads in a block has to be a power of 2, but it maximizes per-
formance), the summation reduction result can be acquired,
instead of after 65 steps in the CPU-OpenMP version as shown
in Fig. 5(b).

2.4 Optimization of Graphic Processing Unit
Programming

In order to maximize the ability of the GPU in FLIM analysis, it
is necessary to consider the specifications of GPU hardware,
manage the memory properly, and design a specific program-
ming strategy for each individual algorithm. The following con-
siderations are mainly for iterative algorithms, except the kernel
configuration and overlap of data transfer, which are also appli-
cable to noniterative algorithms.

2.4.1 Kernel configuration

When we launch the kernel in a host (CPU), which is the
entrance to GPU processing, similar to the main function in
the C language, a proper size of block (determining how

many threads in a block) and grid (determining the number
of blocks) should be given in order to optimize the GPU per-
formance. On CUDA GPUs, 32 threads are bound together
into a so-called warp, which is executed in lockstep.
Accordingly, it is suggested that the number of time bins should
be a multiple of 32, for instance, 256. Furthermore, according to
the GPU hardware specification, at most 2048 threads or 16
blocks can be launched in an SMP, which is the workhorse
of the GPU46 and puts a different constraint on the number
of threads. Table 3 illustrates that for thread numbers that are
not multiples of 32, although fewer threads are launched, the
processing time can be longer. This is due to the so-called
warp divergence, which occurs if threads in the same warp
follow different conditional branches in the code. In CUDA,
diverging threads in a warp are executed serially, and branch
divergences therefore lead to considerably slower execution.
Additionally, when the thread number is 224, although it is a
multiple of 32, its operation time is longer than expected:
1662:5 > ð224∕256Þ × 1870:2 ¼ 1636:4 ms. This is because
for each SM, only 2016ð< 2048Þ threads have been launched,
so that not all the hardware resources are being used.

In this case, considering a 512 × 512 FLIM image to be gen-
erated, we examine the performance of GPU FLIMwith a differ-
ent grid size. As shown in Table 4, for FLIM analysis, the
calculation times for different sizes are almost the same, so
there is no need to configure the block dimension as long as

Fig. 4 Subtraction in GPU and CPU-OpenMP processing.

Fig. 5 Summation reduction in GPU and CPU processing.
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it follows the limitation (maximum grid size of NVIDIA
K40: h231 − 1; 65; 535; 65535i47).

Although simple algorithms use different configurations (i.e.,
different size of grid or block), the same features can be found as
illustrated above.

2.4.2 Memory optimization

In order to achieve higher performance, it is necessary to opti-
mize the memory usage and maximize the memory throughput.
For FLIM analysis, three aspects should be considered as
follows.

First, for a real-time FLIM process, the GPU has to access the
histogram data from the CPU for every image frame, so mapped
pinned (M-pinned) memory should be encouraged, which is the
host memory and has been page-locked and mapped for direct
access by the GPU, as shown in Fig. 6.46 Also, to minimize data
transfers between the host (CPU) and device (GPU), the GPU
FLIM analysis only uses device memory once the histogram
data have been transferred from the host.

Moreover, when a large amount of data is used, it is impor-
tant to consider asynchronous and overlapping transfers with
computations.52 CUDA streams (which are sequences of oper-
ations that are performed in order on the device) can be used to
fulfill this mission. As shown in Fig. 7(a), in sequential mode,
the kernel can only be launched after all the data have been
transferred to the GPU memory. In contrast, for the concurrent
mode, the pixels of an FLIM image are divided into several
groups, and each pixel within the same group will be launched

in the same stream. As illustrated in Fig. 7(b), histogram or life-
time data transfer and calculation kernels are separated into dif-
ferent streams. This configuration allows data transfer and
kernel execution to run simultaneously, and can reduce the
whole processing time measurably.

Last but not least, GPUs have several memory spaces includ-
ing the shared, global, constant, texture, register, and local
memory,47,52 and for GPU performance, the most important
area is memory management.52 Among these memories, the
shared memory is on-chip memory, and it has much higher
bandwidth and much lower latency than the local or global
memory. It is highly recommended that the shared memory
should be used as much as possible, especially when there is
communication between threads in the same block (e.g., sum-
mation reduction operations). However, shared memory is very
limited in size, and it is unavoidable to use the large global
memory. Because this is by far the slowest memory accessible
from the GPU, care should be taken to access it in the most effi-
cient way. CUDA supports so-called coalesced memory access,
where several threads of a warp access a congruent area of
device memory in a single memory fetch. Using coalesced
access as much as possible is very important to minimize the
necessary bandwidth. Figure 8 illustrates the difference between
the coalesced access and noncoalesced access, and the ensuing
large speed difference.47,53 To be specific, this implies, for

Table 4 Operation time under different grid size of LSM-GPU.

First dimension Second dimension Time (ms)

512 × 512 1 1869.4

512 × 16 32 1867.2

512 × 2 256 1871.3

512 512 1870.2

32 16 × 512 1872.6

2 256 × 512 1870.7

Fig. 6 GPU-FLIM analysis with mapped pinned memory.

Fig. 7 Timeline comparison of (a) sequential and (b) concurrent
executions.

Table 3 Operation time under different block size of LSM graphic
processing unit (GPU).

Threads
per block

Warp
divergence

Full
launch

Time
(ms)

Time/bin
(ms)

256 No Yes 1870.2 7.305

255 Yes No 1898.9 7.447

253 Yes No 1912.8 7.560

250 Yes No 1914.2 7.657

225 Yes No 1960.4 8.713

224 No No 1662.5 7.422
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example, that for noniterative algorithms, the histogram data
need to be arranged such that the data of the same time bin
but different pixels are directly adjacent, since each thread
will access data of the same time bin of the corresponding
pixel. For iterative algorithms, however, data of each time
bin of a pixel have to be stored in continuous memory locations.
Besides, the constant and texture (optimized for 2-D spatial
locality) memory spaces, which are cached and read only,
can be used to save constant arrays or matrices used in the algo-
rithm and can also speed up the processing. For example, for
IEM, every pixel uses the same coefficients Cj, and we can cal-
culate the value before processing, so Cj can be kept in the con-
stant memory (declared by “__constant__ float CoIEM[]”).

2.4.3 Programming strategies

The first consideration is to trade the precision for the speed
when it does not affect the result, such as using single-precision
operations instead of double-precision ones. Then the number of
divergent warps (threads in the same warp have different oper-
ations) that cause delay is minimized. Figure 9 shows a simple
example how to avoid divergence. It demonstrates that shifting
elements by changing the index can be used to reduce the diver-
gence in some circumstances. More importantly, we try to
reduce the number of waiting threads; for example, we execute
two summation reductions together in different directions, as
shown in Fig. 10, and unroll the last warp in Fig. 5(a).

Moreover, CUDA provides some libraries (e.g., cuBLAS)
and GPU versions of math functions, and using these resources
can not only boost the performance but also reduce the difficulty
of CUDA programming, for example, using “__fdividef()” for
floating point division.

3 Results
To demonstrate the advantage of the proposed GPU-FLIM tool,
algorithms were tested on both synthesized and experimental
data, and the results were compared with CPU solutions.
Results were compared in terms of the performances, that is,
precision in FLIM analysis, and the time of processing, that

is, their speed. The results are based on an NVIDIA Tesla
K40 GPU and an OpenMP CPU implementation on an Intel
(R) Xeon(R) E5-2609 v2 processor with four cores. Worth men-
tioning is that all the results of GPU processing time include the
data transfer between CPU and GPU, namely, transferring histo-
gram data to the GPU for processing and moving lifetime results
back to the CPU.

3.1 Simulations on Synthesized Data

For single-exponential decays, we assume the target FLIM image
is a square with bars, where the lifetime gradually increases from
left to right and every pixel within the same bar has the same
lifetime (2, 2.5, 3, 4 ns), as shown in Fig. 11(a). The image con-
tains 512 × 512 pixels, <2000 photons have been collected for
each pixel, and each histogram has 256 bins with the bin
width of 100 ps. Both CPU- and GPU-based algorithms use sin-
gle-precision operations and have identical outputs, although they
have different architectures, namely, latency oriented versus
throughput oriented, respectively. We observe that all algorithms
generate effective results in agreement with the known ground
truth and that the iterative algorithm provides similar or better
results, as shown in Figs. 11(b)–11(d).

Fig. 8 Global memory access: (a) coalesced access and (b) noncoal-
esced access.

Fig. 9 Example of avoiding warp divergence.

Fig. 10 Example of maximizing hardware usage.

Fig. 11 FLIM images of single-exponential decays: (a) theoretical life-
time image, (b) IEM, (c) CMM, and (d) LSM.
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For bi-exponential decays, every pixel has the same lifetime
(τD,τF), whereas fD decreases from 0.8 to 0.2 from left to right
of the image. Table 5 demonstrates the details of this simulation.
The results of different algorithms are given in Figs. 12(b)–12(d),
where 32 means a segment of GA contains 32 pixels,35–37 com-
pared with the true image as in Fig. 12(a). From these images,
we can learn that all the algorithms generate satisfactory results
when fD > 0:5, whereas the GA shows great potential as it can
resolve a wider range of fD.

Tables 6 and 7 show the processing time and speed enhance-
ment of the GPU implementation against the CPU parallel
implementation. In Tables 6 and 7, we also included the acquis-
ition rates of recently reported FLIM systems18,19 for compari-
son. These systems are all for 256 × 256 images, but we
extended them for 512 × 512 ones in order to make a proper
comparison. For the latest FLIM systems, the acquisition can
range from 0.02 to 2.5 fps (note that the frame rate reported

in Ref. 13 will be much slower if more gates are used as sug-
gested in their experimental section). It shows that the acquis-
ition would be the bottleneck if simple algorithms are applied,
unless wide-field acquisition is applied.23 Tables 6 and 7 also
show that GPUs do offer speed enhancement when a more pre-
cise analysis (using GA-32 or LSM) is needed, and the analysis
frame rate is comparable to the acquisition rate. Due to different
structure and processing schemes, the enhancement factor for
each algorithm is different. Table 8 gives a deeper understanding
about each algorithm implemented in the GPU by using the
CUDA profiler, where one can see the time of data transfer
between GPU and CPU, achieved GPU occupancy, and so
forth. Also, the acquisition and the image analysis with different
image resolutions are shown in Fig. 13. This chart shows that the
acquisition and the GPU analysis take comparable time for
LSM.

3.2 Experiment

We demonstrate the performances of the GPU-based BCMM on
two-photon FLIM images of gold nanorods (GNRs) Cy5 labeled
A375 cells. GNRs were conjugated with Cy5 labeled oligonu-
cleotide through a procedure described elsewhere.54 The A375
cells were incubated with nanoprobes (GNR-Cy5) and fixed
with paraformaldehyde. FLIM was performed using a confocal
microscope (LSM 510, Carl Zeiss) equipped with a TCSPC
module (SPC-830, Becker & Hickl GmbH). A femtosecond
Ti:sapphire laser (Chameleon, Coherent) was tuned at 800 nm.
The laser pulse has a repetition rate of 80 MHz and duration
<200 fs.

Figure 14(a) shows the intensity–τF merged image obtained
by BCMM, and it locates the (GNRs-Cy5)s by calculating their
lifetimes (τF ∼ 100 ps, in agreement with Chen et al.55) and fD.
From the intensity image alone, it is impossible to identify the
GNR sites. Combined with the average lifetime map,
fDτF þ ð1 − fDÞτD, in Fig. 14(b) and the fD map in Fig. 14(c),
the lifetime histogram of τDð∼2:93� 0:16 nsÞ at the GNR sites
can be obtained to observe the energy transfer between Cy5 and
GNRs, which offers a good indicator to study the hybridization
of nanoprobes with targeting RNA in cells.56

Table 9 compares the CPU and GPU parallel processing
speed based on the experimental data when using the BCMM
algorithm. These results further verify the power of the proposed
GPU-FLIM tool.

4 Discussion
In this study, the implementation and processing capabilities
of a GPU-FLIM tool have been discussed and compared to
traditional CPU-OpenMP based parallel analysis. We have
also proposed some not unconventional but very important opti-
mizations for GPU-based FLIM analysis.

Table 5 Details of bi-exponential simulations.

Image size Bin number Bin width (ps) τD (ns) τF (ns)

512 × 512 256 100 3 1

Fig. 12 Images based on synthesized bi-exponential data: (a) theo-
retical average lifetime image, (b) PM(c) BCMM, and (d) GA-32.

Table 6 Processing time for single-exponential decay (unknown: τ, K ).

Algorithm CPU (ms) GPU (ms) Speedup (times) Acquisition rates13,18,19 (fps)
Image analysis
frame rate (fps)

IEM 355.2 22.4 15.9 0.02 to 2.5 44

CMM 370.3 23.1 16.0 43

LSM 21,463.1 1170.2 18.3 0.85
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FLIM analysis is well suited for GPU acceleration because it
is highly parallelizable. Each pixel in an FLIM frame can be
processed independently of any other pixel, and, depending
on the details of the algorithm, there is a lot of room for paral-
lelization even within the processing of an individual pixel.

From our simulations and experimental results, we observe
that traditional iterative algorithms show better precision and
working range and therefore remain the gold standard. On
the other hand, although simple algorithms generally do not

generate results of similar precision, they are much faster; for
example, IEM is ∼50 times faster than LSM. On the other
hand, the photon efficiency (for single-exponential decays) of
IEM is slightly worse than LSM- or MLE-based algorithms.
To achieve the same precision for IEM, one needs to collect

Table 7 Processing time for double-exponential decay (unknown: τF, K , fD).

Target Algorithm CPU (ms) GPU (ms) Speedup (times) Acquisition rates13,18,19 (fps)
Image analysis
frame rate (fps)

τF PM 472.2 22.8 20.7 0.02 to 2.5 44

BCMM 537.1 26.3 20.4 38

GA-32 76,410 3313.8 23.1 0.3

τAVG PM 520 22.9 22.7 0.02 to 2.5 44

BCMM 451.4 23.3 19.4 43

GA-32 77,360.7 3320.2 23.3 0.3

Fig. 13 Acquisition time (using the system reported in Ref. 18 as a
reference) and image analysis time for LSM with different image
resolutions.

Fig. 14 (a) Intensity–τF merged image showing τF ∼ 100 ps and
the locations of the gold nanorods (GNRs). (b) Image of
fDτF þ ð1 − fDÞτD, (c) fD image, and (d) τD histogram at the GNR sites.

Table 8 Results from CUDA profiler for each algorithm.

Algorithm

Data
transfer
(ms)

GPU
computation

(ms) Occupancy (%)

Warp
efficiency

(%)

IEM 3.7 99.0 99.8

CMM 4.7 96.0 96.0

PM 18.7 4.1 99.0 100.0

BCMM 7.6 99.2 100.0

LSM 1151.5 54.1 97.8

GA 3295.1 52.9 98.0

Table 9 Experiment results with CPU-OpenMP and GPU.

Target Algorithm
CPU
(ms)

GPU
(ms)

Speedup
(times)

τF BCMM1
(τD fixed)

111.24 5.4 20.6

BCMM2
(τD unknown)

169.3 9.3 18.2
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2.5-fold more photons,57 which offsets some of the speed advan-
tage of IEM, albeit by no means all of it.26 The requirements of
precision and speed will vary depending on the research appli-
cation, and a comprehensive FLIM analysis tool containing both
noniterative and iterative algorithms is hence desirable. With the
developed GPU-FLIM tool, we are able to achieve up to 24-fold
enhancement over traditional CPU-based solutions, which now
enables real-time or even video-rate FLIM analysis for simple
algorithms (more than 37 fps can be achieved for 512 × 512

images). For the more precise iterative algorithms, smaller
FLIM images can be analyzed in real time; for example, it
takes 59 ms to generate a frame of a 128 × 128 FLIM image
with 128 time bins using LSM. However, we expect to achieve
up to 10 fps for 256 × 256 images (our tool is currently at about
3 fps) by optimizing the LSM algorithm and GPU implemen-
tation specifically for this image size in the near future. The
acquisition of the fastest TCSPC FLIM systems is currently
only ∼2 fps for 256 × 256 images. Therefore, the bottleneck
still remains image acquisition; however, with rapid advances
in image sensors and microscopy technologies, we believe
that the acquisition rate will be further enhanced in the near
future.

As mentioned above, lifetime estimations are parallelizable
across all pixels (i.e., each pixel is independent), typically in a
512 × 512 array. However, GPU analysis is not 512 × 512-fold
faster than CPU parallel computing. There are two major lim-
itations to the achieved GPU speedup: limitations of GPU hard-
ware and limitations of the parallelization of FLIM algorithms.
With respect to the former, although processing for each pixel is
assigned into a separate thread (for noniterative algorithms) or
block (for iterative algorithms), these do not mean that every
pixel can be processed simultaneously because each GPU has
limited resources (e.g., cores, memory). The exact number of
pixels that can be launched in parallel varies with different
GPU hardware and algorithm details, and they are at most 15 ×
2048 ¼ 30;720 and 15 × ð2048∕256Þ ¼ 120, respectively, for
the GPU used here. The remaining pixels are processed
when the first batch has completed and the GPU resources
become available again. Another hardware limitation to GPU
acceleration is that a single core of a GPU is not as powerful
as a CPU core.

We can easily find that runtime kernels of noniterative and
iterative algorithms have different configurations, that is, each
pixel is processed in a single thread for noniterative algorithms,
in contrast to a block of threads for iterative algorithms. This
leads to the second consideration: speedups are also limited
by the degree to which algorithms can be parallelized. None
of the algorithms described above can be fully parallelized
with respect to the time bins, which means GPU resources can-
not be fully occupied during the entire process of lifetime esti-
mation. This leads to less than linear speedups as a function of
the number of threads used. For noniterative algorithms, since
the computations for each pixel need less hardware resources,
this configuration allows a large number of pixels to be launched
simultaneously. For iterative algorithms, one could also consider
the same solution where each thread on the GPU processes an
entire pixel instead of sharing this work in a block of threads
with one thread per time bin as was done here. This would
be more fully parallelizable, but it is unlikely to lead to further
speedups because such a schemewould quickly conflict with the
small amounts of registers and shared memory that are available
on GPU chips.

Between the two types of limitations, it is certainly the hard-
ware capabilities that are more constraining at the moment.
However, the development of GPU hardware continues with
impressive advancements in short time scales, so that it is guar-
anteed that in the future GPUs will be able to boost FLIM analy-
sis even further without a need for redevelopment of the
parallelization strategy.

Due to their large, unused potential, we will continue to
explore the use of GPU acceleration and the parallelization
of existing algorithms. In addition, we will begin to develop
GPU-friendly algorithms. Once we have established real-
time, wide-range, and high-precision FLIM analysis, we will
implement an entire FLIM system, including both high-speed
acquisition and high-performance FLIM analysis, to be used
in the biological sciences, chemistry, medical research, and
so forth.

5 Conclusion
FLIM has recently gained attention as a powerful technique in
biomedical imaging and clinical diagnosis applications, and
there is an increasing demand for high-speed FLIM systems.
In this article, we have proposed a flexible and reliable process-
ing strategy for FLIM analysis using GPU acceleration, which
can replace CPU-only solutions, allowing considerable speed
improvements without loss of quality. The presented high-
speed analysis tool has been implemented with some typical
but important GPU code optimizations, tailored to the specific
research area of fast, parallel lifetime analysis. The performance
of the tool has been verified with synthesized and experimental
data, demonstrating substantial potential for GPU acceleration
in rapid FLIM analysis.
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