Open Access
15 April 2020 High-power light-emitting diode array design and assembly for practical photodynamic therapy research
Eric M. Kercher, Kai Zhang, Matt Waguespack, Ryan T. Lang, Alejandro Olmos, Bryan Q. Spring
Author Affiliations +
Funded by: National Institutes of Health (NIH), US National Institutes of Health (NIH), Northeastern University Alpha Fund, Richard and Susan Smith Family Foundation
Abstract

Significance: Commercial lasers, lamps, and light-emitting diode (LED) light sources have stimulated the clinical translation of photodynamic therapy (PDT). Yet, the continued exploration of new photosensitizers (PSs) for PDT often requires separate activation wavelengths for each agent being investigated. Customized light sources for such research frequently come at significant financial or technical cost, especially when compounded over many agents and wavelengths.

Aim: LEDs offer potential as a cost-effective tool for new PS and multi-PS photodynamic research. A low-cost-per-wavelength tool leveraging high-power LEDs to facilitate efficient and versatile research is needed to further accelerate research in the field.

Approach: We developed and validated a high-power LED array system for benchtop PDT with a modular design for efficient switching between wavelengths that overcome many challenges in light source design. We describe the assembly of a low-cost LED module plus the supporting infrastructure, software, and protocols to streamline typical in vitro PDT experimentation.

Results: The LED array system is stable at intensities in excess of 100  mW  /  cm2 with 2.3% variation across the illumination field, competitive with other custom and commercial devices. To demonstrate efficacy and versatility, a primary ovarian cancer cell line was treated with two widely used PSs, aminolevulinic acid and verteporfin, using the LED modules at a clinically relevant 50  J  /  cm2 light dose that induced over 90% cell death for each treatment.

Conclusions: Our work provides the community with a tool for new PS and multi-PS benchtop photodynamic research that, unlike most commercial light sources, affords the user a low barrier to entry and low-cost-per-wavelength with the goal of illuminating new insights at the forefront of PDT.

CC BY: © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
Eric M. Kercher, Kai Zhang, Matt Waguespack, Ryan T. Lang, Alejandro Olmos, and Bryan Q. Spring "High-power light-emitting diode array design and assembly for practical photodynamic therapy research," Journal of Biomedical Optics 25(6), 063811 (15 April 2020). https://doi.org/10.1117/1.JBO.25.6.063811
Received: 16 October 2019; Accepted: 25 February 2020; Published: 15 April 2020
Lens.org Logo
CITATIONS
Cited by 18 scholarly publications.
Advertisement
Advertisement
KEYWORDS
Light emitting diodes

Photodynamic therapy

Light sources

Picosecond phenomena

Data acquisition

Temperature metrology

Lamps

Back to Top