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Abstract

Significance: Diffuse in vivo flow cytometry (DiFC) is an emerging technique for enumerating
rare fluorescently labeled circulating cells noninvasively in the bloodstream. Thus far, we have
reported red and blue-green versions of DiFC. Use of near-infrared (NIR) fluorescent light would
in principle allow use of DiFC in deeper tissues and would be compatible with emerging NIR
fluorescence molecular contrast agents.

Aim: We describe the design of a NIR-DiFC instrument and demonstrate its use in optical flow
phantoms in vitro and in mice in vivo.

Approach:We developed an improved optical fiber probe design for efficient collection of fluo-
rescence from individual circulating cells and efficient rejection of instrument autofluorescence.
We built a NIR-DiFC instrument. We tested this with NIR fluorescent microspheres and cell
lines labeled with OTL38 fluorescence contrast agent in a flow phantom model. We also tested
NIR-DiFC in nude mice injected intravenously with OTL38-labeled L1210A cells.

Results: NIR-DiFC allowed detection of circulating tumor cells (CTCs) in flow phantoms with
mean signal-to-noise ratios (SNRs) of 19 to 32 dB. In mice, fluorescently labeled CTCs were
detectable with mean SNR of 26 dB. NIR-DiFC also exhibited orders significantly lower auto-
fluorescence and false-alarm rates than blue-green DiFC.

Conclusions: NIR-DiFC allows use of emerging NIR contrast agents. Our work could pave the
way for future use of NIR-DiFC in humans.
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1 Introduction

In hematogenous cancer metastasis, circulating tumor cells (CTCs) intravasate from the primary
tumor into the peripheral blood. A small fraction of these travel to distant organs via the
circulatory system and form secondary tumors.1–6 As such, the ability to detect, count, and char-
acterize CTCs and CTC clusters is of potentially great diagnostic value in clinical management
of cancer and in the basic study of cancer biology.7–9 Fewer than 1 CTC per mL of peripheral
blood may be indicative of metastatic progression.10–15 “Liquid biopsy” is the current gold stan-
dard for the study of CTCs, which involves drawing and analyzing small volume (∼mL) periph-
eral blood samples using ex vivo assays such as CellSearch.16,17 While powerful, liquid biopsy is
poorly suited to measuring dynamic changes in CTC numbers over time.18,19 In addition, because
volume of peripheral blood is fractionally very small compared to the total blood volume (<1%),
these may provide a poor overall and statistical picture of CTC numbers.18–21

These limitations have motivated development of optical methods to enumerate CTCs
directly in circulation in vivo.22–27 Our team developed a preclinical laser-induced fluorescence
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technique called “diffuse in vivo flow cytometry” (DiFC).28,29 DiFC uses specially designed
optical fiber probes and highly scattered light to sample blood flowing in large vessels in the
tail or the hindleg of a mouse. By measuring the signal emitted from individual cells, DiFC
allows noninvasive sampling of about 100 μL of blood per minute. We previously used
DiFC to study CTC dissemination in preclinical mouse models including a subcutaneous
Lewis lung carcinoma (LLC) and multiple myeloma disseminated xenograft model.30,31

Because DiFC is noninvasive, the entire peripheral blood volume of a mouse can be sampled
continuously and repeatedly over time.

Our previously reported DiFC instruments were designed to work with either blue-green
[e.g., green fluorescent protein (GFP)] or red (e.g., Cy5) fluorophores that are commonly used
in preclinical research. Emerging preclinical fluorophores and fluorescent proteins operates in
the near-infrared (NIR) range. Because of the fundamental nature of light transport in biological
tissue, NIR light undergoes less attenuation and generation of autofluorescence,32 and as such
would theoretically be advantageous for DiFC. In fact, we recently showed that NIR light would
in principle enable detection of well-labeled CTCs in large blood vessels below the surface with
higher signal-to-noise-ratio (SNR) and detection depth than visible light.33

Related to this, another long-term goal of our research is potential human translation of DiFC
technology.34 Nearly, all clinical fluorescence contrast agents operate in the NIR region due to
light transport effects. Likewise, in principle, NIR-DiFC would be more suitable for larger limbs
and deeper-seated blood vessels, e.g., in the human wrist or forearm.33,35

Motivated by these factors, in this paper, we describe the design and construction of a new
NIR-DiFC instrument. Noting that NIR fluorophores typically have lower fluorescence quantum
yield than visible fluorophores, we also redesigned our fiber probe assemblies (compared to
our previously reported designs29) to allow improved geometric light collection and rejection
of instrument autofluorescence.

We show proof of concept testing with cells labeled with a NIR fluorescent molecular probe
OTL38, which targets folate receptor (FR) over-expressing cells. We show that OTL38-labeled
cells are detectable in a tissue simulating flow phantom in vitro and in mice in vivo.

2 Materials and Methods

2.1 NIR-DiFC Instrument

The schematic of NIR-DiFC is shown in Fig. 1(a). The light source is a tunable pulsed laser (Mai
Tai XF-1, Spectra Physics, Santa Clara, California) with excitation wavelength set to 770 nm.
The power is adjusted with a variable attenuator before it is passed through a 766∕13 nm band-
pass clean up filter (BP-ex; FF01-766/13-25, IDEX Health and Science LLC, Rochester, New
York). The light is then split into two beams with a beam splitter (BS; 49005, Edmund Optics,
Barrington, New Jersey) before being coupled with a collimation package (FC-ex; F240SMA-
780, Thorlabs Inc., Newton, New Jersey) into source fibers of the fiber probe assemblies (see
Sec. 2.2). The light power at the sample is set to 25 mW. The output of the probe collection
fibers is collimated (FC-em; F240SMA-780, Thorlabs), and the light is passed through an 810/
10 nm bandpass emission filter (BP-em; FF01-810/10-25, IDEX Health and Science LLC) before
being focused on to the surface of a photomultiplier tube (PMT) (H10721-20, Hamamatsu,
Bridgewater, New Jersey) with a 30-mm focal length lens (L-em; 67543, Edmund Optics).
The PMTs are powered by a power supply (C10709; Hamamatsu). Output signals from the
PMTs are filtered with an electronic 100 Hz low-pass filter, amplified with a low-noise current
preamplifier (SR570, Stanford Research Systems, Sunnyvale, California), and then acquired with a
data acquisition board (USB-6343 BNC; National Instruments, Austin, Texas). Figure 1(b) shows
a photograph of the instrument.

2.2 Integrated NIR-DiFC Fiber Probe Design

NIR-DiFC uses custom-designed integrated fiber probe assemblies as shown in Fig. 1(c)
(EmVision LLC, Loxahatchee, Florida). The design is an improvement compared to our
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previous fiber probe design29 with better geometric collection efficiency and autofluorescence
suppression. Each probe is constructed with 21 all silica low hydroxyl (OH) content 300 μm core
0.22 NA collection fibers, arranged in a 7-fiber inner ring and 14-fiber outer ring. The 21 col-
lection fibers are arranged around a single fiber for laser delivery, which is also all silica 300-μm
core low OH, 0.22 NA fiber.

A donut-shaped 807-nm long-pass filter (LLP; BLP01-785R, IDEX Health and Science
LLC) is positioned in front of the 21 collection fibers to reject laser light and pass collected
fluorescence light from the sample. The source delivery fiber has a smaller 709∕167 nm band-
pass filter (SBP; FF01-709/167, IDEX Health and Science LLC) positioned in front, which
allows the light to pass but rejects any other interfering light created from autofluorescence
of the probe materials. The distal end of the probe also has a converging sapphire lens (L) with
a hole drilled in the center and a second lens LLP with a hole in the center placed on the lens. The
laser fiber passes through the center hole of the fiber filter, lens, and lens filter, which eliminates
any reflected laser light from the lens surface that can create undesired autofluorescence from the
probe materials. The LLP filter further reduces the laser light, which can otherwise back reflect
from the sample into the probe and create unwanted background fluorescence. A magnesium
fluoride stepped window (SW) is attached to the lens, lens filter, and excitation fiber assembly.
This SW allows the laser light and collection light paths to overlap at the distal window tip-
sample interface, maximizing collection of fluorescent light. The SW and window block reject
undesired light from being collected that is excited outside of the desired sample region and
improves blocking efficiency of the long-pass filters. The fibers, lens, and other optical com-
ponents are placed inside a 2.4-mm outside diameter stainless steel needle tube.

Fig. 1 The NIR-DiFC instrument: (a) optical schematic and (b) photograph with main components
labeled. (c) Schematic of the newly designed NIR-DiFC fiber probe bundle; see main text for com-
ponent details. (d), (e) Representative NIR-DiFC data measured from probes 1 and 2, respec-
tively, before postprocessing. As discussed in detail in the text, this requires background
subtraction (BS) and peak matching (PM). (f) Postprocessed data after BS and identification
of forward-matched peak (green arrowheads) between the two probes.

Pace et al.: Near-infrared diffuse in vivo flow cytometry

Journal of Biomedical Optics 097002-3 September 2022 • Vol. 27(9)



2.3 Fluorescent Microspheres

We used “Jade Green Low Intensity” (JGLI; FL100782, Spherotech, Lake Forest, Illinois) NIR
fluorescent microspheres. These microspheres are ∼10 to 14 μm in diameter and (as we show)
have similar fluorescence brightness to CTCs labeled with an NIR fluorophore.

2.4 NIR-DiFC Testing in Tissue-Mimicking Flow Phantoms In Vitro

NIR-DiFC was first tested using a tissue-mimicking flow phantom [Fig. 2(a)] as we have used
previously.18,28,30,31,36 The phantom is made from high-density polyethylene block and has sim-
ilar absorption and scattering properties to biological tissue.18 Microbore Tygon tubing
(TGY1010C, Small Parts, Inc., Seattle, Washington) was inserted into a hole drilled into the
phantom at a depth of 0.75 mm. This depth was chosen to match the depth of the ventral caudal
artery in the mouse tail.37 Using a microsyringe pump (702209, Harvard Apparatus, Holliston,
Massachusetts), 1 mL suspensions of microspheres or NIR fluorophore labeled cells (see
Sec. 2.5) suspended in PBS at a concentration of 103 per mL were flowed through the phantom
at a flow rate of 50 μL∕min.

2.5 NIR Fluorescent Labeling of Cells with OTL38

We used L1210A immortalized murine leukemia cells, which were previously modified to over-
express FR.38–40 We also used SK-OV-3 (Angio-Proteomie, Boston, Massachusetts) and IGROV-
1 (Sigma Aldrich, St. Louis, Missouri), which are both naturally expressing FR+ immortalized
human ovarian cancer cell lines. All cells were cultured in RPMI 1640 folic acid deficient media
(Gibco 27016021; ThermoFisher Scientific, Waltham, Massachusetts) supplemented with 10%
fetal bovine serum (Gibco 16000044; ThermoFisher Scientific) and 1% penicillin/streptomycin
(Gibco 15140122; ThermoFisher Scientific) and incubated at 37°C with 5% CO2.

OTL38 (On Target Laboratories, West Lafayette, IN) is a FRα-targeting fluorescent small-
molecule (MW 1414.42 Da) contrast agent that has previously been characterized in addition
to recently being fully FDA approved for the use in fluorescence guided surgery.41–43 OTL38 is
a conjugate between a folate analog and S0456 dye [similar fluorescence spectrum to indo-
cyanine green (ICG)] with a maximum excitation wavelength of 776 nm and stokes shift of
17 nm.44

1 mL suspensions of 106 FR-over-expressing L1210A, SK-OV-3, or IGROV-1 cells in 2%
FBS in PBS (Gibco 10010049; ThermoFisher Scientific) were coincubated with 200 nM (20 μL
of 10 μM stock) OTL38 at 37°C with 5% CO2 for 1 h. Cells were then washed twice with PBS
before start of experiments.

2.6 Flow Cytometry

OTL38 was analyzed using a benchtop Attune NXT flow cytometer (FC) (ThermoFisher
Scientific). NIR fluorescence was collected using a 637-nm excitation wavelength and a
780/60-nm emission filter. CellTrace CFSE fluorescence was collected using a 488-nm excita-
tion wavelength and 530/30-nm emission filter

2.7 Validation of NIR-DiFC in Mice In Vivo

All mice were handled in accordance with Northeastern University’s Institutional Animal Care
and Use Committee (IACUC) policies on animal care. Animal experiments were carried out
under Northeastern University IACUC protocol #21-0412R. All experiments and methods were
performed with approval from and in accordance with relevant guidelines and regulations of
Northeastern University IACUC.

For proof-of-concept testing of NIR-DiFC in vivo, we injected L1210A cells intravenously in
nude mice.21,36 106 L1210A cells prelabeled with OTL38 in vitro as above were suspended in
100 μL of cell culture media and were injected intravenously via the tail vein (N ¼ 3) of 6- to
8-week-old female Athymic nude mice (Athymic NCR Nu/Nu/553; Jackson Laboratory,
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Bar Harbor, Maine). NIR-DiFC was preformed 10 min after injection on the ventral caudal tail
artery for 60 min.

In additional experiments (N ¼ 3 mice), we double-stained the L1210A cells with OTL38
and CellTrace CFSE green dye (Invitrogen C34554; ThermoFisher Scientific) prior to injection.
This allowed us to count L1210A cells in blood samples removed from mice following NIR-

Fig. 2 (a) The brightness of OTL38-labeled FR+ cells and JGLI microspheres with flow cytometry.
(b) NIR-DIFC with a tissue mimicking flow phantom model. Representative NIR-DiFC data are
shown after signal processing for (c) control suspensions of unlabeled L1210A cells, showing
no false positive counts, (d) JGLI microspheres, OTL38-labeled (e) L1210A cells, (f) SKOV-3 cells,
and (g) IGROV-1 cells. Each peak (arrowhead symbols) represents a forward-matched detection.
(h) Comparison of the mean amplitude (intensity) of detected peaks for each sample measured
with NIR-DiFC, compared to that measured using (i) flow cytometry, showing good general agree-
ment with NIR-DiFC fluorescence measurements.
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DiFC (see Sec. 3) by identification of the double-labeled population. 1 mL suspensions of 106

FR-over-expressing L1210A in PBS were coincubated with 5 mMCFSE in the dark at 37°C with
5% CO2 for 20 min. Then 5 μL of complete culture media was added, and the suspension was
returned to the dark 37°C with 5% CO2 incubator for 5 more minutes. The cells were then resus-
pended in complete media for 10 min before OTL38 labeling. Following NIR-DIFC scanning,
blood draws were performed by terminal cardiac puncture. Blood was prepared for analysis by
the benchtop flow cytometry by adding it to 2 mL 10× RBC Lysis buffer (420301; BioLegend,
San Diego, California) diluted to 1× in 18 mL sterile water for 15 min. Suspensions were then
washed twice with PBS and resuspended to a final concentration of 3 mL.

Although in vivo labeling of CTCs is beyond the scope of this paper, we performed an addi-
tional set of experiments to study how the presence of free OTL38 in circulation could affect
background NIR-DiFC signal and noise. To investigate this effect, we injected 2.5 μg OTL38 in
100 μL PBS intravenously via the tail vein (N ¼ 3) of 6- to 8-week-old female Athymic nude
mice. Each mouse was then scanned with NIR-DiFC 3-, 6-, 9-, 12-, and 24-h postinjection. The
noise calculated at each point was then used to estimate the effect on the SNR and detectability of
labeled cells as discussed below.

2.8 DiFC Data Analysis

During NIR-DiFC scanning, data are recorded continuously with a computer separately on both
fiber probes [Figs. 1(d) and 1(e)]. We used the DiFC postsignal processing approach reported
in detail by us previously,28 which in brief used the following steps.

1. Subtraction of the signal background. This is done by subtraction of the signal moving
median value with 5-s window.

2. Calculation of the signal noise (standard deviation) postbackground subtraction (BS) over
a 1-min moving window.

3. Identification of peak candidates with a threshold above five times the local noise, which
gives a minimum SNR of 20 log 10ð5Þ ¼ 13.9 dB.

In addition, use of two DiFC probes allows us to apply an additional matching condition
[Fig. 1(f)] for detections. Peak candidates from the probes are matched in either the forward
or reverse direction based on the peak amplitude, width, and transit time between the detectors.
Peaks that are not matched are discarded from the analysis. This ensures that detected peaks are
from cells moving in target arteries or veins. Unmatched peaks were normally from detected
cells in the capillary bed or other small blood vessels. This also discards spurious signals due
to instrument noise or motion artifacts, which normally appear as coincident peaks on both
probes. Endogenous autofluorescence from biological tissue is generally constant over the time-
scale of seconds (as opposed to transient fluorescent peaks from CTCs). Hence, these contribute
to the background signal and are subtracted off in step 1 above.

3 Results

3.1 NIR-DiFC Detection of Microspheres and Cells in Flow Phantom In Vitro

We first performed in vitro testing of NIR-DiFC by labeling several FR positive cell lines with
OTL38. We verified labeling using FC as shown in Fig. 2(a). Differing peak amplitudes were
due primarily to the variations in OTL38 contrast agent uptake by the cells and varying levels of
FR expression in the different cell lines. We then tested NIR-DiFC using an optical flow phantom
model [Fig. 2(b)], which, as previously shown, approximates the optical properties of bulk bio-
logical tissue in the NIR range.33 We passed suspensions of fluorescent microspheres and
OTL38-labeled cells through the phantom to mimic cells flowing through a blood vessel.
Peaks were never observed in control solutions of either PBS alone or unlabeled cells. An exam-
ple NIR-DiFC data scan for unlabeled L1210A cells is shown in Fig 2(c). Representative NIR-
DiFC data (background subtracted) are shown in Figs. 2(d)–2(g) for JGLI microspheres, and
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OTL38-labeled L1210A cells, SKOV-3 cells, and IGROV-1 cells, respectively. In each plot,
every vertical peak represents a forward-matched detection between the two NIR-DIFC probes.

The mean peak amplitude (fluorescent intensity) measured with NIR-DiFC for the different
microspheres and cell types averaged over a minimum of 90 peaks is summarized in Fig. 2(h). As
shown, the relative detection intensities are approximately in agreement with those measured
with FC as shown in Fig. 2(i), with similar variability in cell brightness (due to FR expression
and OTL38 binding) observed.

Although we used suspensions of 103 cells per mL here, as we and others have shown
previously28,31,36 in mouse models of metastasis, we expect in the range 10 to 100 CTCs per
mL of peripheral blood, corresponding to an expected in vivo DiFC count rate (assuming
∼100 μL blood flow per minute in the mouse tail28,31,36) of ∼60 to 600 cells per hour.

3.2 In Vivo Validation of NIR-DiFC with OTL38-Labeled L1210A Cells

We next tested NIR-DiFC in nude mice in vivo. L1210A cells were prelabeled with OTL38
in vitro and then injected intravenously via the tail vein. The fiber probes were placed on the
skin surface on the ventral side of the tail, approximately above the ventral caudal vascular
bundle as shown in Fig. 3(a). Representative data from an OTL38-L1210A injected mouse are
shown in Fig. 3(b). These peaks were never observed in control mice injected with unlabeled
L1210A cells [Fig. 3(c)] or in control (uninjected) mice as shown in Fig. 3(d).

As described in Sec. 2.8, for in vivo measurements, we imposed a matching condition,
examples of which are shown in Figs. 3(e)–3(h). Cells traveling in the forward, arterial direction
are detected as peaks sequentially measured on the first [Fig. 3(e)] and then second [Fig. 3(f)]
probes and separated by a time delay due to the 3-mm separation between probes. These are
indicated as green forward arrow markers in the longer data trace in Fig. 3(b). Likewise, cells
traveling in the reverse (venous) direction are sequentially detected by the second and then first
probe [Figs. 3(g) and 3(h)] and are indicated as orange reverse arrows. As we noted previously,
cells moving in the arterial direction (forward) are generally faster moving (shorter period
between sequential detections) than those moving in the venous direction (reverse).28

Unmatched peaks—likely due to cells traveling in the network of capillaries—are indicated
as round markers.

As shown in Fig. 3(i), the cell detection count rate stayed relatively constant over 60-min
scans, which is consistent with our previously observed circulation kinetics in the same mouse
model and cell line.36 Although we injected 106 L1210A cells, as in our prior work,36 many are
cleared from circulation in the “first pass effect”45 in the liver and lungs, after which a relatively
small number remain in circulation. To show this, in additional experiments (N ¼ 3 mice), we
drew ∼1 mL blood after NIR-DiFC scanning and used FC to count L1210A cells in the blood
[Fig. 3(j)]. From these, we found on average 29� 10 cells∕mL of peripheral blood. The average
measured average NIR-DiFC count rate in the last 10 min of the scan was 2.2� 0.9 cells∕min.
Assuming a typical blood flow rate in the tail ventral caudal artery of 100 μL∕min,46 this
corresponds to ∼22� 9 cells∕mL in the blood, showing very good agreement between the
methods.

3.3 Free OTL38 in Circulation Increases the Background Noise and
Affects Cell Detectability

In the future, we plan to use OTL38 as an injectable molecularly targeted fluorescent contrast
agent (as opposed to prelabeling cells as we have done here).36 Free dye in circulation increases
NIR-DiFC background noise and hence may affect cell detectability. To study this, we injected
2.5 μg of free OTL38 and measured the subsequent NIR-DiFC background signal. As shown in
Fig. 4(a), at 3 h, the background increased by a factor of ∼5.5 compared to preinjection baseline
background. As the OTL38 cleared from circulation, the background decreased over time and
was close to baseline after 24 h. Likewise, the noise (standard deviation) on the background
exhibited a similar clearance trend as shown in Fig. 4(b). To understand the effect of this noise
increase on cell detectability, we considered the distribution of detected SNRs of OTL38-labeled
L1210A cells (from the studies in Fig. 3) as shown in Fig. 4(c). Given the noise levels measured
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at different timepoints in Fig. 4(b), we calculated the resulting distribution of SNRs for 3-, 6-, 9-,
12-, and 24-h postinjection in Figs. 4(d)–4(h), respectively. The vertical red line in each panel
indicates the 13.9-dB detection threshold. As shown, increased noise at earlier timepoints (3- to
9-h postinjection) would reduce the fraction of cells detected compared to baseline. However, by
12 h, the noise returned to sufficiently low levels, suggesting sufficient clearance that free probe
would not affect detectability. This is a subject of ongoing work in our group.

We also note that the mean peak SNR at baseline background [Fig. 4(c)] was 26 dB. We
previously used a green folate targeted molecular probe (EC17) with the same mouse model and
found a mean peak SNR of 18 dB (at baseline background, no free EC17 intravenously injec-
tion).36 Although there were differences in the instrument, fluorophores, and placement of
the probe (tail versus hindleg), the SNR was significantly improved compared to our blue-green
(b-DiFC) system.

Fig. 3 In vivo testing of NIR-DiFC. (a) Fiber probes were placed on the surface of the mouse tail
approximately above the ventral caudal artery. (b) Representative NIR-DiFC data measured
from a mouse injected intravenously with OTL38-labeled L1210A cells. Each green arrowhead
is an arterial matched cell (traveling in artery), each orange arrowhead is a venous matched cell
(traveling in vein), and each yellow-labeled peak represents a detected unmatched cell (traveling
in capillary). (c) Representative NIR-DiFC data from a control mouse injected with L1210A.
(d) Representative NIR-DiFC data from an uninjected control mouse. (e), (f) Cell detected sequen-
tially in probes 1 and 2, indicating a cell traveling in the arterial direction. (g), (h) Cell detected
sequentially in probes 2 and 1, indicating a cell traveling in the venous direction. (i) The mean
cell detection rate over a 1-h scan indicating that cell numbers were approximately stable in
circulation. Range bars show the minimum and maximum values (N ¼ 3). (j) We counted
L1210A cells still in circulation following NIR-DiFC. Representative flow cytometry data from blood
samples. As described in the text, L1210A cells were prelabeled with both CFSE (green) and
OTL38 (NIR) prior to injection appearing as the double-labeled population (Q2).

Pace et al.: Near-infrared diffuse in vivo flow cytometry

Journal of Biomedical Optics 097002-8 September 2022 • Vol. 27(9)



3.4 NIR-DiFC Autofluorescence is Significantly Lower than Visible DiFC

In addition to the advantages of NIR-DiFC described above, as summarized in Fig. 5, we
observed that tissue autofluorescence is markedly reduced and the signal is free of motion
artifacts33 compared to our preclinical GFP-compatible b-DiFC instrument.31 Use of blue laser
light is widely understood to yield higher biological tissue autofluorescence than NIR light.47

Fig. 5 (a) Example breathing artifacts measured with our blue-green b-DiFC instrument. (b) These
generally can be corrected by simply adjusting the b-DiFC probe position on the skin, although
this causes loss of time. (c) In contrast, these motion (breathing) artifacts were not observed with
NIR-DiFC measurements. (d) Use of NIR laser light for DiFC resulted in significantly lower tissue
autofluorescence than blue light. (e) In practice, this resulted in a reduction in DiFC FAR.

Fig. 4 We studied the effect of injection of 2.5 μg OTL38 on the background NIR-DiFC signal and
noise following injection. (a) The background increased by a factor of ∼5.5, 3 h post OTL38 injec-
tion compared to the preinjection. By 24 h, the background was near baseline. (b) Likewise the
noise (standard deviation of the background), followed a similar trend and returned close to base-
line by 24 h. Considering the (c) SNR of detected OTL38-labeled L1210A cells as in Fig. 3, we
estimated the effect of the increased noise on the SNR (d) 3 h, (e) 6 h, (f) 9 h, (g) 12 h, and (h) 24 h
post-OTL38 injection. The red vertical line at 13.9 dB represents the cell detection threshold, and
the percentage of detectable cells compared to baseline as well as the mean SNR is indicated on
each plot.
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Likewise, use of blue-green light in fluorescence measurements is in general more sensitive to
breathing (motion) or photoplethysmography artifacts, which has been attributed to sensitivity of
the measurement to volume expansion and contraction in the capillary bed.48–50 We occasionally
observed this in our prior work with b-DiFC: an example b-DiFC data trace showing a breathing
artifact is shown in Fig. 5(a).18,30 Generally, when breathing artifacts are observed, we simply
adjust or reposition the b-DiFC fiber probe on the mouse skin surface to remove it [Fig. 5(b)].
However, these artifacts may occasionally result in false-positive peak detections.

In contrast, these motion artifacts were not observed in NIR-DiFC [e.g., Fig. 5(c)], which we
attribute to lower sensitivity to motion artifacts and generally reduced levels of tissue
autofluorescence.32 This is illustrated in Fig. 5(d), which shows the mean tissue autofluorescence
for b-DiFC and NIR-DiFC systems. The laser power at the surface was 20 and 25 mW for the
b-DiFC and NIR-DiFC, respectively. We note that in making this comparison, we explicitly
standardized (using the Hamamatsu H10722-20 PMT specifications documentation) the output
current between the two systems correcting for voltage output (b-DiFC) and current output (NIR-
DiFC) versions of the PMT module and correcting for differences in control voltage applied
between PMTs (which were lower with the b-DiFC system than NIR-DiFC system). In practice,
as shown in Fig. 5(e), lower noise levels resulted in a lower false alarm rate (FAR) with the NIR-
DiFC system compared to the b-DiFC system.

4 Discussion and Conclusions

We previously reported red and blue-green versions of DiFC, which we used to enumerate fluo-
rescently labeled or fluorescent protein expressing CTCs during metastasis development in sev-
eral mouse models.18,30,31 Beyond small animal models, one long-term goal for DiFC is potential
use in humans.34 As a first step to this, here we reported development of a NIR version of DiFC.
The rationale was threefold. First, we showed previously that NIR-DiFC should (in principle)
permit detection of CTCs in blood vessels 2 to 4 mm deep.33 Hence, major blood vessels in the
wrist or forearm of a human should be accessible with NIR-DiFC.35 The blood flow rates in such
vessels are in the order of 100 mL∕min, significantly higher than blood flow rates in mice, and
suitable for sampling large peripheral blood volumes relatively short (∼10 min) DiFC scans.34

Second, use of NIR laser light for DiFC yields lower tissue autofluorescence and lower inci-
dence of motion artifacts in DiFC data (Fig. 5). In practice, this results in fewer false positive
CTC detections and obviates the need for occasional realigning of the instrument. NIR fluoro-
phores are typically less bright than visible fluorophores, but as we showed the improved NIR-
DiFC fiber probe design allowed efficient geometric collection of fluorescent light. Combined
with lower autofluorescence, we showed clear detection of CTCs in vivo with SNRs ∼8 dB

higher than analogous experiments with our b-DiFC system.36

Third, many emerging fluorescence molecular contrast agents use NIR fluorophores because
they allow imaging in deeper tissues both in mice preclinically and in humans clinically.51 As
such, we designed NIR-DiFC to be compatible with these. We are currently evaluating OTL38
for labeling of CTCs for NIR-DiFC. We and others previously showed that small-molecule FR
targeted probes have significant potential for bright and specific labeling of CTCs in whole
blood.36 This is an ongoing area of research in our group.

Related to this, any use of DiFC in humans would also require the use of an administered
molecular fluorescence contrast agent that would allow specific and bright labeling of CTCs. We
and others have already showed that this is feasible using small molecule or antibody targeted
fluorescent molecular probes that are specific to cancer-associated cell surface markers.36,52,53

There are a large and growing number of molecular contrast agents under development for fluo-
rescence guided surgery with NIR dyes including ICG, S0406, and IRDye80.51 In this work, we
use OTL38, a folate analog conjugated to S0406, which targets the overexpression of cell surface
FR found in many types of cancers including ovarian, non-small-cell lung, mesotheliomas, and
triple-negative breast cancers.54,55 Although we only performed NIR-DiFC by injection of
OTL38-labeled L1210A cells here, analysis of the cell brightness data in Fig. 2(a) and in vivo
DiFC measurements in Fig. 4 suggests that more than 90% of IGROV-1 and SK-OV-3 cells also
would have been detectable. This is the subject of ongoing work in our lab.
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Future work will also evaluate labeling and detection of CTCs by systemic administration of
OTL38 in vivo (as opposed to prelabeling in vitro as we have done here) in preclinical metastasis
models. Alternative NIR contrast agents may be tested in the future, as well as use of NIR-DiFC
for other types of rare circulating cells.
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