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ABSTRACT. Significance: Traditional diffuse optical tomography (DOT) reconstructions are
hampered by image artifacts arising from factors such as DOT sources being closer
to shallow lesions, poor optode-tissue coupling, tissue heterogeneity, and large
high-contrast lesions lacking information in deeper regions (known as shadowing
effect). Addressing these challenges is crucial for improving the quality of DOT
images and obtaining robust lesion diagnosis.

Aim: We address the limitations of current DOT imaging reconstruction by introduc-
ing an attention-based U-Net (APU-Net) model to enhance the image quality of DOT
reconstruction, ultimately improving lesion diagnostic accuracy.

Approach: We designed an APU-Net model incorporating a contextual transformer
attention module to enhance DOT reconstruction. The model was trained on sim-
ulation and phantom data, focusing on challenges such as artifact-induced distor-
tions and lesion-shadowing effects. The model was then evaluated by the clinical
data.

Results: Transitioning from simulation and phantom data to clinical patients’ data,
our APU-Net model effectively reduced artifacts with an average artifact contrast
decrease of 26.83% and improved image quality. In addition, statistical analyses
revealed significant contrast improvements in depth profile with an average con-
trast increase of 20.28% and 45.31% for the second and third target layers,
respectively. These results highlighted the efficacy of our approach in breast
cancer diagnosis.

Conclusions: The APU-Net model improves the image quality of DOT reconstruc-
tion by reducing DOT image artifacts and improving the target depth profile.
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1 Introduction
In the United States, breast cancer is the most diagnosed and the second deadliest cancer. With an
estimated 297,790 new cases and 43,170 deaths annually, it continues to be a significant public
health concern, according to the American Cancer Society.1
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X-ray mammography, magnetic resonance imaging (MRI), and ultrasound (US) have been
applied in cancer screening and detection.2–14 However, mammography is known to exhibit low
contrast and sensitivity, particularly in younger women with dense breasts.10–13 MRI, on the other
hand, is constrained by the requirement for contrast agent injection, and the diagnostic utility of
US for solid masses is also limited.

To address these limitations, our group developed a portable frequency domain US-guided
diffuse optical tomography (DOT) system.15,16 DOT utilizes scattered near-infrared light to
reconstruct the distributions of optical absorption coefficients at selected wavelengths and map
the hemoglobin concentration of the biological tissue.17,18 Researchers have extensively inves-
tigated the use of DOT in the diagnosis of breast cancer and the estimation of tissue optical
properties.19–24 By incorporating DOT into breast cancer diagnosis, we can potentially improve
the accuracy of breast cancer detection and reduce the need for unnecessary biopsies, ultimately
improving patient outcomes.

DOT has been proven to downgrade the biopsy recommendation of Breast Imaging
Reporting and Data System assessments by 23.5% for benign lesions,25 implying a huge poten-
tial for reducing high false positives in US-based diagnoses. However, as illustrated in Fig. 1, the
quality of DOT images is degraded by many problems: source artifacts when imaging shallow
lesions, artifacts caused by poor optode–tissue coupling, a mismatch between the reference and
target sides, tissue heterogeneity, and lesion posterior shadowing. The reconstruction of shallow
targets, which are located close to the probe-tissue interface, tends to include sources on the
probe itself that impede getting a correct hemoglobin reading from the images. DOT reconstruc-
tions are also sensitive to measurement errors when the probe is in poor contact with the tissue
and tissue heterogeneity. The former problem causes hot spots on the non-lesion regions, for
example, at the edge of the reconstructed DOT image, while the latter issue introduces multiple
target-like objects. Besides, a large, high-absorption lesion absorbs more light from the top layer
in depth and causes fewer photons to penetrate deeper layers; thus, the reconstructed absorption
profile loses the details in the deeper region. Therefore, improving the quality of DOT recon-
struction is essential to downstream tasks, including diagnosing malignant and benign lesions.

Fig. 1 Degraded DOT reconstructions. By rows, from left to right: high-quality reconstruction,
reconstruction of shallow targets with source distribution on top, reconstruction with optode cou-
pling issue, reconstruction with multiple objects due to tissue heterogeneity, and the shadow effect
caused by the absorption of the top layer.
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Recently, many research groups have proposed various deep learning-based methods for
DOT reconstruction and quality improvement. Zhao et al.26 introduced an unroll-DOT frame-
work, utilizing a refined U-Net to enhance DOT images following an unroll-network process.
Ko et al.27 integrated deep neural networks with conventional DOT reconstruction methods,
resulting in a notable enhancement in image quality compared with traditional approaches.
Yedder et al.28 presented a multitask deep learning framework for reconstruction and lesion
localization in limited-angle DOT. They used physics-based simulations to create synthetic data-
sets and applied a transfer learning approach to bridge the sensor domain gap between in silico
and real-world data, yielding promising results in a clinical example. Deng et al.24 developed the
FDU-Net, which consists of a fully connected subnet, a convolutional encoder-decoder subnet,
and a U-Net, for three-dimensional DOT reconstruction, also demonstrating favorable outcomes
in one clinical case. However, these approaches have limitations. Many of them lack extensive
validation with clinical datasets or have been tested on only one or two patient cases. The chal-
lenges inherent in DOT reconstruction, compounded by image resolution limitations, hinder the
widespread adoption of deep learning techniques in DOT image enhancement. Besides, the
absence of ground truth in clinical images introduces a significant barrier to supervised learning
due to the domain shift issues between the simulated and clinical data.

Other than the artifacts of DOT images, one primary challenge in reconstruction is the impact
of target size and depth, which can adversely affect the accuracy of the reconstructed absorption
maps. Specifically, smaller and deeper targets are often under-reconstructed, which means the
reconstructed lesion suffers from a lower absorption coefficient, limiting the diagnostic accuracy.

U-Net has emerged as a pivotal architecture in image enhancement due to its unique ability
to preserve spatial information while effectively capturing contextual features. U-Net–based
models have demonstrated versatility and effectiveness in image reconstruction applica-
tions,29–32 such as those by Chen et al.30 and Chowdary and Yin.31 The skip connections in
U-Net enable the precise reconstruction of images, making it particularly useful for tasks where
accurate localization and reconstruction are required. Given these strengths, our use of a U-Net–
based model is aimed at achieving high-fidelity reconstructions with improved accuracy, building
on its proven track record in image processing tasks. This design helps address the challenges
posed by variable target sizes and depths, leading to improved accuracy.

However, U-Net’s performance may be affected by the low resolution of functional DOT
inputs. Thus, we introduced the contextual transformer (CoT) attention module33 into the U-Net
to obtain a more target-focused and highly generalizable deep learning model. The attention
module, a pivotal component in modern neural network architectures, facilitates the dynamic
weighting of input features, allowing the model to selectively focus on relevant information.
By applying the attention module, the model focused more on the relationship between the adja-
cent depth layers of the DOT reconstruction and the artifacts around the target in the image.

In this study, we present a novel deep learning framework with an attention module to
enhance the contrast and remove the artifacts in DOT reconstruction. The attention-based U-
Net (APU-Net) model takes the reconstructed DOT image and the corresponding fine mesh infor-
mation as the input, predicting the measurement in the bottleneck as the forward model, and then
outputs the enhanced DOT images as the solver of the inverse problem for DOT reconstruction.
After training exclusively on simulation and phantom data, the model demonstrated commend-
able efficacy in enhancing depth contrast and eliminating artifacts in clinical DOT images. To our
knowledge, this is the first application of a deep learning model to enhance DOT reconstructions
with a large patient dataset, with potential applicability to other DOT systems.

2 System Structure and Methods

2.1 System Structure
A frequency-domain US-guided DOT system designed by our group was utilized to collect phan-
tom and patient data.16 The system employed a hand-held probe that integrated nine source fibers
and 14 detection fibers. The light was delivered sequentially at four wavelengths (730, 785, 808,
and 830 nm) to each of the nine fibers, and 14 parallel photomultiplier tube detectors detected the
light from each source position simultaneously. The laser diodes were modulated at 140.02 MHz,
and the system utilized heterodyne detection to mix the detected signals with a 140-MHz
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reference signal to generate 20-kHz signals. Following this, the output of the mixer for each
channel underwent amplification and filtering at 20 kHz before being sampled by a 16-channel
analog-to-digital converter.

For real-time US image guidance, we positioned a commercial linear US probe at the center
of the DOT probe to obtain US and DOTmeasurements of the targeted lesion beneath, as detailed
in Ref. 34. The system is depicted in Fig. 2. The probe position was fixed during DOT data
acquisition, with a data acquisition time of ∼3 to 4 s for each data set. US recording was paused
during DOT data acquisition and resumed once the DOT data collection was complete.

2.2 Simulation and Phantom Configuration
To mimic the clinical dataset as much as possible and make our model more generalizable
to the clinical dataset, we employed the finite element method (FEM) in COMSOL software
and conducted Monte Carlo (MC) simulations using the Virtual Imaging Clinical Trial for
Regulatory Evaluation (VICTRE)35 breast phantom to generate forward measurements. The
FEM simulation can replicate the DOT reconstruction with artifacts in shallow targets.
Meanwhile, the MC simulation sought to reproduce DOT reconstruction with artifacts related
to tissue heterogeneity by varying the fat fraction within the digital breast phantom.

For the FEM approach, we approximated complex clinical scenarios as a single-target
breast-shaped model. In the setting of geometry, a hemisphere with a radius of 10 cm was
employed. Various inclusions, such as a ball, ellipsoid, cube, a ball with two combined hemi-
spheres, a star, and letters, were considered with varying absorption coefficients to improve the
complexity of the dataset. In the simulation, we positioned nine sources and 14 detectors based
on the geometry of our clinical DOT probe. Further details of this setting can be found in Ref. 36.

In the MC approach, the digital phantom generated by VICTRE, with a radius of 7 cm and
height of 5 cm, served as a heterogeneous condition by incorporating various tissue types.
Simulations were performed by translating and rotating the probe on the phantom, with fat frac-
tions varying from 20% to 80%. Additional details of the MC simulation can be found in Ref. 37.

For the phantom study, we utilized high-contrast targets made of calibrated polyester resin
(μa ¼ 0.23 cm−1) and low-contrast targets made of silicon (μa ¼ 0.11 cm−1). The targets were
immersed in an intralipid solution (μa ¼ 0.02 cm−1, μ 0

s ¼ 6 − 8 cm−1) and placed over a silicon
plate whose μa was similar to that of the solution. We recorded the co-registered US images and
the DOT measurements with different targets centralized underneath the probe.

In this study, we utilized 10,975 sets of simulation data and 360 sets of phantom data.
Further dataset details are provided in Table 1.

2.3 DOT Patient Data
Our US-guided DOT system has been utilized in clinical studies with protocols that received
approval from the appropriate Institutional Review Boards and complied with the Health
Insurance Portability and Accountability Act.38,39 All participants were fully informed about the
study’s purpose, procedures, and potential risks before signing a written consent form. To

Fig. 2 Sketch of the DOT system. The probe is placed on the compressed breast.
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maintain patient confidentiality, all data used in this study were de-identified. Table 2 lists the
details of the histologic group, age, histologic diagnosis, and information on shallow cases.

2.4 Conjugate Gradient Descent (CGD) Reconstruction
We used the CGD reconstruction as the input for our model. Details about this reconstruction
method can be found in Ref. 40. In summary, we modeled photon migration using a diffusion
equation for the photon density wave and applied the Born approximation to relate the scattered
field (Usc) to the changes in absorption coefficients (δμa), as follows:

EQ-TARGET;temp:intralink-;e001;117;212½Usc�m×1 ¼ ½W�m×n½δμa�n×1; (1)

where W is the weight matrix derived from the diffusion equation for a semi-infinite medium.
The variable m represents the number of measurements, and n represents the number of voxels.

To solve for δμa, we formulated the inverse problem as

EQ-TARGET;temp:intralink-;e002;117;153arg minδμa

�
kUsc −Wδμak2 þ

λ

2
kδμa − δμ0ak2

�
; (2)

where k · k is the Euclidean norm, δμ0a is the initial estimate of the optical properties, and λ is the
regularization parameter. This formulation allows us to estimate the changes in absorption coef-
ficients while balancing the data-fitting term and the regularization term, which contributes to the
stability and accuracy of the reconstruction.

Table 2 Patient information.

Histologic
group (n) Age (years) (range)

Histologic diagnosis
on biopsy (n)

Shallow cases with
artifacts (n) (average age)

Benign (53) 43.25� 12.00
ð18 − 72Þ

Fibrocystic changes (22) 26 ð40.25� 12.28Þ

Fibroadenomatous (24)

Proliferative (7)

Malignant (30) 57.29� 13.72
ð34 − 81Þ

Invasive ductal carcinoma (18) 8 ð64.71� 15.28Þ

Invasive lobular carcinoma (3)

Invasive mucinous carcinoma (4)

Invasive mammary carcinoma (1)

Papillary carcinoma (4)

Table 1 Range of parameters used in simulations and phantoms.

Simulation

PhantomFEM MC

Target size (diameter/length)/cm ∼1.0 to 4.0 ∼1.0 to 3.0 1.0 to 3.0

Target center depth/cm ∼0.8 to 3.5 ∼1.5 to 2.5 1.0 to 3.5

Target μa cm−1 ∼0.1 to 0.3 ∼0.1 to 0.2 0.11/0.23

Target μ 0
s cm−1 ∼4.0 to 8.0 ∼4.0 to 8.0 6.0

Background tissue μa cm−1 ∼0.02 to 0.06 Fat fraction ∼20% to 80% 0.02

Background tissue μ 0
s cm−1 ∼4.0 to 8.0 Fat fraction ∼20 to 80% 6.0

Chest wall μa cm−1 ∼0.1 to 0.2 — —
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The spatial grid used for reconstruction measures 9 cm × 9 cm × 3.5 cm. This grid is di-
vided into a fine-mesh grid centered at the lesion location and a coarse-mesh grid for the back-
ground. The resolutions for the fine and coarse meshes are 0.25 cm × 0.25 cm × 0.5 cm and
1.5 cm × 1.5 cm × 0.5 cm, respectively. Lesions typically occupy one to three depth layers
of our seven-layer reconstruction, indicating that most lesions have a vertical diameter of 0.5
to 2 cm.

3 APU-Net Model

3.1 Overall Structure
The overall network structure, depicted in Fig. 3, comprises two main components: an encoder,
which solves the forward diffusion equation, and a decoder, which addresses the inverse prob-
lem, mapping perturbations to spatial absorption distributions.

In the encoder, the reconstruction DOT images and their corresponding fine-mesh regions
serve as inputs, where the fine mesh delineates a refined grid in the spatial domain. By preserving
the background as a coarser mesh grid, computational resources are concentrated on specified
areas, enhancing the accuracy of the result. The concatenation of the reconstruction and fine
mesh is then fed into an attention-convolution block, comprising a convolution layer followed
by a CoT module, as elaborated in Sec. 3.3. Subsequently, a pooling layer compresses the fea-
tures to a lower dimension. This module repeats four times, ultimately reshaping the output into a
one-dimensional array.

In the bottleneck, multiple fully connected layers map the one-dimensional features to the
perturbation, addressing the forward problem. The mean square error (MSE) loss between the
bottleneck output and the perturbation is calculated as part of the final loss equation. The per-
turbation undergoes additional fully connected layers and is reshaped back to a three-dimen-
sional form.

In the decoder, we begin by concatenating features from the encoder side as a skip con-
nection, strategically employed to prevent overfitting. Then, four attention-conv blocks are uti-
lized to decode these features into the reconstruction. We reinforce the spatial distribution
emphasis by again concatenating the fine mesh with the features. Conclusively, two additional
convolution layers are applied to acquire the enhanced reconstruction, solidifying the decoder’s
role as the solver for the inverse problem in the diffusion equation.

3.2 CoT Attention Block
A DOT reconstruction, being a functional image, often lacks lesion detail due to low resolution,
posing challenges for traditional deep learning models to accurately recognize targets and

Fig. 3 Structure of the APU-Net model. The encoder, up to the perturbation, functions as the solver
for the photon diffusion equation, while the remaining neural network components serve as the
solver for the inverse problem.
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achieve satisfactory performance. To address this issue and improve the model’s focus on target
areas within the DOT image, we introduced the CoT block as a self-attention module. The CoT
module, designed to aggregate contextual information among input keys for guiding the learning
of a dynamic attention matrix, demonstrates substantial potential in visual recognition. By link-
ing neighboring information in keys to queries, it enables adaptive focus on the lesion and sur-
rounding areas. This addition aids the model in understanding features more effectively and
assigning attention to relevant areas.

The CoT module’s structure, as outlined in Fig. 4(a), involves transforming a 3D feature map
X (with dimensions H ×W × C) into keys K ¼ X, queries Q ¼ X, and values V ¼ XWv, where
Wv is the embedding matrix, achieved through a 1 × 1 convolution. Departing from the tradi-
tional method, which uses 1 × 1 convolution to encode the keys, the CoT module utilizes k × k
convolution over the neighbor keys within the k × k spatial grid. The learned keys, denoted as the
mined static context K1, take the shape of H ×W × C. The module then embeds attention
by concatenating K1 and the Q then processing them with attention embedding Ae which
includes two consecutive 1 × 1 convolutions with a rectified linear unit activation after the first
convolution:

EQ-TARGET;temp:intralink-;e003;117;331Im ¼ Ae½K1; Q�: (3)

Here, unlike the isolated pairwise convolution, the CoT module combines the query with the
key and the surrounding area at each location. Subsequently, the dynamic contextual represen-
tation of inputs K2 is calculated as

EQ-TARGET;temp:intralink-;e004;117;270K2 ¼ V � softmaxðImÞ; (4)

where * stands for element-wise multiplication. Finally, the CoT module returns the fusion of the
static context K1 and the dynamic context K2 as the refined feature map XF as33

EQ-TARGET;temp:intralink-;e005;117;223XF ¼ attentionðQ;K; VjXÞ ¼ K1 þK2 ¼ V � softmaxðAR½convk×kðKÞ; Q�Þ: (5)

3.3 Loss Function and Training Schemes
To refine the model’s focus on lesions within the image, we employed a weighted MSE loss Li

for reconstruction, expressed as

EQ-TARGET;temp:intralink-;e006;117;151LiðwÞ ¼ kaðθðwjδμa; mfÞ − δμða;gÞÞtarget þ bðθðwjδμa; mfÞ − δμða;gÞÞbackk2; (6)

where θ represents the APU-Net, δμa and mf denote the reconstructed DOT images and cor-
responding fine mesh, respectively, and δμða;gÞ signifies the ground truth. Finally, a and b re-
present the weights in the weighted MSE loss for the target area and background, respectively. Li

adjusts weights to prioritize lesion areas, augmenting inclusion weights while reducing back-
ground weights.

Fig. 4 (a) Structure of the attention-conv block, where the “×” and “þ” blocks denote the element-
wise multiplication and addition operations, respectively. (b) Detailed architecture of the attention
embedding module.
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In addition, to measure the semantic difference between the enhanced reconstruction and the
ground truth, we utilized a pre-trained VGG1641 model to extract feature domain loss Lf as the
perceptron loss42

EQ-TARGET;temp:intralink-;e007;114;700LfðwÞ ¼ kFVGGðθðwjδμa; mfÞÞ − FVGGðδμða;gÞÞk2; (7)

where FVGG signifies the features of the pre-trained VGG16.
The MSE loss Lp between the bottleneck output and the perturbation, as mentioned in

Sec. 3.1, is calculated as

EQ-TARGET;temp:intralink-;e008;114;638LpðwÞ ¼ kθ�ðw�jδμa; mfÞ − Usck2; (8)

where w� and θ� represent the encoder portion up to the perturbation in APU-Net and Usc rep-
resents the perturbation.

The overall loss combines perturbation and reconstruction aspects, defined as

EQ-TARGET;temp:intralink-;e009;114;578LossðwÞ ¼ αLpðwÞþ βLiðwÞþ γLpðwÞ: (9)

Here, α, β, and γ denote the weights for each loss, optimized during training.
In accordance with Sec. 2.2, we initially trained the model exclusively on multiple-target

simulations, employing a learning rate of 0.0001 over 200 epochs. To manage the learning rate
decay, a threshold of 0.01 was established, triggering adjustment if substantial loss drops were
not observed within a specified epoch range. Subsequently, we conducted fine-tuning using sin-
gle-target simulations and phantom data to reflect typical clinic scenarios. This phase employed a
learning rate of 0.00005, consistent with the previous weight decay, and spanned 200 epochs.
Following the training and fine-tuning, we determined the coefficients for loss calculation to be
α ¼ 5, β ¼ 1, γ ¼ 0.01, a ¼ 0.98, and b ¼ 0.02, ensuring a balanced consideration of different
components within the loss function from the grid search.

In addition, we applied various data augmentation techniques. These included adding ran-
dom Gaussian noise to the original DOT reconstruction, rotating images randomly within a range
of −45 to 45 deg, and applying random affine transformations. The affine transformations
encompassed random variations in the rotation, translation, and scaling.

3.4 Evaluation Metrics
We assessed the performance of our model by measuring its effectiveness in removing artifacts
and improving target contrast in different depth layers. To evaluate artifact contrast, we intro-
duced the metric Carti, defined as the ratio of the maximum hemoglobin concentration within the
artifact region to the maximum hemoglobin concentration within the lesion region

EQ-TARGET;temp:intralink-;e010;114;313Carti ¼
maxðhemoartiÞ
maxðhemolesionÞ

: (10)

A lower value of Carti indicates better artifact removal.
For depth contrast, we calculated the hemoglobin contrast among different depth layers.

Specifically, we defined C12 as the ratio of the maximum hemoglobin concentrations between
the second and first depth layers, and C13 as the ratio between the third and first layers. Unlike the
artifact contrast, for C12 and C13, a value closer to one suggests that the hemoglobin contrast is
consistent across layers, which is desirable.

4 Results

4.1 Test Results on Simulation Dataset
We first evaluated the model’s performance using a separate simulation dataset. Figure 5 presents
a boxplot comparing the input, output, and ground truth results, providing a detailed overview of
the performance. In this dataset, which includes 1647 simulated cases, our APU-net successfully
improved the depth contrast for both layers.

For the depth contrast between the first and second layers (C12), our model increased the
contrast from an initial average of 0.9926 ð�0.1048Þ to 0.9989 ð�0.0353Þ. Similarly, for the
depth contrast between the first and third depth layers (C13), the model improved the contrast
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from 0.9836 ð�0.1004Þ to 0.9997 ð�0.0335Þ. More importantly, the APU-Net significantly
reduced the variance of the contrast.

4.2 Artifact Removal on Clinical Dataset
We then assess the model’s generalization to clinical datasets. We leverage examples of clinical
DOT hemoglobin maps to showcase the model’s efficacy in artifact removal. Notably, the hemo-
globin maps are derived from the absorption distribution at four wavelengths.34 Figure 6 presents
three instances of low-quality reconstructions, accompanied by US images highlighting the tar-
gets on the left side, which include several dashed orange lines indicating the different depth

Fig. 5 Comparative depth contrasts among the input reconstruction, the output of the model, and
the ground truth.

Fig. 6 Examples of low-quality DOT reconstructions and corresponding corrected DOT images
from the clinical dataset, with blue ovals indicating the locations of lesions. (a) A shallow malig-
nancy with a source pattern obscuring the lesion’s top. (b) A deeper malignancy with shadow
effects. (c) A benign lesion with artifacts attributed to tissue heterogeneity.
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layers of the lesion, along with one line representing the upper depth layer and one representing
the lower depth layer.

In Fig. 6(a), we observe a malignant case at a shallow depth of 0.6 cm, where the lesion’s
upper portion is obscured by sources near the probe surface. The model’s output on the right
presents a more refined target at the center, with all source artifacts effectively removed.
Figure 6(b) illustrates another malignant case, characterized by shadow effects stemming from
intense absorption in the top layer. Here, our APU-Net model successfully restores the target’s
absorption, aligning closely with the first layer’s shape and value, indicative of a favorable depth
profile. Figure 6(c) showcases a benign case with artifacts caused by the heterogeneous back-
ground tissue. Here, the model adeptly identifies the lesion at the center while eliminating sur-
rounding artifact-like regions, albeit exhibiting a lower maximum hemoglobin. Next, we
compare the artifact contrasts of the original reconstructions and the outputs from the model.

Figure 7(a), a boxplot of the inputs and outputs, shows the statistical details of the images.
Based on 34 patients with artifacts caused by shallow targets or tissue heterogeneity, the model
reduced the artifact contrast from 0.8448 ð�0.2888Þ to 0.5580 ð�0.1678Þ. Figures 7(b) and 7(c)
break down the artifact contrast by benign and malignant groups. For the benign group, the APU-
Net decreased the artifact contrast from 0.8691 ð�0.2901Þ to 0.5787 ð�0.1755Þ. In the malig-
nant group, the artifact contrast was reduced from 0.7971 ð�0.1785Þ to 0.4907 ð�0.1263Þ.
These results clearly demonstrate the effectiveness of our model in reducing artifact contrast
across different types of lesions.

These examples underscore the model’s seamless transition from simulation and phantom
studies to clinical scenarios, demonstrating its robust performance. Subsequently, we provide
further statistical analysis of the model’s efficacy on clinical data.

Fig. 7 Comparison of artifact contrasts between the input reconstruction and the output of the
model. (a) Artifact contrast for all cases. (b) Artifact contrast for the benign group. (c) Artifact con-
trast for the malignant group.
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4.3 Statistics on Clinical Dataset
To elucidate the model’s efficacy in enhancing depth profiles within clinical settings, we con-
ducted a comprehensive analysis based on data collected from 83 patients. Among these patients,
45 had DOT reconstructions with more than two layers, while 20 had DOT reconstructions with
three layers. In Fig. 8, we depict the maximum hemoglobin contrast as introduced in Sec. 3.3.
After excluding six cases in the second-layer calculation and three cases in the third-layer
calculation due to exceptionally low hemoglobin levels, our APU-Net model demonstrates
notable improvement in contrast for deeper layers. Specifically, the contrast for the second layer
C12 increased from 0.7273 ð�0.1650Þ to 1.0688 ð�0.1379Þ, while for the third layer C13, it
improved from 0.3811 ð�0.1941Þ to 1.0611 ð�0.1045Þ.

We then examined the depth contrast, separated into benign and malignant groups, as shown
in Fig. 9. We observed significant differences in all subgroups (second-layer benign, second-
layer malignant, and third-layer malignant), except for the third-layer contrast in the benign
group, where only one patient’s data were available, making statistical analysis difficult. In the
second layer, the depth contrast improved from 0.7634 ð�0.1225Þ to 1.0724 ð�0.1972Þ for
the benign group and from 0.7020 ð�0.1881Þ to 1.0663 ð�0.0800Þ for the malignant group.
For the third-layer contrast in the malignant group, the APU-Net increased the contrast from
0.3892 ð�0.1987Þ to 1.0665 ð�0.1063Þ, indicating a significant improvement.

We computed the maximum hemoglobin values, categorized by benign and malignant cases.
For benign cases, the average output value is 64.24� 18.83 μM, which is lower than the input
average value of 69.84 � 12.56 μM. For the malignant cases, the averaged outputs are
82.70� 20.67 μM, which is higher than the input hemoglobin of 75.73� 21.57 μM, with a
similar variance. There is no statistical significance between the input and output of the benign
and malignant subgroups, respectively, which is expected since the goal of the study is to reduce
image artifacts and improve the lesion depth profile. Furthermore, our analysis revealed that our
APU-Net model enhanced the differentiation between benign and malignant groups, as illus-
trated in Fig. 10. This finding underscores the potential of our model to enhance diagnostic accu-
racy in future studies.

4.4 Ablation Study
Ablation studies were conducted to evaluate the impact of key design components in APU-Net
on synthesis performance. We focused on the effectiveness of the attention module, by removing
it to measure the enhancements facilitated by the attention blocks. To assess the impact of
employing attention modules in the neural net, we evaluated the artifact contrast along with the
depth profiles of the second and third layers in the DOT reconstruction.

Figure 11 presents the results for artifact contrast. We observed a significant improvement
when using APU-Net with the attention module than without it. APU-Net achieved an artifact
contrast of 0.5580 ð�0.1678Þ, whereas the configuration without the attention module had an
artifact contrast of 0.6530 ð�0.1964Þ.

Fig. 8 Contrast of hemoglobin between the second and first layers, as well as between the third
and first layers.
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Fig. 10 Maximum hemoglobin levels in benign and malignant groups, categorized by input recon-
struction and APU-Net output.

Fig. 9 Depth contrast subgroup study. (a) Second-layer contrast for the benign group. (b) Second-
layer contrast for the malignant group. (c) Third-layer contrast for the malignant group.
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Figure 12 illustrates the contrasts of deeper layers versus the first lesion layer. Removing
the attention modules from the model resulted in a second-layer contrast of 1.1169� 0.3998

and a third-layer contrast of 0.8976� 0.1826. While the model without the attention module
showed a similar mean contrast compared with the current model, it also demonstrated larger
variances either in the second or the third layer. In addition, the exclusion of the attention
module during training led to ∼32% and 23% reductions in hemoglobin value for benign and
malignant cases, respectively, emphasizing the critical role of attention modules in enhancing
the model’s spatial distribution awareness and, consequently, preserving accurate values in the
enhanced images.

5 Discussion and Conclusion
In this paper, we introduced an APU-Net model designed to enhance the quality of DOT recon-
structions, effectively mitigating artifacts, improving depth profiles, and improving contrast in

Fig. 12 Deeper layer contrast for ablation study. (a) Second-layer contrast. (b) Third-layer
contrast.

Fig. 11 Artifact contrast for ablation study.
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DOT images. The architecture of our model incorporates a U-Net structure augmented with a
CoT attention module, followed by convolutional layers. The extraction of the bottleneck as the
perturbation empowers the model to serve as a solver for both the forward diffusion equation and
the inverse problem. Our training strategy, coupled with diverse target assignments in the sim-
ulation and phantoms, significantly enhances the model’s generalization to real-world clinical
scenarios.

Transitioning to clinical datasets, our framework demonstrated robust generalization, suc-
cessfully removing artifacts and improving image quality. This adaptability from simulation to
clinical settings underscores its potential clinical utility in improving diagnostic accuracy.
Statistical analyses further validate the efficacy of our approach, revealing significant improve-
ments in artifact removal and depth profile contrast.

However, despite the promising performance of our model on low-quality clinical DOT
reconstructions, there is room for improvement. The maximum hemoglobin values play a crucial
role in our DOT study, as they can be important for downstream tasks such as differentiating
between benign and malignant lesions. Although our model was not designed to perform this
function, the analysis revealed that our APU-Net model enhanced the differentiation between
benign and malignant groups. This finding underscores the potential of our model to enhance
diagnostic accuracy in future studies.

In conclusion, while our model shows promising performance in enhancing DOT recon-
structions, ongoing refinement and validation efforts are necessary to optimize its clinical utility
and ensure its effective use in diverse patient populations.
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