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ABSTRACT. Significance: Photoacoustic computed tomography (PACT) is a promising non-
invasive imaging technique for both life science and clinical implementations. To
achieve fast imaging speed, modern PACT systems have equipped arrays that have
hundreds to thousands of ultrasound transducer (UST) elements, and the element
number continues to increase. However, large number of UST elements with parallel
data acquisition could generate a massive data size, making it very challenging to
realize fast image reconstruction. Although several research groups have developed
GPU-accelerated method for PACT, there lacks an explicit and feasible step-by-step
description of GPU-based algorithms for various hardware platforms.

Aim: In this study, we propose a comprehensive framework for developing GPU-
accelerated PACT image reconstruction (GPU-accelerated photoacoustic com-
puted tomography), to help the research community to grasp this advanced image
reconstruction method.

Approach: We leverage widely accessible open-source parallel computing tools,
including Python multiprocessing-based parallelism, Taichi Lang for Python,
CUDA, and possible other backends. We demonstrate that our framework promotes
significant performance of PACT reconstruction, enabling faster analysis and real-
time applications. Besides, we also described how to realize parallel computing on
various hardware configurations, including multicore CPU, single GPU, and multiple
GPUs platform.

Results: Notably, our framework can achieve an effective rate of ∼871 times when
reconstructing extremely large-scale three-dimensional PACT images on a dual-
GPU platform compared to a 24-core workstation CPU. In this paper, we share
example codes via GitHub.

Conclusions: Our approach allows for easy adoption and adaptation by the
research community, fostering implementations of PACT for both life science and
medicine.
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1 Introduction
Photoacoustic (PA) computed tomography (PACT) is a non-invasive imaging modality with vari-
ous applications in life science research and clinical settings, such as cancer, vascular mapping,
and therapy guiding and monitoring.1,2 In PACT, a short-pulsed laser illuminates the tissue, gen-
erating acoustic waves (PA signal) due to thermoelastic expansion after the tissue absorbs photon
energy. These acoustic waves are detected by ultrasonic transducers (USTs) and then used to
reconstruct the initial pressure distribution in the tissue, which is directly related to the spatial
distribution of the optical absorption.3,4 PACT combines the advantages of ultrasound and optical
imaging, offering high spatial resolution, deep imaging depth, and functional imaging
capability.5–8 However, PACT imaging faces challenges in fast image reconstruction due to the
massive size of data with the quick increase in the total number of UST elements.9,10

The image reconstruction process in PACT involves solving an inverse problem based on
the detected time-resolved acoustic signals. Various image reconstruction algorithms have been
developed for PACT, including time-domain algorithms, such as back-projection,11 frequency-
domain algorithms, such as Fourier transform-based methods,12 and iterative algorithms, such as
model-based inversion.13 However, the computational complexity of these algorithms will face a
significant challenge as the data size becomes significantly large due to an increase in both UST
elements and imaging frames.

GPUs are highly parallel and efficient in executing large amounts of mathematical
operations simultaneously, making them well-suited for various applications beyond graphics
processing, including high-speed medical image reconstruction. Besides, GPUs are more
cost-effective compared to other specialized hardware options, such as field-programmable gate
arrays or application-specific integrated circuits (ASICs). Several research groups have
developed GPU-accelerated methods for PACT reconstruction to address the computational
challenges.14–25 However, there is a lack of detailed guidance on implementing GPU acceleration
for various hardware configurations, especially for many research labs without expertise in GPU
programming. Although CUDA C++ is preferred owing to its efficient parallel processing capa-
bilities, its distinct programming model and syntax require a deep understanding of parallel com-
puting and GPU architecture, making it challenging for most researchers not professionally
trained in related computer science.

Currently, there have been some standardized attempts for PACT, such as IPASC,26 aim to
provide standards for data formats, phantom properties, image quality characteristics, and clini-
cal requirements; and graphical user interface applications, such as PATLAB.27 However, these
attempts still lack efficient GPU image reconstruction algorithms. This is because of not only the
difficulty in programming and integrating CUDAC++ programs but also challenging issues with
environment configuration and platform compatibility. In contrast, our efforts are primarily
focused on the development process for high-performance PACT reconstruction algorithms
based on GPU, encompassing standardized raw data import, optimized reconstruction kernel
functions, and the capability for multi-GPU usage. We provide a comprehensive framework for
developing GPU-accelerated photoacoustic computed tomography, called GAPAT, that leverages
widely used open-source parallel computing tools, such as Python multiprocessing-based par-
allelism, Taichi Lang for Python, CUDA, and possible other backends, which improves the con-
venience of programming these GPU reconstruction algorithms and ensures compatibility during
integration, as well as facilitate the use of modern scientific computing libraries and AI tools,
such as the three-dimensional (3D) image display and processing tool NAPARI28 (an interactive
viewer for multidimensional images in Python), and the powerful image segmentation tool
SAM29 (a zero-shot segmentation system proposed by Meta AI).

To leverage GPU capabilities, several programming tools have been developed. One of the
main scientific computing tools used in GAPAT is the Taichi Lang for Python.30 Compared to
CUDAC++, the Taichi allows developers to write GPU code using Python syntax, provide high-
level abstractions, and facilitate seamless integration with existing Python workflows, making
GPU programming much more friendly to developers, thus lowering the entry barrier for
researchers with limited expertise in GPU programming and CUDA. Taichi is a cutting-edge
programming language and framework designed for computer graphics, computational physics,
and other high-performance numerical computation tasks,31–33 which is embedded within Python
and uses just-in-time compilation architecture (such as LLVM) to translate Python source code
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into native instructions for GPU or CPU. A researcher familiar with Python can easily use Taichi
and, by extension, our framework code.

This is especially true for PACT reconstruction, which frequently utilizes delay-and-sum
(DAS) type algorithms and which primarily requires extensive indexing and vector summation
operations, where vector summation’s most common parallel computing optimization technique
is reduction. Taichi is capable of automatically implementing reduction optimizations via its
compiler, achieving performance, such as highly optimized CUDA code, which is one of the
main optimizations our framework provides. Besides, some other Python computation libraries,
such as CuPy, can only implement more complex operations by writing CUDA code, making
it challenging to be considered a high-performance programming library that is fully Python-
fronted. The proposed GAPAT offers significant performance improvements for PACT
image reconstruction, enabling faster analysis and real-time applications. By using the Taichi
library, which abstracts away many of the complexities of parallel programming and enables
developers to focus on writing their reconstruction algorithms, reconstruction programs can
be feasibly adapted to run efficiently on a wide range of modern hardware platforms from
CPU to GPU. In addition, the GAPAT can also extend image reconstruction algorithms to
large-scale workstations and servers with multiple GPUs to use all computing resources of
hardware.

2 Materials and Methods
Figure 1 describes the overall framework of GAPAT for developing GPU-accelerated PACT
image reconstruction using open-source parallel computing tools. The framework consists of
four main steps: data preprocessing, algorithm implementation, space-separation reconstruction,
and data postprocessing. In the first step, we explain how to set the reconstruction system with
config.yaml file and import data efficiently; in the second and third steps, we explain how to use
Taichi and Python multiprocessing to perform parallel computing on different hardware plat-
forms, especially multiple GPUs. In the last step, we perform some postprocessing to enhance
the image quality and improve visualization of the target structure where you can use various
Python image processing libraries, such as OpenCV, in our framework.

2.1 Data Preprocessing of GAPAT

2.1.1 Reconstruction parameter settings

Currently, the PACT raw data primarily originate from two sources: simulation data and real
experimental data stored in the data acquisition (DAQ) devices. Our framework uses a config.-
yaml file to extract the required parameters. YAML is a human-readable data serialization format.
It is often used for configuration files and data exchange between languages with different data
structures. Consequently, adjustments to parameters only necessitate changes to the config.yaml
text file, facilitating parameter modification and source code exchange. In Table 1, the raw data
are from a synthetic planar array by scanning a linear array of 256 elements at 1380 steps, equiv-
alent to a large-scale matrix array with the size of 256 × 1380 elements.34

2.1.2 Data import and transformation

After reading the parameters from the config.yaml file, we proceed to import the raw data and
complete the transforming process. Some parameters are necessary for the rapid importation of
large-scale raw data, enabling us to utilize matrix operation functions in existing powerful
numerical computation libraries to process multiple raw data files. This approach avoids the
inefficiency of double loops and the repetitive operations often required when preloading a
sub-file to obtain related data parameters in traditional methods. As a result, for example,
GAPAT can read 1380 raw data files, each containing data collected by 256 detectors in a linear
array with a length of 2048 time points, in just 2.2 s, from the in vivo experiments described in
Sec. 3.2, with specific hardware parameters detailed in Sec. 3.1.
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Table 1 Parameters in config.yaml file.

Parameters Value Explanation

vs 1500.0 Speed of sound, m/s

fs 40.0e+6 Sampling frequency, Hz

num_channels 256 Number of channels

num_steps 1380 Number of scan steps

num_times 2048 Number of time samples

res 0.20e-3 Spacing of the reconstruction area grid, m

data_path !!str data Path to the raw data

data_type int16 Data type of raw data

device gpu Device that algorithms run on, cpu or gpu

num_devices 1 Number of devices that algorithms run on

. . . . . . . . .

Fig. 1 Flowchart of the pipeline of GAPAT.
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2.1.3 Data preprocessing

Prior to the reconstruction process, the raw PA signals must be preprocessed. In our framework,
data preprocessing steps may include: (1) bandpass filtering, (2) data resampling, and (3) specific
preprocessing for algorithms. For instance, in the DAS algorithm provided within our frame-
work, we set the first and last signal values of all original signals to zero, enabling efficient
handling of out-of-bounds indices. Due to the efficient and compact data organization form
adopted by the reshaped raw data, various data processing methods can be easily executed
in parallel through matrix operations. This not only simplifies usage but also greatly enhances
its extensibility.

2.2 Back-Projection Algorithm in GAPAT
There are two commonly used time-domain back-projection algorithms, the delay and sum
(DAS) and filtered back-projection11 (FBP), for PACT. In our work, we implemented both algo-
rithms in demonstration codes. The DAS is a relatively simple method, which is described as the
following equation:

EQ-TARGET;temp:intralink-;e001;117;549p0ð~rÞ ¼
P

N
i¼1 pi

�
~di; t ¼ j~di−~rj

c

�
ΔΩiP

N
i¼1 ΔΩi

: (1)

Noting that theΔΩi is the stereo angle of the i’th detector to the reconstruction point and that
~di is the position vector of i’th detector relative to the coordinate origin, p0ð~rÞ is the initial sound
pressure at the reconstruction point with position vector ~r, piðtÞ represents the signal value of the
i’th detector at delay t, and c is the speed of sound.

The FBP algorithm involves one more term of temporal derivative of PA signal, as follows:
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: (2)

In a large planar detection geometry, the normal direction of each UST is the same.
Calculating the stereo angle, we can get that for a planar detector array, ignoring constant coef-
ficients, the discrete equation becomes
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c
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Here, zj represents the z-coordinate of the j’th reconstruction point and lij represents the
distance from the i’th detector to the j’th reconstruction point.

Currently, both algorithms have been implemented in our framework using parallel loops
that iterate over the spatial grid points and the UST elements with Taichi Lang for Python.
Specifically, we can implement a kernel in Python that executes the back-projection algorithm
based on Taichi’s syntax. The Taichi compiler will then automatically apply various optimization
techniques to generate highly optimized machine code for the target hardware. All one needs to
do is to decorate the corresponding reconstruction functions as Taichi kernels. This flexibility in
our framework allows the rapid development and testing of reconstruction algorithms while
maintaining high computational performance.

2.3 Space-Separation Reconstruction Strategy of GAPAT
Despite Taichi kernels’ application, enabling multi-GPU PACT reconstruction remains challeng-
ing. This feature is not supported by Taichi kernels, and its implementation in CUDAC++ can be
quite complicated. GAPAToffers a much easier solution based on Python multiprocessing, which
creates asynchronous processes for each device (usually GPU), assigns subtasks, and integrates
results upon completion. Then, we aim to divide the PACT reconstruction task into multiple
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subtasks for independent devices. In general, there are two approaches: partitioning either the
detector array or the reconstruction space. The former faces issues with memory allocation in
large or high-resolution spaces. Thus, we adopt the latter approach, dividing the reconstruction
space into subspace regions at different depths, allowing efficient GPU allocation and memory
management. This also enables depth-specific processing for improved reconstruction results.
Specifically, taking a planar matrix detector array as an example, as shown in Algorithm 1,
we divide the reconstruction space into subspace regions with different depths.

2.4 Image Postprocessing
After the PACT reconstruction process, postprocessing is often performed to enhance the image
quality, reduce noise, and improve visualization of results. GAPAT has provided some common
postprocessing techniques for PACT, including:

2.4.1 Negative value processing

Negative values in PACT reconstructed images can arise due to various factors, such as noise,
artifacts, or limited view and limited bandwidth. Here are some of the methods GAPAT provides:
(1) Absolute value: applying the absolute value function to the PACT reconstructed image.
(2) Squaring: squaring the values in the reconstructed image. (3) Hilbert transform:35 the
Hilbert transform is a linear operator that can be applied to PACT reconstructed images to obtain
an analytic signal allowing for getting the envelope of the PA signal.

2.4.2 Visualization

Enhance the visual representation of PACT images to facilitate interpretation and communication
of the results. Visualization techniques currently in GAPAT mainly include volume rendering
realized by OpenCV. The postprocessing techniques can be implemented using a variety of

Algorithm 1 Space-separation reconstruction of FBP algorithm

Input: F : config file, N : number of devices

Output: I: reconstructed PACT image

1. Load configuration file F and set up all parameters

2. Start timing

3. Read all files in data directory into a signal matrix S

4. Get the detector locations into a matrix D

5. Initialize signal reconstruction matrix I

6. Define kernel function that performs FBP algorithm

7. Set up Taichi backend with CPU or CUDA

8. Create a pool of worker processes for all devices

9. For i ¼ 1 to N do

10. Apply kernel function for corresponding depth region into the i th process

11. Execute these kernel functions asynchronously

12. End

13. Concatenate results from all devices

14. Save signal reconstruction matrix I

15. End timing
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image processing and analysis software, such as MATLAB or some other Python libraries due to
the powerful extensibility of our framework.

3 Results
Both simulated and experimental datasets were used to test and evaluate GAPAT. The simulated
dataset was generated using a numerical phantom with solution of theoretical formula of photo-
acoustic wave function, while the experimental dataset was acquired from in vivo PACT imaging
of a human forearm. Both datasets were tested with multiple hardware configurations, including
multicore CPU, single GPU, and multiple GPU platforms. Depending on the available hardware
resources, users can choose the most suitable configuration.

3.1 Simulation Results
In this study, we selected a PACT system using a hemispherical detector matrix array, which is an
important setup for real-time 3D PACT. The hemispherical array has a radius of 100 mm with
1024 detectors. Considering the potential disadvantages of rotational symmetry on imaging, our
simulation employed a spherical detector array arranged in a so-called “Fibonacci” pattern,36 as
shown in Fig. 2.

Our simulation assumed each array element has an infinite wide bandwidth and infinitesimal
point size. For the objects to be imaged, we chose a small sphere with a radius of 1 mm located at
the center of the array, and the imaging field of view was set to a 5 mm × 5 mm × 5 mm spatial
region near the center of the sphere. The sampling frequency in simulation is 40 MHz. Our
hardware setup consists of an AMD Threadripper 3960X CPU, featuring 24 cores and 48 threads,
64 GB DDR4 memory, 2 NVIDIA GeForce RTX 3090 Ti 24 GB graphics cards. We chose the
FBP algorithm to reconstruct the 3D image.

In this simulation, we compared the performance of three computational setups on various
grid sizes: CPU parallel, single GPU, and dual GPU. Table 2 presents the time costs for each
setup, respectively. It is essential to emphasize that while timing the execution of algorithms, we
also include the time taken to read the original data from local files and save the reconstructed
results back to the local storage for 3D PACT reconstructions that deal with a large volume of
data. The observation that dual GPU configurations sometimes show less efficiency compared to
a single GPU for smaller grid sizes is attributed to the overhead associated with managing parallel
tasks across multiple GPUs. This overhead becomes negligible as the grid size increases. In
summary, the dual GPU configuration offered the most efficient performance in terms of time
cost, outpacing both the CPU parallel and single GPU setups.

Fig. 2 Detectors arranged in a Fibonacci array on a hemisphere.
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3.2 In Vivo Experimental Results
Our in vivo experiment data are from a PACT imaging of arm using a synthetic planar array.34,37

Our system employs a Q-switched Nd: YAG pulsed laser (LS-2137/2, LOTIS TII Ltd., Belarus)
at 1064 nm for photoacoustic signal excitation. This laser produces pulses with a duration of
∼16 ns and has a repetition rate of 10 Hz. A non-focusing linear array consisting of 256 elements
was used. The in vivo experiments utilized a data acquisition system (Marsonics DAQ, Tianjin
Langyuan Technology Co., Ltd. China) at 40 MHz sampling rate. The raw data, in the form of
int16, underwent a conversion process to match our framework’s input requirements, in the form
of float32, ensuring compatibility and efficient processing. During imaging, we scanned the lin-
ear array above the arm over a total length of 138 mm at a scanning step of 0.1 mm, as shown in
Fig. 3. In this case, an equivalent matrix array consists of ∼353 k elements (256 × 1380) is real-
ized. At each detection each array element captures signal data containing 2048 time points.

In reconstructing the arm data of the following results, we use the DAS algorithm instead of
the FBP algorithm for reconstruction to achieve higher robustness. Our framework, employing
the DAS algorithm, incorporates the solid-angle factor consideration for planar arrays, as detailed
in Eq. (3). In the case of planar arrays, the line connecting the detector and the reconstruction
point often does not coincide with the normal vector of the detector array plane. It is necessary to
multiply by the cosine of the angle difference to correct the signal during DAS reconstruction.

We used the same hardware setup as that in the simulation study. Table 3 presents a com-
parison of the computational performance of three different setups—CPU parallel processing,
single GPU, and dual GPU configurations—in PA imaging reconstructions using grid sizes of
240 × 240 × 80, 600 × 600 × 200, and 1200 × 1200 × 400, and Fig. 4 shows the MIP image
reconstructed by single GPU and 1200 × 1200 × 400 grid.

The dual GPU setup still outperformed the other configurations. In summary, GAPAT can
achieve an acceleration rate of ∼871 times when reconstructing extremely large-scale 3D PACT
images on a dual-GPU platform compared to a 24-core workstation CPU, 116 times faster than k-
Wave on a same CPU, and on this largest grids, the GPU-based algorithm in k-Wave directly

Fig. 3 Schematic diagram of the scanning of linear array to form a synthetic planar array.

Table 2 Simulation results with different grids.

Setup
Time cost (s) with

250 × 250 × 250 grids
Time cost (s) with

500 × 500 × 500 grids
Time cost (s) with

1000 × 1000 × 1000 grids

CPU parallel 6.83 45.1 426

Single GPU 2.30 3.33 13.7

Dual GPU 2.53 3.24 8.80
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exhausts the GPU memory and becomes inoperable, which highlights one of the major advan-
tages of our method: more economical and efficient use of GPU memory. In addition to the
above, we also compared the performance of GAPAT with a CUDA C++ coded program for
this reconstruction task with a grid size of 600 × 600 × 200. The results indicate that, on this
scale, the compiled CUDA C++ program takes 318 s (on a single GPU). As shown in
Table 3, compared to the CUDA C++ program, our framework achieves a performance improve-
ment of 3.2 times for a single GPU setup and 5.8 times for a dual GPU setup, respectively. The
performance of GAPAToften surpasses that of manually coded CUDAC++ programs written by
average developers. It is worth mentioning that GAPAT significantly reduces the difficulty of
developing multi-GPU parallel programs compared to CUDA C++, which is crucial for 3D
image reconstruction by large-scale PACT array systems.

Besides DAS, we also provide source code based on the FBP algorithm using GPU, the
results of which can be found in the README.md file of our GitHub repository described
in Sec. 4. According to our results, the optimized GPU-based FBP algorithm is only ∼5% slower
on average compared to its DAS counterpart.

4 Discussion and Conclusion
Our above experiment results indicate that the GPU code of k-Wave is currently insufficient for
large-scale 3D PACT reconstruction tasks due to its substantial memory requirements. Moreover,
there has been a lack of updates and maintenance for these codes. The last update to k-Wave’s
GPU code was made on February 28, 2020, and compatibility issues have been identified when
utilizing the latest hardware. In addition, the recent published PACT toolbox PATATO38

(a Python photoacoustic tomography analysis toolkit) has garnered attention. However, since

Table 3 In vivo experimental results with different grids.

Setup
Time cost (s) with

240 × 240 × 80 grids
Time cost (s) with

600 × 600 × 200 grids
Time cost (s) with

1200 × 1200 × 400 grids

CPU parallel 3034 (0.84 h) 43,784 (12.2 h) 335,259 (93.1 h)

k-wave CPU 606.6 6044.7 44,690.4

k-wave GPU 18.7 768.4 Out of GPU memory

Single GPU 13.2 100.0 749.7

Dual GPU 10.8 55.0 385.1

Fig. 4 Reconstructed maximum intensity projection (MIP) image of the arm using GAPAT by
1200 × 1200 × 400 grids. Data that have been linearly normalized to fill the 0-1 interval.
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it employs Google’s JAX library for GPU acceleration, it only supports GPU on Linux platforms
and faces the same challenges of underutilization of GPU memory compared to GAPAT. Given
these issues, using PATATO may not be friendly for developers who wish to write their own
GPU-accelerated new PACT reconstruction algorithms. Using the in vivo experimental data from
Sec. 3.2 (with original data dimensions of 256 × 1380 × 2048), Table 4 still demonstrates the
superiority of GAPAT.

In practical applications, more scanning geometries exist beyond the spherical and planar
geometries discussed in this work. To meet challenges in assigning normal directions of complex
geometries within our framework, several strategies can be proposed: (1) user-defined normal
direction: we could augment our framework to allow users to define the normal direction for each
detector element manually. (2) Parametric representation: For certain complex geometries, a
parametric representation might be used to describe the detector positions and orientations.
(3) Hybrid approaches: for particularly intricate geometries, a hybrid approach might be
necessary.

By directly interfacing with the data transmitted from the DAQ devices to the host memory,
GAPAT can be adapted to facilitate real-time visualization of imaging results. This real-time
capability necessitates certain modifications to the original data. Specifically, it requires a trans-
formation and reordering process to ensure that each row of data distinctly represents the read-
ings from an individual detector. It should be noted, however, that realizing this functionality
often hinges upon the support provided by the DAQ manufacturer. Their proprietary SDKs
(Software Development Kits) typically offer specialized methods for data manipulation and
extraction.

In recent years, machine learning techniques have shown great potential for improving
image reconstruction in various medical imaging modalities. Our framework can be extended
to incorporate machine learning-based reconstruction algorithms, such as convolutional neural
networks and recurrent neural networks, to further enhance the reconstruction performance and
can keep the same hardware setup. By leveraging the massive parallelism of GPUs, our frame-
work can efficiently implement machine learning-based algorithms, allowing for faster and more
accurate PACT image reconstruction.

To facilitate the adaptation of our framework by the research community, we release the
source code and documents used in this work under an open-source license. The code of a demo
version of GAPAT is publicly accessible from the following GitHub repository: https://github
.com/ddffwyb/GAPAT. It provides installation and usage instructions, as well as a set of sample
data for execution. This will enable researchers to customize the framework to meet their specific
needs, as well as to contribute improvements and new features that can benefit the entire
community.

In conclusion, our comprehensive framework for GPU-accelerated PACT reconstruction
aims to address computational challenges associated with PACT image reconstruction, offering
a flexible and high-performance solution that can be tailored to different hardware configura-
tions. By promoting faster analysis and applications, our framework contributes to the advance-
ment of PACT imaging and its broader adoption in science research and clinical settings.

Table 4 Comparative time efficiency of different systems and software configurations under differ-
ent grid configurations.

Grid setup

Ours PATATO

600*600*200 64*64*64 80*80*80 100*100*100 112*112*112 120*120*120

Time (s) 100.0 1.2 1.8 2.9 3.9 Out of memory

Grid percentage 7200% 26% 51% 100% 140% 173%

Time percentage 3448% 41% 62% 100% 134% —

Relative speed 2.09 0.63 0.82 1.00 1.04 —
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