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ABSTRACT. Significance: Photoacoustic computed tomography (PACT), a hybrid imaging
modality combining optical excitation with acoustic detection, has rapidly emerged
as a prominent biomedical imaging technique.

Aim: We review the challenges and advances of PACT, including (1) limited view,
(2) anisotropy resolution, (3) spatial aliasing, (4) acoustic heterogeneity (speed of
sound mismatch), and (5) fluence correction of spectral unmixing.

Approach: We performed a comprehensive literature review to summarize the key
challenges in PACT toward practical applications and discuss various solutions.

Results: There is a wide range of contributions from both industry and academic
spaces. Various approaches, including emerging deep learning methods, are pro-
posed to improve the performance of PACT further.

Conclusions: We outline contemporary technologies aimed at tackling the
challenges in PACT applications.
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1 Introduction
Biomedical imaging plays a pivotal role in the diagnosis and management of various diseases,
offering invaluable insights into the human body’s anatomy and intricate physiological
processes.1–4 Traditional imaging modalities, such as X-ray [Fig. 1(a)(i)] and ultrasound (US)
[Fig. 1(a)(ii)], have long been the cornerstones of medical diagnostics, each endowed with unique
strengths and limitations.5,8,9 Photoacoustic tomography (PAT)10–14 is a medical imaging tech-
nique that employs both optical and acoustic energy, as shown in Fig. 1(a)(iii–iv).6 PAT, based on
photoacoustic (PA) effect [Fig. 1(b)], transforms absorbed light energy into sound waves.15 As
shown in Fig. 1(a), PAT, providing high-resolution imaging of breast cancer,7,16,17 has recently
been approved by the Food and Drug Administration as a complementary tool to X-ray mam-
mography and US for breast cancer diagnosis and screening.18

Figure 2(a) illustrates the principle of PAT. Upon pulsed laser light excitation, temperature
arises from the absorption of laser light by tissues, followed by thermal expansion and then
the generation of acoustic waves, called PA waves. Ultrasonic transducer array (UTA) detects
these waves for image reconstruction (IR).19 PA computed tomography (PACT),20–25 a major
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incarnation of PAT, has enjoyed remarkable progress and widespread adoption in medical
imaging in the past 10 years.7,26–32 PACTutilizes the PA effect, enabling the detection of ultrasonic
waves generated by both ballistic and scattered photons excited by a light source. As a result,
PACT can penetrate much deeper into tissues compared with traditional optical microscopy,
which primarily relies on ballistic photons.33,34 In addition, acoustic waves experience signifi-
cantly less scattering within soft tissues, leading to PACT offering substantially superior spatial
resolution when compared with pure optical imaging methods in deep tissue.35 Moreover, thanks
to the light–matter interactions, PACT utilizes various molecular contrasts,36–44 including endog-
enous contrasts, such as hemoglobin, melanin, deoxyribonucleic acid/ribonucleic acid, water,
protein, and lipid,27,37,45–52 and exogenous contrast agents, such as fluorescent proteins, organic
dyes, and nanoparticles.36,38,40,53–56 Understanding the fundamental principles and applications of
PACT is crucial for unlocking its full potential, which paves the way for exploring diverse PACT
acoustic detection geometries that play a pivotal role in acquiring high-quality images.

PACT employs diverse acoustic detection geometries, including linear, ring-shaped, and
hemisphere-shaped arrays [Fig. 2(b)(i–iii)].19 While curved UTAs such as ring-shaped and
hemispherical arrays can yield high-quality PACT images, they typically require customization
and come at a significant expense. In addition, these arrays necessitate accessibility from multiple
sides of the target.57,58 On the contrary, linear UTAs can produce images from a single side of the
samples, and they are easily accessible at a lower cost, offering the convenience of a handheld
approach.58,59 In conclusion, the choice of acoustic detection geometry in PACT depends on the
specific application and resource availability.

Fig. 1 Comparison between X-ray, US, and PA imaging modalities. Reprinted with permission
from Refs. 5–7. (a)(i) The X-ray image of the left breast displays a suspicious mass, with the white
box indicating the field of view for the PA image. (a)(ii) The US image of the palpable mass confirms
a highly suspicious mass. (a)(iii) The MAP of the PA volume depicts vessel density maps with
tumors identified by a green circle. (a)(iv) A 3D volume rendering of the PA image exhibits
a distinctive ring-like appearance. (b) Evaluation of resolution and depth characteristics across
various imaging modalities, including US, optical, and PA imaging.
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In this paper, we mainly discuss acoustical inverse problems and an additional optical
inverse problem–fluence correction. The acoustical inverse problem involves reconstructing the
distribution of initial pressure within the tissue based on the detected acoustic signals, while the
optical inverse problem relates to the reconstruction of the optical properties within samples
based on measurements of PA signals.

For acoustic inverse problems, practical reconstruction algorithms have been developed.
One widely employed approach is the universal back-projection (UBP) algorithm,60–62 where
the solid-angle weighting factor is introduced to the back-projection algorithm to compensate
for the variations of detection views.60 Another alternative algorithm based on the wave physics
principle is time reversal (TR).63 In TR, the recorded PA signals are mathematically time-reversed
and re-emitted into the tissue. As these waves travel back through the tissue, they naturally con-
verge to the location of the original PA source. By detecting and recording the converging waves,
an image with optimized spatial resolution and enhanced signal-to-noise ratio (SNR) is
generated.64,65 Model-based reconstruction methods have also been developed.66–68 This process
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Fig. 3 Diagram showing the challenges in 2D PACT and current methods dealing with those
challenges. The structure of this review follows this diagram. (SS, spatial sampling; IR, image
reconstruction; SOS, speed of sound).

Fig. 2 Principle and applications of PACT. Reprinted with permission from Ref. 19. (a) Imaging
principle of PACT. (b)(i) PACT system with a linear UTA. (b)(ii) PACT system with a ring-shaped
UTA. (b)(iii) PACT system with a hemisphere-shaped UTA.
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involves optimization algorithms that iteratively refine the image by minimizing the least square
errors between the measurements and predicted signals according to the exact PA propagation
model.69–71

In this review paper, our primary objective is to conduct a thorough examination of some
specific challenges inherent to the application of two-dimensional (2D) PACT, as shown in
Fig. 3. These challenges include limited view, anisotropy spatial resolution, and acoustic hetero-
geneity (especially sound speed mismatch) for IR and spectral unmixing with unknown fluence.
Through a review of the existing literature, we seek to pinpoint specific hurdles that may impede
the full realization of PACT in medical diagnostics. Furthermore, we will identify and dissect
research papers and studies that have pioneered innovative solutions to address these challenges.
By summarizing and categorizing these solutions, we intend to provide a comprehensive re-
source for researchers, clinicians, and practitioners eager to harness the capabilities of PACT
while effectively mitigating its inherent limitations.

2 Hardware/Geometry-Induced Issues
PACT images are reconstructed from the signals recorded by all the elements of the UTA. Thus,
different UTA geometries and detector designs of the transducer itself induce issues to the PACT,
e.g., limited view, anisotropy resolution, and spatial aliasing.

2.1 Limited View and Solutions
Due to their low cost, hand-held convenience, wide selection of bandwidths, and US imaging
capability, linear UTAs have been widely used in PACT to provide real-time cross-sectional
images.58 However, linear-array-based/planar-array-based systems suffer from the limitation
of their viewing angles, resulting in missing features, called the limited view problem.72–74

Linear array detectors exhibit high sensitivity to PA waves propagating perpendicular to the
array’s surface. As illustrated in Fig. 4a(i), a linear ultrasonic array is strategically placed
orthogonally to a line-shaped numerical phantom. In Fig. 4(a)(ii), the initial pressure rise
is visualized. The linear array received PA signals exclusively from the two extremities, dis-
playing the limited view issue. A simple and direct approach to address this issue is to enlarge
the detection viewing angles by rotating either the linear array or the object59,79 but sacrificing
the imaging temporal resolution. In this section, we review other solutions, including ultra-
sonic heating encoding, deployment of acoustic reflectors, and advanced deep learning
approach.

2.1.1 Ultrasonic heating encoding

The PA amplitude is linearly proportional to the Grueneisen parameter, which is temperature-
dependent in various biological tissues; thus, the PA generation can be encoded via temperature
encoding. The heat generated by a focused UTA causes a local temperature rise, as depicted in
Fig. 4(a)(i), and the Grueneisen parameter at the heated spot is also increased. Then, upon laser
light excitation,80–82 the amplitude of the PA signal originating from the heated voxel is higher
than the neighboring voxels and remains unchanged, as evidenced in Fig. 4(a)(v). This selective
PA signal amplification creates a point PA source, leading to the propagation of PA waves with
increased amplitude in all directions. Consequently, these amplitude-enhanced PAwaves can be
detected by the linear array, addressing the limited view issues. Given the ability to focus ultra-
sonic heating at considerable depths, this approach holds potential for deep tissue imaging.75,83

Although full-view PACT is demonstrated using ultrasonic heating encoding, there are still some
concerns of tissue damage from heating and heat dissipation to surrounding tissues, in turn
lowering encoding efficiency.75

2.1.2 Acoustic reflectors

To address the limited view issue, employing acoustic reflectors to enlarge the detection view has
also been proposed, in turn augmenting the detection coverage angles and recovering the missing
features.72,76,84 Huang et al.72 employed a 45-deg acoustic reflector, which acts as a virtual array
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perpendicular to a physical array. Ellwood et al.84 and Li et al.76 independently presented an
alternative configuration in which two acoustic reflectors were used to increase the effective
detection aperture. Experiments76 showed that a hair phantom containing three straight human
hairs, denoted as “1 to 3,” is subjected to imaging using a linear array detector [Fig. 4(b)(i)].
In Fig. 4(b)(ii), the reconstructed image from conventional linear-array PACT only displayed
the horizontal hair “1,” while hairs “2” and “3” were mis-detected due to the limited view.
Figure 4(b)(iii) illustrates the configuration of the acoustic reflectors arranged at an enclosed
angle of 120 deg. When combined with the reflectors, the detection angle coverage was signifi-
cantly enhanced, as shown in Fig. 4(b)(iv), and all three hairs were distinctly recovered. One
drawback of the acoustic reflector approach is that it constrains imaging space and loses the
handheld imaging convenience, making it less suitable for applications requiring larger imaging
volumes, such as whole-body imaging of rodents and human imaging.

2.1.3 Iterative optimization

Model-based iterative IR methods have recently been explored to address limited view
issues with planar detection geometry in PACT as well.73 The image reconstructed from the
TR method exhibits that the small vessel indicated by the white arrow is poorly visualized,
which is caused by limited view problems, as depicted in Fig. 4(c)(i). Least squares
minimization-based iterative approaches were evaluated using the same in vivo data. It shows
that the small vessel can be clearly visualized in the reconstructed image by the total variation
(TV) regularization method, where the missing features are well recovered, as shown in
Fig. 4(c)(ii).

Fig. 4 Limited view of challenges and solutions. Reprinted with permission from Refs. 73 and
75–78. (a)(i) Enhanced initial pressure rise at the heating site. (a)(ii) Consistent initial pressure
rise across the line phantom. (a)(iii) Reconstructed PA image of line phantom from both ends only.
(a)(iv) Ultrasonic heating boosts initial pressure rises at the heated location (center of line
phantom). (a)(v) Reconstructed PA image of line phantom from both ends and the center as well.
(a)(vi) Superimposed image displaying co-registered original and thermally encoded PA images.
(b)(i) Imaging of a hair phantom with three straight human hairs (labeled as “1–3”). (b)(ii) PA image
acquired by conventional PACT. (b)(iii) Two acoustic reflectors are positioned at a relative angle of
120 deg. (b)(iv) PA image acquired by employing double 120-deg acoustic reflector PACT.
(c)(i) Human finger joint image reconstructed by non-iterative method—TR. (c)(i) Human finger
joint image reconstructed by iterative method—TV. (d)(i) The global architecture of Y-Net.
(d)(ii) Ground truth of initial pressure. (d)(iii) DAS beamformed image. (d)(iv) Reconstructed image
from Y-Net. (e) 3D progressive U-Net architecture.
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2.1.4 Deep learning

Deep learning (DL) methods have been increasingly popular in various PA applications, includ-
ing exploring the limited view issue.77,78,85–89 The delay-and-sum (DAS) beamformed image,
as shown in Fig. 4(d)(iii), acquired from a linear array-based PACT, missed a lot of features
(especially the vertical vessels) due to the limited view. To tackle this problem, a supervised
learning model based on Y-Net architecture [Fig. 4(d)(i)] has been developed. The proposed
Y-Net inputs the raw PA signals to encoder II and processes the raw data to obtain an imperfect
beamformed image as the input of encoder I, where encoders I and II encode the texture and
physical features, respectively, to realize hybrid reconstruction.89 Finally, the reconstructed
vessel structure [Fig. 4(d)(iv)] resides near ground truth [Fig. 4(d)(ii)], and the shape is well-
preserved. The above results demonstrate obvious improvements over DAS reconstruction;
however, this work has not been generalized to in vivo applications.77 Besides, Choi et al.78

developed a three-dimensional (3D) progressive U-Net [Fig. 4(e)] to address limited view issues
and produced volumetric PACT images by improving the solid angle range by 3.77 times, and
then, missing features were well recovered. The performance was successfully demonstrated
in vivo.78 DL methods show promise in enhancing IR accuracy for limited view PACT, but the
effectiveness of DL reconstruction is highly sensitive to the quality of training data.86–88,90

2.2 Anisotropy Resolution Solutions
In 2D PACT, many focused transducer arrays were used for cross-sectional imaging with high
temporal resolution. However, the acoustic focus of the transducer induced anisotropy resolution,
an intrinsic defect of this design. Anisotropy resolution always exists even though the UTA has
received perfect PA signals (e.g., well sampled, no limited view effect). The transducers in PACT
are usually designed with an acoustic lens or geometrical focus to enhance their in-plane sensi-
tivity and provide acoustic sectioning for fast 2D imaging.59,91,92 However, this design leads to
anisotropy resolution, especially in 2D PACT imaging systems (e.g., linear array PACT).93,94 As
shown in Fig. 5(a), the 3D resolution of a linear array can be characterized in terms of axial,
lateral, and elevational resolution. The axial resolution, denoting the spatial resolution along the
normal direction (x axis) of the UTA, is limited by both the speed of sound (SOS) within the
acoustic medium and the bandwidth of the transducer elements. The axial resolution is the best
and typically can reach half of the central acoustic wavelength. Lateral resolution, which pertains
to spatial resolution along the row of transducer elements within the array (y axis), is mainly
determined by the element pitch. Usually, the lateral resolution equals one acoustic wavelength, a
bit worse than the axial resolution. The elevational resolution, the spatial resolution along the
direction perpendicular to the axial and lateral imaging plane (z axis), is determined by the central
frequency of the transducer elements and the numerical aperture (NA) of the acoustic lens or
geometrical focus. The elevational resolution is usually one order of magnitude worse than the
axial resolution. Anisotropy resolution also exists in PA microscopy (PAM) employing a focused
transducer element. One commonly used method in PACT and PAM to achieve isotropy reso-
lution or improve the elevational resolution is rotational scanning of the object from multiple
angles to incorporate the high-frequency information from the axial or lateral direction to the
elevational direction.58,93,96–99 In addition to the rotation, the anisotropic resolution problem can
also be handled by adding a slit or using the data-driven method (deep learning).91,95

2.2.1 Rotate-translate scanning geometry

The rotation operation mixes the poor-resolution axis (elevational axis) with the high-resolution
axis (axial or lateral axis), and the translation operation ensures that there are enough overlapping
files of the view area. Thus, the rotate translate-based scanning geometry can improve the eleva-
tional resolution.

PACT through inverse Radon transform (IRT-PACT) rotates the probe alone on the axial
axis, mixing the elevational axis with the lateral axis. IRT-PACT introduces the Radon transform
to decode the high-resolution information from the multi-direction scanned data. In IRT-PACT,
as shown in Fig. 5(b)(i), the linear array probe is affixed to a linear scanning stage, and the object
is placed on a rotation stage, which rotates 2 deg after each linear scanning (rotates 90 times in
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total). IRT-PACT employs the UBP reconstruction to generate all the B-scan frames throughout
all the scanning and generates the projection along each scanning direction (elevational direction)
by integrating all the tomography frames acquired within each scanning.58 Finally, similar to
the X-ray CT, the 3D image is reconstructed through inverse Radon transform.100

The elevational axis projection and the inverse Radon transform make the elevational res-
olution almost equivalent to the in-plane lateral resolution. The results presented in Fig. 5(b)(ii–iii)
depict the maximum amplitude projections (MAPs) along the depth (z) axis of the 3D images of
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Fig. 5 Challenges and solutions of anisotropy resolution. (a) Illustration of the poor elevational res-
olution due to the acoustic focus zone. Reproduced with permission from Ref. 91. (b)(i) Illustration
of the system hardware setting of the IRT-PACT. The probe is fixed to a linear stage, and the object
is placed on a rotation stage. (b)(ii) In vivo rat brain image acquired by PACT. (b)(iii) In vivo rat
brain image acquired by IRT- PACT. Panel (b) is reproduced with permission from Ref. 58.
(c)(i) Illustration of the rotate-translate scanning geometry in Ref. 93. (c)(ii) Reconstruction of a
complex-shaped 3D leaf skeleton object; Image starting from the left side: ground truth image,
elevational axis MAP in rotate-translate mode, and elevational axis MAP in translate-only mode.
Panel (c) is reproduced with permission from Ref. 93. (d)(i) Illustration of 2D reconstruction,
3D direct reconstruction, and 3D-focal line reconstruction. A, point of reconstruction. A 0, the recon-
structed point of A in 2D reconstruction. B, projection point of A in the x -y plane. A 0C, 2D recon-
struction delay. AC, 3D direct reconstruction delay. AE, 3D-focal line reconstruction delay. x -y ,
2D reconstruction plane. DC equals DE. (d)(ii) Illustration of the conventional linear PACT array and
its receiving aperture along elevation direction. (d)(iii) Illustration of the slit-PAT and its receiving aper-
ture along elevation direction. Panel (d)(i) is reproduced with permission fromRef. 94. Panel (d)(ii-v) is
reproduced with permission from Ref. 95. (e)(i) Illustrations of the Deep-E model data flow.
(e)(ii) Illustrations of the imaging results reconstructed by conventional methods (2D stack and
3D-focal line) and Deep-E. Panel (e) is reproduced with permission from Ref. 91. FD, fully dense.
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a rat brain obtained through both conventional PACT and IRT-PACT. IRT-PACT significantly
enhances elevational (vertical) resolution, producing sharper and clearer images. Further quanti-
tative results revealed that the elevational resolution in IRT-PACT improved almost 10 times (from
1237 to 140 μm). However, in IRT-PACT, the object is scanned 90 times to obtain one 3D image,
leading to a much-prolonged imaging time.

Gateau et al.93 rotated the probe alone on the lateral axis, mixing the elevational axis with the
axial axis, as shown in Fig. 5(c)(i). The probe changes its pitch angle after each linear scanning,
and the final rendered 3D image is reconstructed via 3D UBP with all the data from all the
scanning data. Quotative results show that the elevational resolution can improve up to nine
times. The complex 3D phantom results are shown in Fig. 6(c)(ii).

The method proposed by Gateau et al.98 shows good performance in improving the eleva-
tional resolution. However, generating a 3D image using all the scanning data via UBP is math-
ematically equivalent to reconstructing the 3D images of each scan first and then summing them
up. Considering that, in the PAM field, deconvolution-based methods have been developed to
solve the anisotropy resolution problem, it can be applied in PACT as well to decode the high-
resolution information more efficiently to improve the performance further or reduce the number
of scans.97,98

2.2.2 3D-focal line

Xia et al.94 proposed 3D-focal line reconstruction to improve the elevational resolution of a
focused transducer array. 3D-focal line proposed a new way to calculate the time delay, which
can generate fewer artifacts and improve the elevational resolution as well as the SNR.
Figure 5(d)(i) illustrates the time delays in 2D reconstruction, direct 3D reconstruction, and
3D-focal line. First, point A is projected to the focal plane (x − y plane) as point B. Second,
connect point B to the center of the transducer (point C) crossing the focal line at point D.
Finally, connect points A and D and extend the line to reach the transducer at point E. The line
AE is used to calculate the delay time between imaging point A and the transducer. The results in
Fig. 5(d)(iv) show that compared with 2D stack, 3D-focal line reconstruction improves the
resolution by up to twofold.

2.2.3 Slit-enabled PAT

The idea of the aforementioned 3D-focal line can be implemented in hardware by adding an
additional slit to a linear PACT system at its focal line [as shown in Fig. 5(d)(ii–iii)], named
slit-PAT.95 The slit diffracts the incoming PAwaves so source points outside the transducer focal
zone can still be detected, which improves the receiving aperture along the elevation direction.
The thin slit is formed by two metal blades with foam covered to block the acoustic waves trans-
mitting directly through the blade. Thus, all the PA signals received at the transducer are from the
slit. The time delay in slit-PAT is the sum of the source point to the slit and the slit to the trans-
ducer, which exactly is the time delay of the 3D-focal line.

The table in Fig. 5(d)(iv) shows the elevational resolutions and the SNRs of 2D stack,
3D-focal line, and slit-PAT. A 2D stack provides the worst elevation resolution. With a 3D-focal
line reconstruction, the resolution was improved by two times, and the value is close to the height
of the transducer elevation focus (1.5 mm). Slit-PAT further improves resolution by almost five
times to 0.33 mm, which is close to the 0.3 mm slit opening. In total, slit-PAT offers 10 times
better elevation resolution than the 2D stack. Though the slit also blocks some of the incoming
PA signals, the slit-PAT SNR is still four times better than that of the 2D stack. This is due to the
fact that, in slit-PAT, the transducer receives the signal from all 400 scanning positions (large
receiving aperture along the elevation direction). The in vivo experiment shown in Fig. 5(d)(v)
shows that the intestine and several additional skin vessels can be identified in slit-PAT, which is
hard to recognize in the 3D-focal line image.

Compared with the rotate-translate scanning methods, slit-PAT is efficient, does not need to
change the scanning geometry, and can improve the elevational resolution with only a single
scan. However, how to build the thin slit and make it stable may be an issue when applying
slit-PAT to high-frequency probes because the slit needs to be much thinner.
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2.2.4 Deep learning

Deep-E is a fully dense U-Net102-based deep learning method designed to enhance the elevational
resolution in PACT. Given that the axial and lateral resolution typically surpass elevational
resolution by a significant margin, Deep-E decomposes the 3D anisotropy resolution problem
into 2D (axial-elevational), specifically focusing on the axial-elevational plane during training.

Fig. 6 Challenges and solutions of spatial aliasing of a full ring array. (a)(i) Illustration of a full ring
UTA, a transducer element r, and a source point r 0. (a)(ii–iv) Visualizations of three relative sizes of
the three regions S0, S1, and S2. The solid lines mean no aliasing, while the dotted lines mean
aliasing for different location combinations of source points and reconstruction points. (a) (ii–iv)
Spatial aliasing in UBP only, UBP + spatial interpolation, and UBP + spatial interpolation + temporal
lowpass filtering respectively. (b)(i) Ground truth of a simple initial pressure distribution. (b)(ii) UBP
reconstruction. (b)(iii) UBP with SI. (b)(iv) UBP with TF and SI. S0, the region within the ring array.
(b)(v) Comparison of the STDs in the ROIs A–E marked with the green boxes. (b)(vi–vii)
Comparisons of the profiles of lines P and Q, respectively, based on the three methods. S1, the
one-way Nyquist zone.S2, the two-way Nyquist zone. SI, spatial interpolation. TF, temporal filtering.
Panels (a) and (b) are reproduced with permission from Ref. 101.
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This approach enhances the efficiency of both simulation and model training. As shown in
Fig. 5(d)(i), Deep-E takes an axial-elevation B-scan image formed by stacking all the A-lines
in sequence as the input. The output of Deep-E is a 2D image with improved elevational
resolution. During model inference, all generated axial-elevational images are concatenated
together along the lateral direction to form the final 3D image. The pencil lead phantom shows
that Deep-E can improve the elevational resolution by up to 50 times. Deep-E is also evaluated
in vivo on humans, as shown in Fig. 5(d)(ii). Compared with conventional methods such as
2D stack and 3D-focal line, Deep-E gives shaper vascular structures with a clean background,
and more importantly, Deep-E is able to extract vascular structures in deep tissue (colored in
orange and red) which are difficult to recognize in the 2D stack and 3D-focal line images.94,103

Deep-E brings a new idea of utilizing the axial-elevational 2D training data to solve a 3D
problem, which simplifies and accelerates the training data generation. Moreover, Deep-E makes
the program independent from the number of elements because the experimental data were
processed element by element independently in the axial-elevation plane.

2.3 Spatial Aliasing
Signal sampling in PACT includes both temporal and spatial sampling (SS). Temporal sampling
refers to sampling a continuous-time signal to a discrete-time signal, and Nyquist sampling
requires the sampling frequency to be at least twice the maximum frequency of the signal.21

According to different UTA geometries, the transducers around the object can be viewed as
SS. Ideally, UTA should provide dense SS to satisfy the Nyquist sampling theorem,21,27,104 where
the SS interval on the tissue surface should be less than half of the lowest detectable acoustic
wavelength. If the spatial Nyquist criterion is not met, aliasing in SS causes artifacts in recon-
structed images, even when the temporal Nyquist criterion has been fulfilled. Due to the high cost
of a UTAwith a large number of elements or limited scanning time, SS is usually spare in prac-
tice. In addition to SS, the backpropagation during the IR should satisfy the Nyquist sampling
theorem as well.101,105 Hu et al.101 analyzed spatial aliasing in a ring-array-based PACT and
discovered that the combination of spatial interpolation and temporal filtering can effectively
mitigate artifacts caused by aliasing in either IR or SS.

2.3.1 Spatial aliasing in SS

The spatial aliasing analysis of SS has the following Nyquist sampling constraints where R
denotes the radius of the ring array, N denotes the total number of transducers, α denotes the
angle formed by the connection of the source point and the transducer, and λc denotes the cutoff
wavelength of the cutoff frequency [Fig. 6(a)(i)].

EQ-TARGET;temp:intralink-;sec2.3.1;114;303

2πRj cos α 0j
N

<
λc
2
:

After transforming this inequality to a constraint for the source point location r 0 via the Law
of Sines, we get the smallest upper limit of r 0

EQ-TARGET;temp:intralink-;sec2.3.1;114;244r 0 <
Nλc
4π

:

The region within this constraint is defined as the one-way Nyquist zone S1. For any source
points inside S1, there is no spatial aliasing during SS because the sampling spacing is less than
half of the lower cutoff wavelength [Fig. 6(a)(ii)].

2.3.2 Spatial aliasing in IR

Similar to the spatial aliasing analysis of SS, IR also has the Nyquist sampling constraints, and
the final result can be written as

EQ-TARGET;temp:intralink-;sec2.3.2;114;112r 00 þ r 0 <
Nλc
4π

;

where r 0 is the source point and r 00 is the reconstruction point.
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A region S2 within the following constraint is defined as the two-way Nyquist zone.

EQ-TARGET;temp:intralink-;sec2.3.2;117;724S2 ¼
�
r 0jjr 0j < Nλc

8π

�
:

Spatial aliasing in IR depends on the locations of the source point and the reconstruction
points. Spatial aliasing does not appear for objects and reconstruction locations inside S2 but
appears for other combinations of objects and reconstruction locations [Fig. 6(a)(ii)].

2.3.3 Spatial antialiasing in SS and IR

Spatial aliasing solely in IR but not in SS can be well addressed by spatial interpolation.
To extend the region S2, we can numerically double the number of detection elements N 0 ¼ 2N
based on the interpolation. Thus, the new two-way Nyquist zone S 0

2 becomes the same as S1,
indicating that spatial interpolation successfully removes spatial aliasing in IR [Fig. 6(a)(iii)].
Hakakzadeh et al.106 stated that reducing the number of transducers causes artifacts, but the struc-
ture similarity improved by 30% after interpolation. Wang et al.107 tested different interpolation
methods and proposed an interpolation method named extremum-guided interpolation, which
does not require complex calculations and can effectively improve the quality of PA reconstruc-
tion under sparse sampling. However, interpolation cannot recover the information lost for the
spatial aliasing outside the S1 because SS has aliasing.

Hu et al.101 introduced temporal lowpass filtering to eliminate the spatial aliasing in SS,
given that S1 is defined by the cutoff wavelength λc and a temporal lowpass filter replaces
λc with a longer wavelength λ 0

c. Thus, the one-way Nyquist zone is extended [Fig. 6(a)(iv)]
through temporal lowpass filtering at the expense of spatial resolution, blurring the reconstructed
images. To balance between spatial antialiasing and high resolution, Hu et al.101 proposed radius-
dependent temporal filtering: for the region within S1, the PA raw signal should be interpolated
and perform reconstruction; for the region outside S1, a temporal lowpass filter should be applied
to the raw signal and then perform spatial interpolation and reconstruction.

The spatial interpolation and radius-dependent temporal filtering are evaluated in Fig. 6(b).
The reconstruction quality is improved by spatial interpolation, and the aliasing artifacts are
further mitigated by temporal filtering.

It should be noted that even though there is no limited view or anisotropy resolution issue in
the PACT system, due to the insufficient SS, the best reconstruction quality can be guaranteed
only within the two-way Nyquist zone S2. After spatial interpolation, the well-reconstructed area
can be enlarged to the one-way Nyquist zone S1. The concepts of one-way and two-way zones
are useful to guide people in system design. For example, based on the S1, a 10 MHz full-ring
array should have at least 1024 elements to have a perfect reconstruction area of 24 mm in
diameter, which is enough for whole mouse imaging.

3 Acoustic Heterogeneity (SOS Mismatch)
In PACT reconstruction, a crucial factor is the distribution of acoustic properties (e.g., SOS and
acoustic impedance) within the acoustic propagation pathway.108–112 SOS plays an important role
as it directly determines the time arrivals of PA signals [Fig. 7(a)]. In this review paper, we mainly
focus on the SOS mismatch although acoustic heterogeneity could be broad. Notably, the SOS
distribution along the acoustic propagation path is inherently heterogeneous, especially for
in vivo imaging, exhibiting variations among the coupling medium, water (∼1480 m∕s at
20°C), and tissue (∼1580 m∕s). Any misalignment in the SOS setting can lead to inaccuracies
in the reconstructed initial pressure, causing artifacts in the reconstructed images.116

The SOS mismatch issue is particularly pronounced in the full-ring array-based PACT
compared with the linear array systems.27 Due to the symmetry of a full-ring geometry, the recon-
struction is contributed by the transducers located at two opposite sides of the ring. Consequently,
the SOS setting should be very precise; otherwise, the source points reconstructed from trans-
ducers on opposite sides may fail to align properly, causing artifacts such as shadows, arcs, and
double copies. As for the linear array-based PACT systems, though they also could suffer from
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Fig. 7 Challenges and solutions of acoustic heterogeneity. (a) Heterogeneous SOS affects the
time delay of the PA signal. (b)(i) MSFC divides the ring array into eight subgroups and recon-
structs a region with different SOS independently. (b)(ii) Illustrations of reconstructions with differ-
ent SOS. MSFC measures the correlation coefficients to evaluate SOS marching. (b)(iii) SOS
matching results. The peak is assumed to be the mean SOS along the direction through the two
opposite subgroups. (b)(iv) In vivo animal imaging result reconstructed by MSFC. (b)(v) In vivo
animal imaging result reconstructed with single (homogeneous) SOS. (b)(vi–viii) The cryotomy
photos of the mouse’s stomach. Spine and spleen are marked by yellow dashed line boxes, the
corresponding region in the cryotomy photo. (b)(ix–xi) The estimated SOS distribution generated
MSFC roughly at the three cryotomy layers shown in panel (b)(vi–viii). Panel (b) is reproduced with
permission from Ref. 113. (c)(i) Visualization of the raw transducer data. (c)(ii) The identified object
surface signal. (c)(iii) The reconstructed object shape based on the identified object surface signal
in panel (c)(ii). (c)(iv) In vivo animal imaging result reconstructed with single SOS. (c)(v) In vivo
animal imaging result reconstructed by the dual SOS reconstruction. The scale bar is 5 mm. Panel
(c) is reproduced with permission from Ref. 114. (d)(i) Illustrations of the system hardware setup of
the ADS-USPACT. (d)(ii) Illustrations of the US transmission and the US/PA data acquisition. The
red dot represents the sequentially activated transmission element, and the green dots represent
the receivers. (d)(iii–iv) Reconstruction results with different SOS. The single SOS reconstruction
cannot achieve global focus. (d)(v) The estimated dual SOSmap. (d)(vi) The dual SOS reconstruc-
tion image generated by ADS-USPACT. The scale bar is 4 mm. Panel (d) is reproduced with
permission from Ref. 115.
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the SOS mismatch issue, the reconstruction artifacts are not as severe as the artifacts from
full-ring array-based PACT.

3.1 Single SOS Searching
Reconstructing PACT images while assuming a single, universal SOS simplifies the process
despite the fact that this assumption is not entirely correct and leads to reconstruction artifacts.
Thus, researchers often opt for this simplification and try to find the optimal SOS value that has
the least artifacts.117

3.2 Joint Reconstruction
Joint reconstruction (JR) is an iterative model-based method that reconstructs the initial pressure
and the SOS distribution simultaneously.110,118 The two subproblems are solved alternatively
until a convergence condition is satisfied. The reconstruction of the initial pressure is a convex
optimization problem since the objective function is convex for fixed SOS. However, the SOS
distribution reconstruction is a non-convex problem. Huang et al.119 found that accurate JR
images were not produced when the spatially variant absorbed optical energy density distribution
(initial pressure) is deficient, but the jointly reconstructed initial pressure could be more accurate
than the one reconstructed with a constant SOS. In addition, the jointly reconstructed initial
pressure was more accurate than the jointly reconstructed SOS distribution, which indicated that
the inverse problem of reconstructing SOS distribution is more unstable compared with the
reconstruction of initial pressure.119

Another JR solver is adaptive PACT.120 Cui et al.,120 inspired by adaptive optics, tried to
introduce the indirect wavefront measurement idea to PACT to solve the JR problem. The image
is reconstructed patch by patch. Within each patch, the wavefront distortion is almost identical
(“isoplanatic patch”) and can be extracted from the local point spread function (PSF). Similar to
the “phase diversity,” the local PSF, which has long been regarded as an unknown, can be com-
putationally found from a stack of local images reconstructed with different delays.121 Thereby,
the full image can be better focused via piecewise deconvolution. After the wavefronts of all the
patches are determined, they can be used collectively to compute the global SOS map. Thus,
it bypasses the cumbersome global searching of the SOS map and improves the stability and
reliability of the solution.

3.3 Multi-segmented Feature Coupling
As shown in Fig. 7(b)(i), it was demonstrated that SOS mismatch leads to a misalignment of
the reconstructed source points from opposite transducers. Thus, the reconstruction results of
opposite transducers can serve as a good indicator to evaluate the accuracy of the SOS setting.
The feature coupling method divides the transducers into two semicircles and reconstructs
two images independently.122 The SOS distribution is iteratively adjusted to maximize the cor-
relation between the two reconstructed images. Building upon the concept of feature coupling,
multi-segmented feature coupling (MSFC) divides the ring array into eight subgroups. Two sub-
groups located at opposite sides reconstruct a region with different SOS.113 MSFC measures
the correlation coefficients between the two reconstructed images from two opposite subgroup
transducers [Fig. 7(b)(ii)]. The peak determines the mean SOS along the direction through the
two opposite subgroups [Fig. 7(b)(iii)].

The results are shown in Fig. 7(b)(vi–viii). If reconstructed properly, a vessel perpendicular
to the imaging plane will be reconstructed as a point [Fig. 7(b)(iv)]. If the SOS estimation is
wrong, the vessel will be distorted into a ring shape [Fig. 7(b)(v)]. The estimated SOS distri-
butions [Fig. 7(b)(ix–xi)] show that the SOS of the stomach region (coconut oil) is significantly
lower, with the profile and location roughly matching those in the cryotomy photos.

MSFC optimizes the SOS distribution based on the feature coupling, which avoids cumber-
some matrix calculations and saves a lot of computation time (compared with JR). However, the
feature coupling relies on the object features, which may limit its generalizability, as not all tissue
areas are rich in features suitable for SOS estimation. In addition, the operator is asked to select the
features and draw boundaries manually. A fully automatic method would be much preferred for
future practical applications.
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3.4 Dual SOS Reconstruction
To simplify the SOS map estimation and reconstruction while improving the image quality, the
dual SOS assumption has been adopted in PACT reconstruction.27 In dual SOS reconstruction,
a binary SOS map is created, consisting of two SOS values representing the water area and the
tissue object area. This simplification is made based on the premise that the SOS difference
within soft tissue is relatively small compared with the difference between water and tissue.
The effectiveness of dual SOS reconstruction hinges on two key components: (1) estimated
object boundary and (2) estimated SOS values.

3.4.1 Object surface PA signal detection

Reference 114 utilized a U-Net123 model to identify the object PA surface signal in raw data and
reconstruct the object shape [shown in Fig. 7(c)(i–iii)]. However, in this method, the two SOS values
assigned to the binary SOS map are predefined as 1480 and 1570 m∕s, which are two commonly
used preset SOS values in water and soft tissues.124 The results shown in Fig. 7(c)(iv–v)
demonstrate the benefits of the dual SOS approach. It not only corrects the SOS distribution but
also suppresses the artifacts. The idea of utilizing the object surface PA signal to reconstruct the
object boundary is promising because the surface signal only travels in water, and the SOS in water
is known. However, the SOS in the object is also preset by the operator, which may not be the best
solution. The idea of utilizing the surface PA signal can be further developed to adaptively estimate
the SOS in the object.

3.4.2 US + PACT

Instead of estimating the SOS distribution, the object boundary and the optimal SOS can also be
detected by US imaging. Jose et al.125 proposed passive element-enriched PACTwhere a passive
point source was introduced to profile the SOS distribution. References 115 and 126 integrated
active US source and PA imaging to develop an adaptive dual-speed US and PACT (ADS-
USPACT) system that automatically segments the object boundary and determines the optimized
SOS values. In ADS-USPACT, the SOS in water is determined by the water temperature, and
the object boundary is detected by US imaging. To find the optimal SOS in the object, ADS-
USPACT searches for the maximum coherence factor among the US signals at various sample
SOS values.

Figure 7(f)(iii–vi) provides a visual comparison between ADS-USPACTand single SOS recon-
struction. Single SOS cannot achieve global improvement in imaging quality, e.g., 1508.9 m∕s
makes boundary vessels in focus, and 1518 m∕s makes the central vascular features in focus, but
there is no optimal single SOS that can make the whole object focus. ADS-USPACT, on the other
hand, can keep both the boundary and the central vessels in focus.

ADS-USPACT performs good dual SOS reconstruction quality at the expense of additional
US imaging hardware and reconstruction overhead. Dual SOS reconstruction is a potential
solution as it simplifies the SOS distribution and can generate high-quality images. However,
it still needs to be further developed to make it computational- and hardware-friendly.

3.5 Deep Learning
Though linear array PACT systems are not as sensitive to the SOS mismatch as ring array PACT
systems, SOS mismatch also causes artifacts in linear array PACT images, e.g., a point source
may be reconstructed as an arc if the SOS is not matched [Fig. 8(c)]. Reference 117 proposed a
deep learning-based SOS calibration method. They evaluated their method on U-Net, Segnet, and
a proposed hybrid model of U-net and Segnet, named SegU-net [Fig. 8(a)]. As shown in
Fig. 8(b), the input data are a group of reconstructed images based on eight different single
SOS reconstructions, starting from 1460 to 1600 m/s, and the target is the corresponding ground
truth image. Though all the training data are generated in a homogeneous medium by K-wave
simulation, SegU-net shows its ability to reconstruct and alleviate artifacts in a heterogeneous
medium. Figure 8(c) shows the in vivo human forearm PA imaging results reconstructed by
the single SOS reconstruction and the SegU-net. The SoS aberration and streak artifacts are
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remarkably reduced in the SegU-net-corrected PA images. We expected that deep learning can be
further extended to ring arrays or 3D geometry arrays such as planar or spherical arrays.

4 Fluence Correction
The amplitude of the PA signal depends on both the optical absorption and laser fluence.
However, it is important to note that tissue attenuation varies with wavelength, as illustrated
in Fig. 9(a)(i). Consequently, when estimating the optical absorption from a PA image, accuracy
can be compromised, resulting in significant changes in shape and a shift in the wavelength of
maximum absorption, particularly in deeper tissue regions, as shown in Fig. 9(a)(ii). Optical
attenuation in fluence measurements can distort PA signals, potentially impacting the accuracy
and the ability to quantitatively interpret the resulting images.130 Implementing fluence correc-
tion techniques becomes essential to mitigate these challenges and ensure precise quantification.

Fig. 8 (a) Model architecture of U-net, Segnet, and SegU-net. (b) Illustration of the data flow of SegU-
net. The model takes reconstruction with different SOS as input. Based on the training dataset, the
deep neural network is trained to correct the SOS aberration and streak artifacts in the PA images.
(c) In vivo human forearm PA images reconstructed via conventional beamforming (left) and the
SegU-net (right). BF, beam forming. All panels are reproduced with permission from Ref. 117.
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In this section, spectroscopic PA imaging, iterative optimization methodology, and deep learning
models have been employed to achieve fluence compensation.

4.1 Spectroscopic PA Imaging
Spectroscopic imaging approaches are proposed for the automated correction of wavelength-
dependent fluence variations.127,131,132 Kim et al.131,132 succeeded in correcting the wavelength-
dependent fluence distribution and demonstrated its performance in phantom studies using a
conventional handheld US probe and validated the performance based on phantom studies.
Jeng et al.127 proposed that 10 fibers are evenly distributed along each elevational edge of the
US transducer array, as depicted in Fig. 9(a)(iii). Unlike previous systems that simultaneously
delivered laser pulses into all fibers in a bundle, this setup sequentially couples light into indi-
vidual fibers. Partial PA IR is generated for each laser pulse, contributing to the estimation of
laser fluence. Importantly, as shown in Fig. 9(a)(iv), light emerging from different fibers travels
distinct distances to reach a target. Figure 9(a)(v) illustrates how the PA signal amplitude varies
with fiber index, while the upper right plot in Fig. 9(a)(v) showcases the PA signal loss with
distance due to light attenuation, resulting in computational error. It is worth noting that fluence
losses with depth will differ across different wavelengths. Amplitude variations concerning the
distance between any pixel and the source for numerous points are acquired, where these points
exhibit partial PA image amplitudes above the noise floor. These measurements serve as input
data for the fluence reconstruction process, which leverages the light diffusion model. With this
procedure repeated for all wavelengths, fluence can be disentangled from the PA image, leading
to the retrieval of the true light absorption spectrum of molecular absorbers, as shown in

Fig. 9 Fluence incorrection challenges and solutions. Reprinted with permission from Refs. 127–
129. (a)(i) Wavelength- and depth-dependent optical fluence in tissue can significantly influence
optical absorption spectrummeasurements. (a)(ii) Spectrum of gold nanorods shifts as image depth
increases. (a)(iii) Scanning system comprises a kHz-rate, wavelength-tunable diode-pumped laser,
a fiber delivery system, and a US scanner, with the laser emitting variable-wavelength pulses
triggered by the scanner while maintaining a high repetition rate. (a)(iv) Light from various fibers
travels varying distances to reach a target. (a)(v) The amplitude of partial PA images, obtained by
single-fiber irradiation, is influenced by light absorption and scattering in tissue, and it is dependent
on the distance between each fiber and a typical absorber within the imaging field. (a)(vi) Real-time
compensation to get wavelength-independent fluence. (b)(i) Optimization process for extracting the
light fluence distribution and conducting fluence correction. (b)(ii) Initial image. Red arrows highlight
a decrease in image intensity caused by optical attenuation (b)(iii) Fluence-corrected image. The
scale bar is 3 mm. (c)(i) Reference image. (c)(ii) TR reconstruction image. (c)(iii) Fluence correction
result using the U-Net deep learning model.
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Fig. 9(a)(vi). This method has demonstrated its superiority in phantoms, ex vivo and in vivo
experiments.127

4.2 Iterative Optimization
Iterative optimization methodology can be applied for fluence correction.133–135 The optimization
process [Fig. 9(b)(i)] begins with a 2D reconstruction of an initial image [Fig. 9(b)(ii)] using
model-based acoustic reconstruction, where the low-image intensity caused by optical attenu-
ation is along the red arrows, as shown in Fig. 9(b)(ii). To expedite the optimization, the initial
image is segmented into regions based on prior knowledge of the object structure, with constant
optical properties (including absorption and scattering coefficients) that can be tuned during
optimization within each region. This optimization problem utilizes a δ-Eddington approxima-
tion of the radiative transfer equation as the light fluence model. Notably, artifacts resulting from
optical attenuation in Fig. 9(b)(ii) are effectively eliminated after fluence correction, as shown in
Fig. 9(b)(iii). In this research, invariant system response and parameters are assumed at first to
carry out phantom experiments, but it is hard to use the same parameter settings in future in vivo
experiments.128 Another work proposed by Naser et al.134 is to combine finite-element-based
local fluence correction with SNR regularization and validate its performance in both ex vivo
and in vivo experiments.

4.3 Deep Learning
A deep learning approach can be used to recover the optical absorption maps by correcting for
the fluence effect.90,136–138 Figure 9(c)(i) presents the reference ground truth image, while in
Fig. 9(c)(ii), the image is reconstructed using TR, which is blurred and noisy. In Fig. 9(c)(ii),
the yellow arrow points to noticeable reconstruction artifacts, and the orange arrow highlights
the impact of fluence on small vasculature in deep tissue regions. In addition, there is the presence
of undesirable vasculature, indicated by a green arrow, in the reconstructed images. The impact of
optical fluence on PA images can be removed by employing end-to-end map training as a super-
vised learning problem. A neural network is trained to minimize the loss function to obtain the
fluence-corrected images. Figure 9(c)(iii) displays the corresponding reconstruction outcomes
using the U-Net DL model, where the shape of vasculature is successfully recovered in deep
regions.129 DL models proposed by Arumugaraj et al.138 were shown to be ∼17 times faster than
solving the diffusion equation for fluence correction. Complex, and non-homogeneous medium,
background tissue properties are all considered for fluence compensation, which is critical for
future clinical usage.129,138 Chen et al.137 proposed a DL approach to recover the optical absorption
coefficients of biological tissues and verified it in phantom experiments, while Arumugaraj et al.
validated their DL models with both in silico and in vivo datasets.

5 Conclusion
In summary, although 2D PACT has been widely used in pre-clinical studies and clinical trans-
lations,139–141 it still faces challenges for quantitative measurements. These challenges encompass
issues such as limited view,79,142 anisotropy in resolution along varying spatial axes,126,143 spatial
aliasing,101 reconstruction artifacts caused by acoustic heterogeneity,144,145 and quantitative spec-
tral unmixing with fluence correction.146,147 Effectively mitigating these challenges necessitates
innovative strategies spanning the domains of hardware engineering,20,148 signal processing
methodologies,115,149 and deep learning paradigms.78,85,144

The challenge of limited view imaging, stemming from the inherent constraints of linear/
planar transducer arrays, has been addressed through diverse methodologies. These solutions
have included the deployment of acoustic reflectors and ultrasonic heating encoding, iterative
optimization, and the integration of advanced deep-learning approaches. These interventions are
purposefully devised to expand the scope of IR, even when confronted with linear detectors
possessing limited viewing angles, thus facilitating a marked enhancement in imaging fidelity.
DL provides a solution to address the limited view problem, allowing for precise high-resolution
PACT reconstruction even with sparse viewing angles. Enhancing DL methods, such as incor-
porating transformers, offers a means to handle long-range dependencies effectively.
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Anisotropy resolution issues have been methodically approached through techniques that
include rotate-translate scanning, slit-PAT, and deep learning methodologies. These tactical
measures substantially augment elevational resolution and achieve isotropic resolutions in the
resultant images. This enables a more lucid visualization of intricate structures inherent in bio-
logical tissues. However, those methods still need to be further developed. The rotate-translate
scanning methods require multi-angle scanning, which is too time-consuming. Slit-PAT may
have some issues when applying to the high-frequency probe as the slit needs to be much thinner.

Spatial aliasing issues can be mitigated by spatial interpolation and temporal lowpass
filtering. However, there is still a trade-off between spatial antialiasing and high-resolution recon-
struction for regions outside the one-way Nyquist zone, which could be addressed via location-
dependent antialiasing but with significantly increased computational cost.105

Acoustic heterogeneity (SOS mismatch), characterized by disparities in the SOS within dis-
tinct tissue types, has been systematically addressed via innovative techniques, such as JR, dual
SOS reconstruction, and deep learning-driven SOS calibration. These strategies rectify artifacts
associated with SOS variations and refine image quality, thereby facilitating a more precise and
reliable interpretation of PA images. Though current solutions have proved that the reconstructed
image qualities can be improved a lot at the expense of additional hardware or huge computation
overheads (iterative methods), an efficient and adaptive solution is necessary to address the SOS
mismatch problem in future research.

Incorporating fluence correction has emerged as an imperative facet of PACT to account
for fluctuations in laser fluence and its interaction with tissue absorption properties. Sequential
fiber-based data acquisition, iterative optimization methodologies, and deep learning models
have been adeptly employed to disentangle fluence-induced effects from PA images. These
endeavors culminate in more accurate representations of absorption characteristics and bolster
the credibility of quantitative analyses. However, implementing real-time fluence correction is
still challenging but crucial for dynamic imaging scenarios. Methods that can adapt to changes in
tissue geometry and optical properties in real time are desirable. Another concern is that fluence
correction may need to be adapted for different wavelengths used in multispectral PACT, where
each wavelength experiences distinct absorption and scattering properties in tissues.

In summative contemplation, the realm of PA imaging is continually evolving,150–153 with
advancements spanning both hardware and software domains that are meticulously tailored to
surmount the intrinsic impediments. These strides hold the promise of significantly enhancing
the accuracy, resolution, and reliability of PACT, positioning it as an invaluable tool in diverse
biomedical applications, particularly for the high-fidelity imaging of biological tissues and
structures.
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