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ABSTRACT. Significance: Frequency-domain diffuse optical tomography (FD-DOT) could
enhance clinical breast tumor characterization. However, conventional diffuse opti-
cal tomography (DOT) image reconstruction algorithms require case-by-case expert
tuning and are too computationally intensive to provide feedback during a scan.
Deep learning (DL) algorithms front-load computational and tuning costs, enabling
high-speed, high-fidelity FD-DOT.

Aim: We aim to demonstrate a simultaneous reconstruction of three-dimensional
absorption and reduced scattering coefficients using DL-FD-DOT, with a view
toward real-time imaging with a handheld probe.

Approach: A DL model was trained to solve the DOT inverse problem using a real-
istically simulated FD-DOT dataset emulating a handheld probe for human breast
imaging and tested using both synthetic and experimental data.

Results: Over a test set of 300 simulated tissue phantoms for absorption and
scattering reconstructions, the DL-DOT model reduced the root mean square error
by 12%� 40% and 23%� 40%, increased the spatial similarity by 17%� 17% and
9%� 15%, increased the anomaly contrast accuracy by 9%� 9% (μa), and reduced
the crosstalk by 5%� 18% and 7%� 11%, respectively, compared with model-
based tomography. The average reconstruction time was reduced from 3.8 min
to 0.02 s for a single reconstruction. The model was successfully verified using two
tumor-emulating optical phantoms.

Conclusions: There is clinical potential for real-time functional imaging of human
breast tissue using DL and FD-DOT.
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1 Introduction

1.1 Diffuse Optical Tomography
Diffuse optical tomography (DOT) is a safe and non-invasive medical imaging technique in
which near-infrared (NIR) light (600 to 1000 nm) is transmitted between an array of sources
and detectors positioned on the surface of the body and the properties of the measured light
are used to reconstruct images of the optical properties of the intervening tissue. DOT has been
successfully applied in numerous research areas requiring characterization of tissue composition
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and metabolism, including neuroimaging1,2 and musculoskeletal3 imaging, and has been pro-
posed as an alternative or complementary technique to X-ray mammography for clinical breast
imaging.4 Specifically, as the spectral attenuation of NIR light is strongly dependent on tissue
physiology, DOT-measured biomarkers can be used to detect tumors,5 distinguish malignant
tumors from benign tumors,6,7 and predict individual responses to neoadjuvant chemotherapy,8

without exposing the patient to ionizing radiation.
In DOT, the optical properties of tissue are described via two spectrally varying parameters:

absorption (μa) and reduced scattering (μs 0). It is generally agreed that utilizing continuous-wave
(CW) data (intensity only) leads to a non-unique problem whereby only absorption-related
images can be derived, by assuming prior knowledge about tissue scattering. The incorporation
of time-of-flight information via either phase measurement—as in frequency domain (FD)—or a
temporal point spread function—as in time domain (TD)—allows for an estimation of the photon
propagation path, thereby enabling recovery of absolute values for both μa and μs

0. When used
for functional neuroimaging [as in near-infrared spectroscopy (fNIRS)], FD measurements can
provide a more accurate assessment of functional changes compared with CW9 as well as an
improved spatial resolution in DOT reconstructions.10 The μs 0 parameter is additionally indica-
tive of tissue microstructure and can provide an additional biomarker for distinguishing malig-
nant versus benign breast tumors.11,12 Clinical adoption of frequency-domain diffuse optical
tomography (FD-DOT) has so far been limited due to the size and complexity of the systems;
however, recent hardware developments have significantly improved miniaturization, accuracy,
and usability,9 enabling accurate, high-speed, and depth-sensitive broadband FD-NIRS measure-
ments at multiple modulation frequencies with a hand-held probe13 and thereby high-speed two-
dimensional (2D) imaging of bulk optical properties.14

Reconstructing three dimensional (3D) as opposed to 2D images using DOT provides impor-
tant additional information regarding the size, shape, and position of features such as tumors. This
approach is ill-posed as the number of reconstruction voxels is generally far greater than the number
of available measurements. 3D DOT has primarily been performed using computationally intensive
model-based optimization algorithms,15 whereby a “forward model” of the light propagation in the
tissue being imaged is used to estimate the internal, spatially varying optical properties bymatching
the modeled data to the measured data. For specific applications in breast imaging, a range of
different and complementary approaches have been developed to overcome the ill-posedness and
under-determined nature of this optimization approach; these include the use of the generalized
least square,16 structural priori,17 and spectral constraint methods.18 A detailed review of utilizing
prior knowledge within image recovery and analysis of DOT data for breast imaging has high-
lighted that differing types of constraints, each having its advantages as well as drawbacks, can
be used.19 Nonetheless, it is generally accepted that image reconstruction in DOT is a challenging
problem due to the nonlinear nature of light propagation in tissue that requires user-adjusted regu-
larization parameters, which can be case-specific and difficult to generalize.

1.2 Deep Learning Diffuse Optical Tomography
DOT can also be performed using multi-layered neural networks, trained using deep learning
(DL). In the past decade, DL has revolutionized multiple industries and research areas—notably
computer vision and natural language processing—with the ability to approximate and learn
arbitrarily complex functions without the need for explicit analytical modeling.20 Given sufficient
training data, DL models tend to outperform computational algorithms that rely on manually
designed features or heuristic data processing techniques because they autonomously capture
complex relationships in the data that are statistically relevant to the problem and often difficult
for engineers to conceptualize and design. In DL-DOT, the inverse imaging problem is solved
directly by learning a statistical mapping between the measurements and optical properties from
a large labeled dataset.21 Because the availability of ground-truth labels of human tissue is pro-
hibitively limited, photon simulation software packages such as NIRFAST15 or Monte Carlo22

can be used along with a realistic noise and calibration model to generate examples to train and
test the DOT models.

DL-DOT has been repeatedly demonstrated with 2D geometries using simply designed neu-
ral networks.23,24 However, reconstructing in 2D places a fundamental constraint in a clinical
context as the size and shape of anomalies such as tumors cannot be accurately characterized.
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Only a few published studies have demonstrated 3D DOT using DL. Zou et al.25 proposed a fully
connected (FC) encoder–decoder architecture with structural constraints derived from a physical
model (born constraint) and a co-registered ultrasound image to solve the forward and inverse
DOT problems based on a high-density reflectance probe for breast imaging. The hybrid model
was found to outperform both standard born-conjugate gradient descent and the unconstrained
version of the network. Yoo et al.26 used the convolutional framelet theory to demonstrate how a
model comprised of an FC layer followed by a 3D convolutional neural network (CNN) with an
encoder–decoder structure can theoretically invert the Lippmann–Schwinger integral equation,26

thereby providing justification for such an architecture for modeling photon propagation
and solving the DOT inverse problem. Deng et al.27 found that extending this architecture
by adding a separately trained U-Net improved anomaly localization and contrast. The model
they presented—“FDU-net” (so named for the Fully-connected, encoder-Decoder, and U-Net
modules)—was the first DL-DOT model trained exclusively on simulated data and demonstrated
in vivo for 3D imaging of a human breast, thereby demonstrating the viability of this approach for
the clinical application of DL-DOT. Notably, the FDU-net architecture is generalizable to any
probe design, imaging geometry, and measurement type, and although other architectures have
been proposed,28 they have not yet been theoretically grounded or demonstrated with in vivo
data. Direct comparisons of DL-derived DOT images to model-based DOT have consistently
shown improved reconstruction quality, including reduced artifacts and greater optical contrast,
which are crucial for effective clinical use.26,27,29

The other key benefit of DL-DOT is reconstruction speed; although the geometry-specific
data generation and training process for DL-DOTare computationally expensive, once the model
is trained, inference can be orders of magnitude faster than with iterative finite element model
(FEM)-DOT because the feed-forward function of a neural network consists primarily of matrix
multiplications and additions, which are extremely fast to compute.

So far, the majority of published DL-DOT models (including all of those mentioned above)
have used CW measurements to predict either relative changes or quantitative values of μa.
Imaging relative μa enables functional analysis of tissue composition but is clinically limited
as it cannot facilitate longitudinal or inter-subject comparison. Quantitative μa reconstruction
using CW only faces a physical limitation to its accuracy due to the difficulty of separating the
attenuating effects of absorption from those of scattering.30 It is a common practice to assume
constant scattering—known to be unrealistic in human tissue imaging—resulting in unreliable
measurements.31 Often, the same assumption has been incorporated in the design of simulated
DL-DOT datasets by setting a constant known homogeneous scattering value across all training
examples, which inevitably enhances the accuracy of the trained model for volumes in which the
μs

0 value matches the training value and introduces errors in cases in which it does not. Even in
cases in which the scattering values of tissue models used to generate training data have been
randomized according to a biologically relevant range, DOT-recovered absolute μa is likely to be
unreliable when utilizing CW data without a direct indicator of scattering.

A few studies have investigated incorporating time-of-flight information to enhance
DL-DOT. Takamizu et al.32 presented a novel approach for DL-DOT with TD measurements,
in which a “long short-term memory” model trained on the temporal point spread function was
used to predict the position of an absorbing anomaly in a 2D tissue model with high accuracy.
Because they transformed the DOT inversion into a classification problem, by assuming an
anomaly with a known size and optical properties and a known range of discrete possible posi-
tions, this method cannot be directly compared with the published 3D DOT results using CW
data. Murad et al.33 demonstrated end-to-end DL-DOTwith FD data to reconstruct 2D images of
μa and μs

0 simultaneously, hypothetically enabling assessment of both functional and structural
indications of tissue health with a single scan. They trained one-dimensional and 2D CNN archi-
tectures using simulated measurements based on a radial transmission geometry and successfully
tested the model with a series of circular, breast tissue-simulating phantoms. Based on the recon-
structions presented, their DL models achieved significant improvement in accuracy in terms of
recovered contrast and anomaly size for both μa and μs 0 compared with model-based reconstruc-
tion; however, some of the reconstructions indicate a significant degree of crosstalk (CT) between
μa and μs

0 as the recovered value of one parameter is significantly higher than the true anomaly
value while the other is significantly lower.
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In this work, a novel DL-DOT model, based on the FDU-net architecture, is designed and
demonstrated to simultaneously reconstruct 3D absolute values of both μa and μs

0 directly from
FD-NIR measurements. A simulated FD-DOT dataset based on a single-source/multi-detector
probe configuration and linescan protocol is used for training to exploit the specific benefits of
combining the high-speed DL-DOTwith the relative flexibility and comfort afforded by modern
handheld FD-NIRS systems.

The proposed model is evaluated via clinically relevant metrics in comparison to a model-
based reconstruction algorithm. A detailed description of the dataset, model design and training
procedures is provided in Secs. 2.1–2.4, followed by an analysis of the reconstruction results in
Sec. 3, is provided to assess the pros and cons of DL-FD-DOT and the feasibility of utilizing the
technique as a point-of-care tool for breast imaging.

2 Methods

2.1 Simulated FD-DOT Data
To train and evaluate the DL model, synthetic FD-DOT data were simulated using the NIRFAST
Matlab package. A [104 × 120 × 50 mm] cuboid finite element model (FEM), consisting of
104,039 nodes comprising 598,181 tetrahedral linear elements, was generated. A total of
576 source/detector pairs were positioned on the mesh surface to emulate a probe with a single
source, and detectors were positioned at 20, 30, and 40 mm from the source, scanning horizon-
tally across the top surface of the model, with measurements taken at 4 mm increments, for
5 s per position, over a defined scan region of 64 × 64 mm (Fig. 1).

Amplitude and phase boundary measurements were computed for each source/detector pair
using NIRFAST based on the diffusion approximation,15 yielding a vector of 1152 boundary
measurements per simulation. For each training example, a random set of 0 to 5 anomalies was
added to the model; each was characterized by a local perturbation in μa, μs 0, or both. A system-
derived, amplitude- and modulation frequency-dependent noise model34 was used to add realistic
noise to each example. A total of 11,000 noise-added examples were generated and then divided
into 10,000 training and 1000 validation examples. To emulate real-world variability, the optical
properties of each training volume were randomized within biologically realistic distributions
based on population studies.12,35,36 The number, shape, size, and position of anomalies were
randomized within the values reported in Table 1.

No data augmentation techniques were considered in this work as absolute tomographic
imaging is nonlinear in nature, and therefore, data augmentation becomes more challenging,

Fig. 1 Schematic of model and scanning protocol. (a) Top view, (b) side view.

Dale et al.: Deep learning-enabled high-speed, multi-parameter diffuse optical. . .

Journal of Biomedical Optics 076004-4 July 2024 • Vol. 29(7)



whereas in linearized models, such as fluorescence molecular tomography,37 this may be more
appropriate to consider.

The simulated data are publicly available at https://doi.org/10.5281/zenodo.10379351.

2.2 Experimental FD-DOT Data
Two physical phantoms with different optical properties were used to test the DOT models.
The details of the estimated optical properties of the phantoms are shown in Table 2.

The first phantom (phantom 1) has been described and used in previous work38 and has a
spatially adjustable, highly absorbing anomaly, which was positioned in the center of the phan-
tom for the entirety of this study.

The second phantom (phantom 2) was designed and fabricated for this study to have more
biologically relevant optical properties for the application of breast imaging. Phantom 2 was
comprised of P4 silicone rubber (Eager Polymers, Chicago, Illinois, United States) and included
water-soluble nigrosin dye and anatase titanium (IV) oxide (TiO2) (MilliporeSigma, St. Louis,
Missouri, United States) to mimic absorption and scattering features, respectively. To begin,
276.6 μL of nigrosin solution (10 mg∕1 mL H2O) was added to 60 g of P4 activator in a glass
beaker. The contents were then mixed with ultrasonication [Branson Ultrasonics SFX550,
Danbury, Connecticut, United States)] for 5 min. After sonication, the components were further
mixed with a magnetic stir bar at 300 RPM for 3 min. This process was repeated three times to
ensure that the nigrosin was fully incorporated into the activator. Following this step, 1.6187 g of
TiO2 was combined with the nigrosin mixture, and the sonication procedure was repeated. In
between each sonication, a metal stirring rod was used to mix the solution and scrape any coagu-
lated TiO2 from the walls of the beaker. The sonication process was repeated three times to create
a homogeneous solution. Once complete, the P4 base and activator mixture were combined in a
separate container. Using an electric hand mixer (VonHaus VonShef five-speed electric mixer,
Salford, United Kingdom) at the highest speed, the container’s contents were stirred for 3 min.

Table 1 Parameters of the tissue-emulating DOT dataset.

Background μa 0.005þ −0.002 mm−1

Background μs
0 0.98þ −0.20 mm−1

μa anomaly contrast 1.5 to 3.5

μs
0 anomaly contrast 1.5 to 2.5

Number of anomalies 0 to 5

Anomaly radius 5 to 15 mm

Anomaly shape Sphere, disk, cuboid

Anomaly depth 0 to 20 mm

Table 2 Details of the two optical phantoms measured.

Phantom 1 Phantom 2

Background OPs (mm−1) 830 nm: μa ¼ 0.0103, μs 0 ¼ 1 830 nm: μa ¼ 0.0024, μs 0 ¼ 1.045

690 nm: μa ¼ 0.0044, μs 0 ¼ 1.369

Anomaly OPs (mm−1) 830 nm: μa ¼ 0.1, μs 0 ¼ 1 830 nm: μa ¼ 0.0049, μs 0 ¼ 1.849

690 nm: μa ¼ 0.01, μs 0 ¼ 2.35

Anomaly shape Horizontal cylinder Vertical cylinder

Anomaly size (mm) Radius = 5, length = 15 Radius = 10, height = 45

Anomaly in depth (mm) 12.5 5
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The container was then placed into a 0.31 ft3 vacuum chamber and degassed for ∼20 min.
Finally, a portion of the mixture was poured into a 3D-printed cylindrical mold to make the
inclusion. The remaining container contents were formed into a homogeneous reference phan-
tom. After curing for 24 h, the inclusion was removed from the mold, placed upright into the
center of a new plastic container, and secured to the bottom using a thumbtack that was inserted
on the bottom’s outside and covered in epoxy to ensure no leakage. To make the surrounding
background medium, the aforementioned procedure was repeated using 116.2 μL of nigrosin
solution and 0.9002 g of TiO2. In the final step, the mixture was degassed for 10 min to remove
a majority of the air bubbles, transferred into the container with the inclusion, and degassed for an
additional 10 min. The container was removed from the vacuum chamber and moved to a flat,
level surface to cure for 24 h.

2.2.1 Experimental data collection

FD-DOT measurements were collected using an ISS Imagent V2 system. Two, 140 MHz-modu-
lated, laser diodes (sources, 830 and 690 nm) and three photo-multiplier tubes (detectors) were
positioned linearly within a secure foam holder, at source/detector separations of 20, 30, and
40 mm. Each phantom was attached to a programmable x-y-stage beneath the probe holder
(Fig. 2). AC amplitude and phase data were collected while the phantom was moved over a
48 × 48 mm scan region at 4 mm increments, generating a 12 × 12 mm measurement grid.
The 830 nm amplitude and phase data from phantom 1 are shown in Fig. 3.

2.3 Model-Based DOT Algorithm
To explore and demonstrate the differences and trade-offs between DL and model-based recon-
struction algorithms for multi-parameter recovery, NIRFAST, a FEM-based optimization algo-
rithm, was utilized; it is based on the method described fully in Ref. 15 and is henceforth referred
to as “FEM-DOT.” Briefly, photon propagation is modeled using the diffusion approximation to
predict boundary measurements based on the initial estimation of optical properties, which is
then iteratively updated by

EQ-TARGET;temp:intralink-;e001;114;387JTðJJT þ λIÞ−1JTδΦ ¼ δμ; (1)

where δμ is the voxel-wise update vector of the optical properties for the current iteration; δΦ is
the projection error (difference between measured data and current iteration); λ is the regulari-
zation factor; and J is the Jacobian sensitivity matrix, J ∈ R½n×m�, where n is the number of
boundary measurements (intensity and phase for each source/detector pair) and m is the number
of reconstruction unknowns (μa and μs

0 for each voxel). J defines the first-order derivative of
the measurements with respect to the optical property values, that is, the rate of change of data
due to a small change in optical properties, which is calculated using the adjoint method.39

To avoid committing “inverse crime,”40 a secondary phantom mesh was generated for iterative

Fig. 2 Phantom 1 attached to an automated probe holder.
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reconstruction; it has the same dimensions and source/detector positions as the data generation
mesh described in Sec. 2.1, but with slightly higher density and differing node placement.

The initial value of the regularization term λ was set to 0.01 of the maximum value of the
diagonal of JJT and was reduced by a decay factor of 100.25 at each iteration, and the process was
continued until the projection error between two subsequent iterations did not improve below the
convergence threshold, set at 2%. It is worth noting that the regularization parameter lambda,
while used to allow for the inversion of JJT , also acts as a smoothing function: a lower value
produces a higher-resolution parameter recovery, which can also suffer from over-fitting,
whereas a higher value produces a much lower-resolution image due to under-fitting. The initial
λ value was chosen from a logarithmic range of possible values (0.0001, 0.001, 0.01, 0.1, 1) to
minimize the root mean square error (RMSE) over a subset of the validation examples, with the
decay factor selected based on prior experience. Although it is possible to optimize regularization
for each test example by selecting a value to minimize the residuals of either the predicted optical
properties or the modeled measurements, this was not done in this work as it would require prior
knowledge that may not be available in the context of clinical DOT (in the optical property case)
or extensive evaluation at each iteration for each reconstruction (in the measurement case) using,
for example, the L-curve method. For this reason, a single λ value was used for all test cases in
this study.

A reconstruction basis of 4 mm voxels was used; this was also the basis used for the DL-
based DOT, and at each iteration, an 8 × 8 × 8 mm Gaussian filter was applied to each of the μa
and μs 0 updates, chosen ad hoc based on a visual inspection of a reconstructed validation image.

Prior to inversion, the Jacobian was row- and column-normalized, to account for the
dynamic range of data, as well as the optical properties.

2.4 DL-DOT Algorithm

2.4.1 Data preprocessing

The noise-added intensity measurements were converted to log amplitude (loge AC) and then,
along with the phase measurements in degrees, were “min-max” normalized by subtracting the
minimum and dividing by the range of each measurement across all training examples. This step
ensures that each input to the network has a minimum of 0 and maximum of 1 across the entire
training set, leading to equally scaled gradients and therefore more stable convergence during
training. This is especially important with FD data because the two types of measurement—
amplitude and phase—differ significantly in terms of magnitude and distribution of the measure-
ments. The original FDU-net paper27 used min-max normalization to preprocess the intensity

Fig. 3 Topograhic maps of amplitude (AC) and phase data at three source/detector separations,
collected from the optical phantom shown in Fig. 2.
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data; however, in this work, models trained with z-score input data were found to perform better
(faster convergence and reduced error in reconstructions) compared with those trained with min-
max normalization. This is thought to be due to extreme outliers in the minimum and maximum
values of some phase measurements—caused by system noise—which distort the distribution
when used as a normalization factor. Z-score was therefore used in place of min-max for the final
model evaluated in Sec. 3. The target μa and μs

0 volumes were also independently min-max
normalized, using the global minimum and maximum values for each parameter across the train-
ing set. The minimum and range of values used in preprocessing were saved and used to apply
the same preprocessing transformation to the unseen test data and to reverse the transformation
on the model’s predictions.

To reduce the training time and create comparable output to the FEM-DOT algorithm,
the target volumes were down-sampled to 4 mm resolution using bicubic interpolation. In addition,
voxels outside the scan region (Fig. 1) and those greater than 32 mm in depth from the surface were
removed, resulting in a target volume with shape [16 × 16 × 8 × 2] (H ×W ×D × n_channel)
for each example, where n_channels refers to the two optical parameters, μa and μs

0. Due to the
physical limitations, neither DOT algorithm is expected to reconstruct accurately below 32 mm
deep (given a maximum source/detector separation of 40 mm) or in areas without sufficient sen-
sitivity; however, it is important to include these regions in the simulation stage to avoid edge
effects on the photon fluence.

2.4.2 Neural network architecture

The CNN architecture used in the DL algorithm was adapted from the FDU-net model published
in Ref. 27. The model has three distinct modules: an FC layer, a convolutional encoder–decoder
network, and a U-Net. The FC layer performs an initial mapping from measurement space to
vector space and is given by

EQ-TARGET;temp:intralink-;e002;114;426Y ¼ WXþ B; (2)

whereX is the input vector;W and B are the weight matrix and bias vector, respectively; andY is
the layer output. This layer performs a function somewhat analogous to the inverted Jacobian
sensitivity matrix used in FEM-DOT to calculate the prediction update at each iteration as it
encodes the relative sensitivity of each measurement value to each optical property at each voxel.
However, although the Jacobian is specific to a given set of optical parameters—calculated using
the diffusion approximation—the FC weights and biases constitute a generalized inverse operator
learned from the entire training data.

The CNN encoder–decoder module applies a series of 3D convolutions to the initial inverse
estimate; in each, a set of four-dimensional filters (three spatial dimensions plus a channel dimen-
sion that represents μa and μs 0 in the first layer and extracted features in all subsequent layers) is
cross-correlated with the input over the three spatial dimensions. The U-Net module performs
additional 3D convolutions with max-pooling layers in between, followed by symmetric up-sam-
pling performed by transposed convolutions. At each stage of upsampling, the feature maps with
the same dimensions from the downsampling stage are concatenated with the output along the
channel dimension (known as “skip” connections), allowing for integration of high-level and
low-level features. In both the CNN and U-Net modules, the stacked convolutional layers enable
hierarchical feature detection and denoising, where the features and noise characteristics are
learned automatically from the training data. By contrast, the spatial filtering performed in the
conventional FEM method relies on manually designed filters (a Gaussian filter as used in this
work) and matrix regularization (λ) for denoising.

In the adapted model used here for multi-parameter reconstruction, the input contained both
log amplitude and phase measurements for each channel (source/detector pair), combined in a
single vector. The two target volumes, corresponding to the two optical parameters, μa and μs

0,
were treated as two channels of a single volume—similarly to the RGB channels in an image—
rather than predicted separately, to preserve spatial coherence between parameters and allow the
model to extract complex relational features. Therefore, in the first and last layers of the network,
the channel dimension represents the two optical parameters μa and μs

0, whereas in each of the
intermediate layers, it represents the number of feature maps, determined by the number of filters
used in the previous convolutional layer.
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2.4.3 Region of interest (ROI) targeted loss function

As the simulated tissue volumes are dominated by background voxels, with anomalies making up
an average of just 11.3%� 7% of voxels across the training examples, using a conventional
reconstruction error function, e.g., RMSE, which weights all voxels equally, can lead to slow
convergence and poor reconstruction contrast, especially in smaller anomalies. To avoid this
issue, a region-of-interest weighted mean-squared-error (MSEROI) loss function, also adapted
from Ref. 27, was used to train the models; it is given by

EQ-TARGET;temp:intralink-;e003;117;645MSEROI ¼ WROI · kŷROI − yROIk þ ð1 −WÞ · kŷbg − ybgk; (3)

whereWROI is the ROI weight, y is the ground truth label, and ŷ is the model prediction. The ROI
weight parameter determines the weight of the loss function at voxels within tumor-emulating
anomalies (indicated by an ROI mask) relative to the background voxels. Because the updates to
the model’s weights and biases during training are calculated using the back-propagated differ-
entials with respect to the loss function, setting this value between 0.5 and 1 leads to relatively
larger updates for voxels contributing to anomaly-related features, leading to faster convergence
and greater contrast in the recovered values. Furthermore, because the 3D convolutional layers
impose positional invariance in the feature extraction, the ROI loss function improves the detec-
tion of anomaly-related features regardless of their position in the volume. This technique is a
form of “privileged knowledge,” meaning that information that is available in the training stage
but not the testing stage—the precise position of anomalies in this case—can be used to improve
the performance of the model. In the FEM-DOT algorithm, prior knowledge of the spatial dis-
tribution of optical properties can also be used to improve reconstruction, but it has to be explic-
itly incorporated, either in the initial reconstruction estimate or via customized spatial constraints,
both of which can be difficult to formulate, often rely on an expert’s intuition, and can prevent
accurate convergence if they are incorrect.

Because the dataset in this study included anomalies in which either absorption or scattering
was perturbed, as well as anomalies in which both were perturbed, the ROI masks were different
for each parameter and were represented as two-channel volumes with the same dimensions as
the target and reconstruction volumes. Here, it is proposed that μa and μs

0 ROI masks for each
example be combined by a voxel-wise logical or operation and the single resulting mask be
applied to the loss for both channels of the network output, thereby penalizing CT error between
the two parameters in anomaly regions. In a direct comparison between otherwise identically
trained models, this approach was found to reduce the mean squared error (MSE) by an average
of 25% in examples with single-parameter perturbations. The ROI weight parameter was not
included in the hyper-parameter grid search, and the best value was determined through trial
and error to be approximately the ratio of background voxels to total voxels across the entire
training dataset (WROI ¼ 0.887).

2.4.4 Hyper-parameter search

The optimal hyper-parameters for a DL model, balancing fitting power with regularization and
generalizability, are generally difficult to predict a priori because they depend on the nature of the
function being approximated, the number and distribution of available training examples, and the
amount of noise in the data. In this study, an initial “reasonable range” for each hyper-parameter
in the FC + encoder–decoder modules was determined through trial and error, guided by pre-
viously published models,26,27 as listed in Table 3. The optimal hyper-parameter combination was
then determined using fivefold cross-folding for internal validity. The average loss of the five
folds was used as an overall metric of each model’s performance. The hyper-parameters used in
the U-Net module were replicated from Ref. 27 in the interest of time.

2.4.5 Activation functions

In each layer of a neural network, a nonlinear activation function is applied to the layer’s output
values, enabling deep networks to emulate complex nonlinear functions. In the original FDU-net,
a rectified linear unit [ReLu, given by maxðx; 0Þ] activation was applied after every layer,
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including the initial FC layer, which, as explained in Sec. 2.4, acts as a generalized inverse oper-
ator. To estimate tissue absorption from CW intensity data, this choice makes sense as the effect
of absorption on measured intensity is monotonic. The FC layer can therefore estimate voxel-
wise perturbation from a baseline absorption via a weighted sum of the input values. However, in
the case of multi-parameter reconstruction using both intensity and phase components of the FD
measurement, the relationships between scattering and intensity, scattering and phase, and inten-
sity and phase are known to be non-monotonic depending on the position of the voxel relative to
the source and detector. It was therefore hypothesized that a function such as hyperbolic tangent
(TanH) (given by ex−e−x

exþe−x), which allows both positive and negative output values, would be more
suitable than ReLu for conditioning the FC layer output. This prediction was born out in the grid-
search results, which indicate that the most effective combination of activation functions was
TanH for the FC layer and ReLu for the following convolutional layers, which is unique to this
work for multi-parameter recovery.

2.4.6 Training

The DL model was trained in a two-stage process. First, the FC + encoder–decoder modules were
trained, and the weights and biases were frozen. The U-Net module was then trained separately
on the CNN output and the ground truth volumes. Models were built and trained in Python using
Keras DL API. All models were trained using the Adamax optimizer, and both stages of training
were allowed to run up to 500 epochs, with an early-stopping mechanism that was activated if
the validation error did not decrease at all over 50 epochs.

3 Evaluation
A second simulated dataset of manually designed test volumes was used to demonstrate param-
eter separation and depth sensitivity of the proposed DL-DOTalgorithm, compared with those of
the model-based algorithm (FEM-DOT), keeping the size and shape of anomalies constant
(Fig. 4). 150 test volumes were generated—30 for each of five discrete anomaly depths: 2.5,
5, 7.5, 10, and 15 mm. Three disk-shaped anomalies (radius = 8 mm, thickness = 5 mm) were
added to each test volume: one in which only μa was perturbed, one in which only μs

0 was
perturbed, and a third in which both were perturbed, as illustrated in Fig. 5. The background
optical properties and anomaly contrasts were sampled from the same distributions as the training
data (Table 1), and realistic noise was added using the same system-derived model.34

The DL and FEM reconstructions of each test example were evaluated via four quantitative
metrics: the MSE indicates the overall accuracy of the absolute optical property values; the
Sørensen–Dice coefficient (SDC) indicates the spatial similarity of the reconstructed anomalies
(closer to 1 is better) and is given by

EQ-TARGET;temp:intralink-;e004;114;97SDCðŷanom; yanomÞ ¼
2jŷanom ⋂ yanomj
jŷanomj þ jyanomj

; (4)

Table 3 Hyper-parameter grid-search parameters for the DL-DOT model. Bold
indicates the parameters of the best performing DL model, which was used for
validation and evaluation.

FC layer activation ReLu, TanH

Conv layer activation ReLu, TanH

Number of 3D convolutional layers
in encoder–decoder module

2, 3, 4

Number of filters per conv layer 16, 32, 64

Dropout rate 0, 0.2, 0.4, 0.6, 0.8

Learning rate 0.1, 0.01, 0.001, 0.0001, 0.00001
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where ŷanom is the anomaly mask of the reconstructed volume (calculated as voxels >0.5 in the
min-max normalized volume) and yanom is the ROI mask of the ground truth volume.

The contrast ratio (CR) represents the ratio between the reconstructed anomaly/background
contrast and the ground truth (closer to 1 is better); it is given by

EQ-TARGET;temp:intralink-;e005;117;173CRðŷ; y; μÞ ¼ hŷðμÞμ i
hŷðμÞbg i

∕
hyðμÞμ i
hyðμÞbg i

; (5)

where μ denotes the optical property under consideration (μa or μs 0); yðμaÞ and ŷðμÞ are the cor-
responding channels of the ground truth and reconstructions volumes, respectively; the μ and bg
subscripts indicate the perturbation and background voxels of those volumes, respectively; and
CT indicates the CR of the opposite optical parameter in single parameter anomalies (closer to 0
is better), which is given by

Fig. 5 Schematic example of a manually designed test volume with three disk-shaped anomalies
at a 10 mm depth.

Fig. 4 Diagram of the DL-DOT pipeline.
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EQ-TARGET;temp:intralink-;e006;114;736ðŷ; y; μÞ ¼
�
�
�
�
�

hŷðμÞ
μ−1

i
hyðμÞ

μ−1
i
− 1

�
�
�
�
�
; (6)

where μ−1 indicates the optical parameter that is not under consideration.

3.1 Experimental Validation
The two models were used to reconstruct the absolute optical properties of the physical phantoms
described in Sec. 2.2, from the data shown in Fig. 3. Because the absorption contrast of the
anomaly in phantom 1 was far greater than that represented in the biologically realistic synthetic
data, a second training set was generated to train the DL model for phantom reconstruction, with
the same randomization parameters except the range of μa perturbations, which was increased to
8 to 12 times the background value. The DL model was retrained following the same procedure,
as described in Sec. 2.4.6. Cross-sections of the FEM and DL reconstructions of the phantoms are
shown in Figs. 6–8. Only the optical properties corresponding to 830 nm measurements are
shown for phantom 1 as the optical properties at 690 nm are not known.

Fig. 6 Cross-sections of the central scan region of phantom 1 and the corresponding DL and FEM
reconstructions at 830 nm and 15 mm depths.

Fig. 7 Cross-sections of the central scan region of phantom 2 and the corresponding DL and FEM
reconstructions at 830 nm and 10 mm depths.
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4 Results
Figure 9 shows the evaluation metrics calculated for the simulated test volumes for both models
separated by inclusion depth.

A paired t-test was applied for each evaluation metric to test for statistical significance
between the results for the two models across all anomaly depths. The DL model achieved
a 12.4%� 45.8% reduction in μa RMSE (p < 0.0001) and a 23.1%� 40% reduction in μs

0

RMSE (p < 0.0001), suggesting more precise voxel-by-voxel reconstructions. These results
were significant at an alpha level of 0.05.

The observed differences in μa and μs 0 SDC, μa CR, and μa and μs 0 CTwere also found to be
significant (p < 0.0001 in all cases) and in favor of the DL model. However, the difference in μs 0

CR was not found to be significant (p ¼ 0.099).
The SDC was consistently higher in the DL reconstructions across all inclusion depths and

both parameters.
The optical contrast of both parameters was generally underestimated by both models com-

pared with the ground truth volumes. However, both μa and μs
0 contrasts were higher and more

consistent for the DL reconstruction, with the only exception being shallow (≤7.5 mm) μs 0

inclusions.
The vast majority of both models’ reconstructions presented some degree of CT between the

two optical parameters. Interestingly, the direction of CT in the DL reconstructions is modulated
by anomaly depth; scattering perturbations were misattributed to absorption at lower depths; and
vice versa at greater depths. By contrast, for the FEM model, the two are not clearly related.

The reconstruction metrics calculated with respect to the physical phantom reconstructions
are shown in Tables 4–6.

4.1 Time Efficiency
The computation time of the two models was measured on a Linux system with an Intel(R)
Xeon(R) Bronze 3106 CPU processor (1.70 GHz), 64 GB of RAM, and an onboard GPU
(Tesla V100-PCIE) with 16GB HBM2 memory and 5120 CUDA cores.

The time taken for a single FEM reconstruction was 228� 100 s (the average number of
iterations before convergence was 5.6� 3.6). The DL training dataset took a total of 41 h and
26 min to generate all 11,000 examples. Training time for the DL model was 1 h and 37 min
(37 min for the FDnet and 1 h for the U-Net). The time taken for a single DL reconstruction
was 0.0165� 0.0018 s.

Fig. 8 Cross-sections of the central scan region of phantom 1 and the corresponding DL and
FEM reconstructions at 690 nm and 10 mm depths.
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Table 4 Evaluation metrics for DL and FEM reconstructions of phantom 1 at
830 nm.

DL model FEM model

μa μs
0 μa μs

0

RMSE (mm−1) 0.01115 0.48176 0.01156 0.08305

SDC 0.39705 — 0.06577 —

CR 0.79577 — 0.16571 —

CT — 0.970537 — 0.12838

Fig. 9 Average metric scores for normalized DL and FEM reconstructions grouped by anomaly
depth.
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4.2 Computational Order Analysis
The FEM’s computational order is primarily influenced by the number of free variables (nodes)
in the mesh, and the number of iterations per reconstruction, suggesting an approximate com-
putational complexity of Oðn · iÞ, where n is the number of mesh nodes and i is the average
iterations to convergence. By contrast, the DL model’s computational complexity is determined
by the network architecture and can be estimated as O(1).

5 Discussion

5.1 Interpretation of Results
In this work, a deep CNN was used to reconstruct absolute 3D μa and μs 0 values of physical and
digital phantom tissue models directly from the intensity and phase components of frequency-
domain NIR measurements. Although previous works have harnessed DL to solve the DOT
inverse problem, both for the 2D multi-parameter case33 and the 3D absorption-only case,27 this
is the first demonstration of DL-DOT for the 3D multi-parameter case. The benefits of 3D DOT
and reconstructing scattering in addition to absorption, as discussed in Sec. 1, are substantial in
the context of breast tumor characterization, and although multi-parameter reconstruction incurs
additional obstacles, including the possibility of CT, it is a promising alternative to the CW para-
digm, which requires the false assumption of constant scattering.

The evaluation metrics for the two test sets (simulated and experimental) were generally
coherent, supporting the use of simulated data to evaluate the algorithms’ performance.
Furthermore, the average recovered background μa and μs 0 values of the physical phantoms were
within 10% of the ground truth, indicating that the calibration process effectively transforms the
data between system and simulation measurement domains.

Overall, the results indicate the same benefits of the DL technique observed elsewhere with
absorption-only models.26,27 The DL reconstructions generally had lower RMSE, higher spatial
similarity (as measured by SDC), and more accurate optical contrast compared with conventional
FEM-DOTusing the same test data. Furthermore, analysis of the reconstructions of the simulated

Table 5 Evaluation metrics for DL and FEM reconstructions of phantom 2 at
830 nm.

DL model FEM model

μa μs 0 μa μs 0

RMSE (mm−1) 0.0006 0.2703 0.00119 0.32107

SDC 0.62978 0.6423 0.10665 0.36969

CR 1.0934 1.0812 1.3229 2.2697

CT — — — —

Table 6 Evaluation metrics for DL and FEM reconstructions of phantom 2 at
690 nm.

DL model FEM model

μa μs 0 μa μs 0

RMSE (mm−1) 0.00137 0.26593 0.00152 0.31914

SDC 0.60832 0.64658 0.40088 0.46681

CR 1.0451 1.0885 1.223 1.8557

CT — — — —
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volumes revealed that the performance of the DL model was more stable, as evidenced by the
reduced variance in the metric outcomes, and that the falloff in performance as a function of
anomaly depth was smoother and more reflective of the expected sensitivity falloff of μa and
μs

0, indicating that its performance is limited by the underlying physics of the problem rather
than the model itself. In the reconstructions of phantom 2, which was designed for this study to
emulate realistic optical properties of human breast tissue (see Table 2), the DL reconstruction
was better than the FEM across all metrics for both optical properties and at both wavelengths.

The primary contribution of this study was to evaluate the effectiveness of the DL-DOT
algorithm for reconstructing absolute reduced scattering in addition to absorption. It was
observed that the difference in normalized RMSE distributions between the two models was
significantly greater in the μs

0 reconstruction than the μa, suggesting an additional benefit of
DL for multi-parameter DOT beyond that observed in previous works; this can be attributed
to the inherent difficulties of reconstructing absolute scattering values using an iterative algo-
rithm. First, because scattering has a diffusive effect on the sensitivity distributions of both μa and
μs

0, varying scattering adds additional nonlinearity to the inverse problem compared with the
constant scattering case and a greater dependence on higher-order derivatives, which are often
ignored in the FEM approach to linearize the update calculation. Second, the lower sensitivity of
both intensity and phase with respect to biologically relevant scattering and the sharper falloff in
sensitivity as a function of depth both contribute to a significantly lower SNR in the FD mea-
surements with respect to scattering perturbations. The DL model has improved robustness to
noise as the convolutional layers automatically learn the specific distribution of noise in the train-
ing data compared with the FEM model, which relies on manually chosen matrix regularization
and a smoothing filter to avoid over-fitting, both of which incur a direct cost in terms of locali-
zation and contrast. However, shallow perturbations in μs

0 were identified as a specific cause of
error for the DL model, evidenced by both the lower contrast in μs

0 and the higher CT in μa
compared with the corresponding FEM reconstructions (Fig. 9). This may be due to the inherent
uncertainty regarding the position of the anomaly introduced by scattering close to the source/
detector and the differing effects of this uncertainty on the convergence of the two algorithms.
The DL model uses a single set of parameters to minimize voxel-wise error across all training
examples and therefore effectively predicts a weighted average of possible solutions for a given
input—positional uncertainty therefore produces a diffusive effect in the reconstruction. In the
FEM algorithm, however, the error is calculated between two sets of measurements, and the
model weights (the Jacobian) are updated at each iteration given the current optical property
estimate—the algorithm therefore converges in a “depth-first” manner toward a single most
likely solution and is less effected by the uncertainty introduced by scattering. Knowing this
specific weakness, it may be possible to adapt the DL model to improve its performance in cases
in which anomaly localization is uncertain, for example, by tailoring theMSEROI loss function to
penalize false-positive anomalies in the shallow region of the reconstruction, thereby increasing
sensitivity to subtle indications of anomaly position and contrast.

Parameter separation in DOT is vital in the context of breast imaging, both to improve the
accuracy of recovered μa and therefore of the subsequently resolved chromophore concentrations
and to provide an indication of changes in tissue substructure through the scattering parameter. In
all of the test cases in which the optical properties were within a biologically realistic range for
breast tissue (phantom 2 and simulated volumes), the results indicate that the DL model can more
effectively separate the effects of absorption and scattering compared with the FEM reconstruc-
tion, which was more impacted by CT between the parameters. However, in the case of phantom
1, the DL reconstruction exhibited a significantly greater degree of CT and a corresponding
higher μs 0 RMSE compared with the FEM reconstruction. This may be due to the relatively
greater background absorption and anomaly depth in phantom 1 compared with the other test
volumes: during the development of the multi-parameter DL model, it was noted that “halluci-
nated” anomalies sometimes occur in the reconstructions when signal contrast is low and that this
tendency is greater when the average number of anomalies in the training data is greater. There
may therefore be a benefit of the model-based approach specifically in cases in which only low
SNR measurements are available. It should also be noted that there may be genuine scattering
changes in phantom 1 that were unaccounted for in the ground-truth target; this is caused by
imperfect contact between the phantom and the movable anomaly rod. In this work, the only
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available phantom with biologically realistic optical properties (phantom 2) contained a single
anomaly characterized by a perturbation in both μa and μs

0 and therefore did not give a clear
indication of parameter separation. In future work, it would be beneficial to test models on physi-
cal phantoms in which μa and μs

0 are separately perturbed within a biologically relevant range,
to separate the effects of the model choice, optical properties, and measurement paradigm
(simulated or experimental) on parameter separation.

Both models consistently underestimated the contrast of the simulated anomalies. Low con-
trast is a common issue for model-based reconstruction due to the inherent trade-offs and has
therefore been explicitly addressed in the DL model design, using a region-of-interest weighted
loss function during training. The DL model recovered more accurate contrast for all test cases,
except for simulated examples with shallow (2.5 to 7.5 mm) μs 0 perturbations.

5.2 Neural Network Design
This work introduced three specific developments to the FDU-net as described in Ref. 27 to
improve the performance for multi-parameter recovery using FD data. First is the use of z-score
rather than min-max normalization to preprocess the FD measurements—this was found to
reduce overall RMSE in the validation data by 13% and the average number of epochs taken
for convergence (although the latter was not systematically measured). It is noted that this choice
was made at the validation stage, at which only RMSE was evaluated, and it is possible that using
min-max or another normalization method may benefit other metric scores such as anomaly
contrast. Second is the use of the TanH function as opposed to ReLU for the FC layer—to
account for positive and negative sensitivity in the FD measurements with respect to absorption
and phase—which reduced MSEROI loss by 10% in a direct comparison using fivefold cross-
validation. Third is the combination of the μa and μs

0’ ROI masks that penalize CT artifacts,
which reduced MSEROI by 25% in examples with single parameter inclusions.

Notwithstanding these improvements, the adapted FDU-net presented in this work repre-
sents a canonical DL architecture for an inverse imaging problem: an initial FC layer used
as a mapping function from measurement space to voxel space, followed by a structure of con-
volutional layers for spatial feature extraction, followed in this case by a U-Net module to inte-
grate high- and low-level features to produce cleaner DOT images. This style of architecture has
the benefit of being arbitrarily adaptable to different measurement protocols and tissue geom-
etries with minimal implementation changes. However, because the FC layer learns a weight for
each available measurement, voxel, and optical parameter independently, any single trained net-
work is not generalizable to different probe configurations or scan protocols, potentially leading
to a significant time cost for case-by-case data generation and network training. This “probe
configuration dependency” is unlikely to be overcome with the current DL-DOT paradigm but
may be with a different style of architecture such as a vision transformer (ViT) or graph neural
network, which allows for ad hoc encoding of arbitrary measurement sequences and node posi-
tions. It is possible however that an adapted FDU-net architecture could improve the performance
or efficiency of a particular geometry or scan protocol. For example, the reflectance geometry
and moving probe used in this work ensure structural similarity between the sensitivity distri-
butions of all measurements of the same source/detector separation, inevitably leading to redun-
dancy in the FC layer. Implementing parameter-sharing techniques (e.g., 2D convolution over
spatially resolved measurements) to enforce a generalized spatial mapping from measurement to
voxel space could reduce redundancy in the network and enable more efficient training and a
significant reduction in the number of parameters. This is highly desirable in the context of hand-
held NIR devices, for which processing power and memory space are limited by the controlling
device, often a tablet or smartphone. The trade-offs in network size, training efficiency, and infer-
ence time in the context of handheld DOT will be the subject of future research.

5.3 Toward Real-Time Clinical Imaging with DOT
The DL and FEM models described in this work represent two qualitatively different approaches
to DOT, each with distinct benefits and drawbacks. The FEM approach relies on an explicit
physics-based forward model and can therefore be utilized with no priors regarding the character-
istics of the target volume besides a known geometry and an initial estimate of optical properties.
However, because the iterative optimization algorithm linearizes a highly nonlinear problem, it is
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likely to converge in a local minimum, leading to errors in the reconstruction. By contrast, the DL
approach can effectively model the complexity of the inverse problem for a given geometry, but it
has no explicit representation of the physical system that it intends to invert. It relies entirely on
statistically extracted features based on specific training data used, meaning that prior distribu-
tions of volume properties, such as ranges of optical properties, number, size, and shape of
anomalies, encoded in the training data are automatically learned by the model and bias its recon-
structions. This is both a strength and a weakness of the DL method: the bias reduces the number
of possible solutions but also means that the model may fail to reconstruct examples with proper-
ties that are not represented in the training dataset (this is why, for example, an entirely new
training set was required to reconstruct phantom 1, the optical properties of which lay outside
the range simulated in the original training set). Generalizability is a common limitation of DL
models across domains and can lead to unpredictable errors even in extremely advanced DL
models. Such failure modes are clearly unacceptable in the context of disease monitoring or
diagnosis, so although DL-DOTmay provide a valuable clinical guide, it is unlikely to be reliable
enough to inform critical decision-making without significant progress in interpretability or used
in combination with a physics-based model (as recently demonstrated41).

From a clinical point of view, it can be argued that the most notable distinction between the
DL-DOT and FEM-DOT methods is the high reconstruction speed and automatability of DL.
This is increasingly salient considering the recent advances in FD-DOT hardware, as discussed
in Sec. 1, especially the trend toward lightweight, handheld devices that can be run from a
tablet or smartphone13 and the fact that one of the key advantages of DOT imaging compared
with other modalities is its relative speed and usability. As has been reported frequently else-
where, the time and computational cost of DL is incurred primarily in the data generation and
training phases, enabling significantly faster reconstruction. In this study, the DL method
reduced the inference time by approximately four orders of magnitude compared with the
FEM method (0.02 s versus 3.8 min). Deng et al.27 found slightly different times (0.02 s versus
12 min)—possibly due to differences in the input and output data size, mesh resolution, or GPU
speed—but a similar reduction of four orders of magnitude. In addition, the inference time of a
trained DL model is constant, whereas the iterative FEM optimization depends on the number
of iterations before the stopping criteria are met. Even without further optimization, assuming
a 10 Hz refresh rate brings DOT into the same range of temporal resolution as some modern
ultrasound systems. Furthermore, the FEM method relies on manually chosen parameters such
as the regularization technique, number of iterations, and design of the smoothing filter. In this
study, the FEM parameters were chosen to maximize performance over a labeled validation
dataset and then kept the same for all test reconstructions. Although the parameters could
certainly be tuned individually for each example based on experience, expert intuition, or prior
information, to produce a higher quality reconstruction, this is impractical in a clinical setting,
where prior information is rarely available and the medical professional using the system is
unlikely to be an expert in the relevant computational techniques. By contrast, DL-DOT front-
loads algorithmic choices in the data generation and training stages, meaning that once the
model is trained, reconstruction can be fully automated at the point of use. Furthermore, the
same DL model can be used to recover absolute μa and μs

0 for multiple wavelengths (as dem-
onstrated with phantom 2), thereby enabling real-time estimation of both absolute chromo-
phore concentrations and scattering properties (particle size and density)42 with a single
scan. Considered together, these advantages suggest a potential new use-case for FD-DOT:
high-speed 3D imaging, which could provide an immediate visualization following a scan,
or even real-time feedback for a clinician administering a scan with a handheld device.
It is noted that the same measurements used for real-time DL-DOT can be stored and sub-
sequently used for FEM or hybrid reconstruction, conferring the benefits of both techniques
from a single set of measurements.

5.4 Limitations
First, and as previously noted, although simultaneous dual-wavelength μa and μs 0 reconstruction
has been demonstrated, recovery of pathologically relevant chromophores (e.g., oxygenated and
deoxygenated hemoglobin) has not. It is difficult to quantify the benefit of increasing optical
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property accuracy without performing the conversion to chromophore values, and this should be
explored in subsequent work.

Second, the simplified tissue models (cuboid slabs with homogeneous backgrounds and
uniformly perturbed anomalies) used to train and evaluate the models in this study do not capture
the full range of tissue characteristics expected in real human tissue. Rather, these models were
designed to isolate the effects of optical property contrast and anomaly depth. Although some
studies have indicated that DL-DOT models can generalize beyond the specific characteristics of
the training data, this is an exception to the general rule; typically, DL models excel in specialized
imaging tasks but are prone to errors when confronted with “out of distribution” examples. In the
case of DOT, spatial priors such as optical property distributions and anomaly shapes and sizes
are encoded in the training data and automatically learned and reproduced by the model.
Consequently, the trained DL model evaluated in Sec. 3 is not expected to generalize to more
complex anomaly shapes than those present in the training dataset. However, it is likely that an
identical architecture could recover more complex anomaly shapes and smooth yet non-uniform
background volumes such as breast tissue, given an appropriately designed training dataset.
Developing effective datasets for data-driven medical imaging is challenging compared with
traditional DL applications such as image classification or language translation due to the
unavailability of ground-truth training examples. Nevertheless, techniques demonstrated else-
where, such as incorporating structural information from X-ray mammography to produce more
realistic simulated examples, may offer benefits over the simplified volumes used in this study.

No work has yet addressed the related question of the generalizability of DL-DOT models
with respect to individual and population-level physiological differences. In this work, the optical
properties in the simulated DOT dataset were sampled from a continuous distribution. In reality,
factors such as age and ethnicity affect tissue density and skin pigmentation, producing distinct
differences in optical property distributions among demographic groups. Accounting for these
differences by narrowing the biological priors in the training data may provide more accurate
reconstructions by reducing the range of possible solutions, but it introduces additional meth-
odological considerations such as defining appropriate groups and classifying patients within
them. At the extreme end of this spectrum, unique datasets could be generated for individual
patients by co-registering 3D scans or with an atlas model, which may be especially beneficial
for patients with unusual requirements in terms of scan location or body shape, that are unlikely
to be accurately reconstructed by a model trained on a population-level dataset.

6 Conclusion
This work evidenced DL-DOT for simultaneous recovery of 3D absorption and scattering coef-
ficients. In addition to preserving the previously demonstrated benefits of DL-DOT, including
dramatically reduced reconstruction time and more accurate absorption recovery, the proposed
DLmodel—trained exclusively on simulated FD-NIR data—infers specific advantages for multi-
parameter reconstruction, including improved parameter separation and accurate recovery of
tissue scattering, which poses a fundamental obstacle to the classic FEM-based approach. The
results support the potential of DL for enhancing the efficiency and accuracy of FD-DOT im-
aging and the possibility of harnessing DOT for real-time handheld breast imaging in a clinical
setting.
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