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ABSTRACT. Significance: Accurate identification of epidermal cells on reflectance confocal
microscopy (RCM) images is important in the study of epidermal architecture and
topology of both healthy and diseased skin. However, analysis of these images is
currently done manually and therefore time-consuming and subject to human error
and inter-expert interpretation. It is also hindered by low image quality due to noise
and heterogeneity.

Aim: We aimed to design an automated pipeline for the analysis of the epidermal
structure from RCM images.

Approach: Two attempts have been made at automatically localizing epidermal
cells, called keratinocytes, on RCM images: the first is based on a rotationally sym-
metric error function mask, and the second on cell morphological features. Here, we
propose a dual-task network to automatically identify keratinocytes on RCM images.
Each task consists of a cycle generative adversarial network. The first task aims to
translate real RCM images into binary images, thus learning the noise and texture
model of RCM images, whereas the second task maps Gabor-filtered RCM images
into binary images, learning the epidermal structure visible on RCM images. The
combination of the two tasks allows one task to constrict the solution space of the
other, thus improving overall results. We refine our cell identification by applying
the pre-trained StarDist algorithm to detect star-convex shapes, thus closing any
incomplete membranes and separating neighboring cells.

Results: The results are evaluated both on simulated data and manually annotated
real RCM data. Accuracy is measured using recall and precision metrics, which is
summarized as the F1-score.

Conclusions: We demonstrate that the proposed fully unsupervised method
successfully identifies keratinocytes on RCM images of the epidermis, with an accu-
racy on par with experts’ cell identification, is not constrained by limited available
annotated data, and can be extended to images acquired using various imaging
techniques without retraining.
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1 Introduction
Reflectance confocal microscopy (RCM) is a non-invasive in vivo imaging technique that allows
for visualization of epidermal cells, called keratinocytes, at a cellular level in the epidermis and
upper layers of the dermis (150 to 200 μm in depth, depending on body site1). It provides infor-
mation on the geometry and topology of the skin, which are key elements in the skin barrier and
health, thus helping in the study of infants’ and children’s skin maturation, adult skin aging, and
photo-aging due to ultraviolet (UV) exposure. RCM can also be used to assess skin inflammatory
diseases, e.g., psoriasis, allergic contact dermatitis, and skin cancer,2 providing information faster
than traditional biopsies and potentially reducing the number of unneeded biopsies, by guiding
them to delimit lesion borders and helping in disease diagnosis and monitoring.

Although automated methods have been developed to identify some lesions on RCM
images,3–7 most of the analysis is performed manually, which is time-consuming and subject
to inter and intra-expert interpretation.8 Hence, an automated method for keratinocyte identifi-
cation on RCM images is needed, which would allow for a more reproducible, unbiased, and
precise analysis. Unfortunately, image quality, heterogeneity, and low signal-to-noise ratio are a
hurdle to automated methods’ development. Attempts at automating keratinocyte identification
on RCM images have been made and were based on the identification of cell morphological
features, e.g., membrane size,9,10 but are hindered by manual parametrization often different
among datasets, image types, and epidermal layers. Deep learning methods could be an alter-
native solution to circumvent these problems.

Accurate automated cell identification on biomedical images with deep learning has been a
growing research topic in computer vision but is hindered by the lack of labeled data on account
of cost, time, and domain-specific skills. Unsupervised learning bypasses the labeled data
scarcity problem by tapping into unlabeled data potential. One of the main developments in
unsupervised learning research in recent years is the cycle generative adversarial networks
(cycle-GANs)11 for unpaired image-to-image translation and is classically used for synthetic
image generation and data augmentation.12–15

We propose a top-down, structure-aware, multi-task cycle-GAN architecture, which we
have named DermoGAN, to automatically detect keratinocytes on RCM images. The multi-
task model performs two parallel cycle-GANs, to denoise RCM images while highlighting
membrane positions, and provides an incomplete cell identification, which is then refined and
completed by a post-processing based on star-convex shape detection. The proposed architec-
ture is fully unsupervised and thus not limited by training annotations, often the first limitation
to the use of deep learning methods in the analysis of biomedical images. To our knowledge,
this is the first use of cycle-GANs in a multi-task framework. In addition, while generally used
for synthetic image generation and data augmentation, here, we employ the cycle-GAN algo-
rithm as an image-denoiser and cell-identifier. Indeed, we change our perspective on the cell
identification problem and move the data augmentation approach consisting of learning the
noise model in RCM images to create synthetic images, which will then be used to augment
our dataset to be used in other models, to a new approach consisting of learning the image
denoising model. This change in perspective makes use of the cycle-consistency property of
cycle-GANs.

We compare the proposed method with seven other approaches, namely, a supervised
method based on a U-net architecture,16 a pre-trained StarDist17 applied to Gabor-filtered
images, two unsupervised approaches based on a cycle-GAN with different inputs, a tailored
pipeline based on the detection of membrane morphological features,8 the CellPose18

algorithm for cellular segmentation, and finally DermoGAN followed by postprocessing using
CellPose.

We demonstrate that the presented DermoGAN architecture performs on par with expert
manual identification of cells and outperforms the seven other tested automated methods in accu-
racy and execution computational time. We also explore the use of DermoGAN, without retrain-
ing, to images acquired using other image acquisition techniques, and the possibility of training it
on datasets made entirely of synthetic images.
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2 Methods

2.1 Identifying Keratinocytes on RCM Images with DermoGAN
The goal of the proposed DermoGAN model, shown in Fig. 1, is to estimate a mapping GA2B

from an RCM image domain (A) toward a binary domain (B). The mapping is learned using two
connected complementary tasks. The first one learns the RCM image noise and texture model
(the likelihood of the image) from two sets of unpaired images: a set of RCM images and a set of
(synthetic) binary images (obtained by simulating a prior model). The second task maps Gabor-
filtered RCM images (domain C), i.e., where membranes have been highlighted, into (synthetic)

Fig. 1 DermoGAN architecture. The first task maps RCM images to the unpaired synthetic binary
images, whereas the second task learns the structure of RCM images of the epidermis by trans-
lating Gabor-filtered RCM images into binary images.
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binary images, to learn the global geometrical structure of the epidermal tissue. The combination
of the two tasks makes the overall model structure-aware, allowing us to denoise RCM images
while keeping the position and integrity of the membrane.

The proposed architecture is fully unsupervised, thus circumventing the obstacle of limited
labeled data. In addition, as it does not rely on training with a manually generated ground truth, as
opposed to supervised approaches, such as U-net, its accuracy cannot be impacted by incorrectly
labeled data, i.e., missing cells in the ground truth or wrong detections.

Each task is a cycle-GAN, made of two generators, denoted GA2B and GB2A in the first task
and GC2B and GB2C in the second task, and two discriminators, denoted DB1

and DA in the first
task and DC and DB2

in the second task, making a total of eight networks in the model.

2.1.1 Generator and discriminator architecture

The generator and discriminator networks form pairs (GA2B∕DB1
and GB2A∕DA, GC2B∕DB2

, and
GB2C∕DC). A generator takes a 256 × 256 image as input, down-samples it to extract high-level
features and reduce spatial resolution, applies a succession of residual blocks to these features,
and then up-samples them to increase the spatial resolution backup and generate the output, as
described in Fig. S1 in the Supplementary Material. Each generator aims to create realistic target
images taking a source image as input. The generators are constrained by an identity loss,19 to
ensure that the generator does not modify a target domain image if used as an input, encouraging
it to be an identity mapping, i.e., GA2BðBÞ ≈ B. The two generators in the network should be
cycle-consistent to ensure that the data are preserved during the translation process and the latter
is reversible, i.e., GA2BðGB2AðBÞÞ ≈ B.20

The weights in all generators were initiated from a Xavier (or Glorot) normal distribution21

such that the variation of the activations is the same across all layers to reduce the risk of the
gradient exploding or vanishing and is a random number with a normal probability distribution in

the range �
ffiffiffiffiffiffiffiffiffi

6
niþno

q
, where ni ¼ 862 is the number of input images (both real RCM images and

Gabor-filtered ones) and no ¼ 400 is the number of output images (synthetic binary images). The
weights of the generators were then updated by minimizing three loss functions (see Fig. 1).

In the case of GA2B, these losses are as follows:

(1) adversarial loss calculated with a mean squared error (MSE) between the generator and
its associated discriminator, here, DB1

, such that for a pixel at coordinates ½i; j� of the
generated image GenB, it is defined as

EQ-TARGET;temp:intralink-;e001;114;323MSEðDB1
ðGenBÞ; 1Þ ¼

1

nt

Xnt
i;j

ðDB1
ðGenBÞði; jÞ − 1Þ2; (1)

where nt is the size of the tensor outputted by the discriminator.
(2) identity loss with a mean absolute error (MAE) between the input image IB from domain

B and the theoretical identity mapping IdIB ¼ GA2BðIBÞ ≈ IB, defined for image IB at
pixel ½i; j�

EQ-TARGET;temp:intralink-;e002;114;231MAEðIdIB ; IBÞ ¼
1

ni

Xni
i;j

jIdIBði; jÞ − IBði; jÞj; (2)

(3) forward or backward cycle consistency loss with an MAE between an input image IB
from domain B and the corresponding reconstructed image RecIB ¼ GA2BðGB2AðIBÞÞ,
defined at pixel of coordinates [i, j] as

EQ-TARGET;temp:intralink-;e003;114;151MAEðRecIB ; IBÞ ¼
1

ni

Xni
i;j

jRecIBði; jÞ − IBði; jÞj: (3)

This loss function participates 10 times more in the update of the generator weights compared
with the adversarial MSE loss.

The generators were trained with the adaptive moment estimation (ADAM) optimizer with
an initial learning rate of 0.002 and a decay rate of the gradient exponential moving average of 1.
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The discriminators take an image as input and output the classification results (real versus
fake) in a tensor. Each discriminator aims to distinguish between real and generated target
images, thus working against its matching adversary generator, which aims to create indiscrim-
inable generated target images. These two networks are connected through the adversarial loss in
Eq. (1),20 and the discriminator loss function is defined as

EQ-TARGET;temp:intralink-;e004;117;676

1

2
MSEðDB1

ðGenBÞ; 1Þ þ
1

2
MSEðDB1

ðIBÞ; 0Þ: (4)

Training each generator/discriminator pair simultaneously allows the cycle-GAN to learn
the bidirectional image-to-image translation between two unpaired domains.

2.1.2 Multi-task approach

RCM images are noisy and heterogeneous due to tissue-induced scattering22 and are non-specific
to organelles and macro-structures. This makes the identification of keratinocytes on RCM
images a challenging task, whether done manually or automatically. In this case, cell identifi-
cation requires two simultaneous tasks to capture the breadth of information in confocal images:
noise removal and membrane identification. Multi-task learning allows for concurrent execution
of these two related tasks, improving overall performance by leveraging complementary infor-
mation and sharing representations.23 This reasoning mimics the expert’s approach to manual cell
identification on RCM images, i.e., focusing on bright tube-like membranes while ignoring the
bright blob-like noise.

Noise removal was performed using a first cycle-GAN, learning the translation between
RCM and binary images obtained by simulating the structure of keratinocytes8 (described in
Sec. 3.3.1), whereas membrane identification was performed by learning the mapping between
binary images and Gabor-filtered RCM images, i.e., where membranes were highlighted.

The multi-task model is optimized through the soft-sharing of parameters,24 as the two tasks
do not share any hidden layer but are connected through their loss function, as shown in Fig. 1.
Indeed, at each update of the loss function, those associated with the generators creating the
binary images, i.e., GA2B and GC2B, are updated through their regular optimization, and then,
the maximum value of the two trios of losses is set as the loss function for both generators to
synchronize training across the two tasks of noise removal and membrane identification.

2.2 Refining the Results with Star-convex Polygons
The proposed method is a top-down approach to cell detection. The DermoGAN roughly local-
izes individual cell locations, but post-processing is required, as shown in Figs. 2 and 3. Indeed,
applying the obtained mapping GA2B to a locally normalized RCM image results in an incom-
plete binary image. To guarantee that the outside contour of tissue where the keratinocytes are

Fig. 2 Comparison of the two cycle-GAN-based approaches and the proposed DermoGAN.
DermoGAN outperforms both methods.
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detected is closed, we compute the alpha shape25 of the incomplete binary mask at a set level of
refinement, such that the tissue comprises only one volume per external contour and is not broken
down into smaller shapes and that the alpha-shape contour matches the actual tissue area. Small
holes in the membrane are then closed using a connected components analysis.26

We assume that all cells are star-convex shapes. However, non-star-convex polygons can
result from the false merging of two or more cells due to the lack of contrast on the membranes.
To split these shapes, we use the pre-trained convolutional neural network StarDist17 to detect
star-convex polygons within the contours detected by the DermoGAN model, consequently
refining our results, countering any missed cells, and reducing the number of false negatives,
as shown in Fig. 2.

3 Experiments and Results

3.1 Dataset
RCM images were captured using a Vivascope 1500 (Lucid, Inc., Rochester, New York, United
States) reflectance confocal microscope, on the volar forearm of 60 children (3 months to 10
years) and 20 adult women (25 to 40 years) and on the volar forearm and cheek of 80 other
adult women (40 to 80 years). All participants have Fitzpatrick types between I and III, were
in good health, and had no history of skin disease. The study was initiated following approval
from an independent institutional review board and in accordance with the Declaration of
Helsinki (studies 19.0198 and 20.0022). Subjects or their guardian gave written informed consent
prior to study initiation.

The image size was 1000 × 1000 pixels, corresponding to 500 × 500 μm2, with a resolution
of 1 μm2 per pixel. A region of interest (ROI) mask was generated for and applied to all images
used across all six tested methods. The ROI was identified by distinguishing the tissue from the
dark background, due to the skin micro-relief lines, using a morphological-geodesic-active-
contour, and removing non-informative areas in the tissue, due to low contrast and a drop in the
signal-to-noise ratio, through a texture classification with a support vector machine on four fea-
tures of the gray level co-occurrence matrix (homogeneity, contrast, dissimilarity, and energy8).

Images used in DermoGAN, U-net, and both approaches using a cycle-GAN were of the size
256 × 256 pixels and obtained by splitting the full image into nine non-overlapping square
patches of 256 × 256 pixels. The full-image analysis pipeline network used full RCM images.10

DermoGAN and both cycle-GAN models were trained using the same 862 RCM images of
the size 256 × 256 pixels and 400 synthetic images. The number of synthetic images used in the
training of the models was determined empirically. Indeed, we noticed that adding more images
did not improve performance but increased computational time. Using 400 images was the right
balance between performance and computational time and power. The RCM images represent
both the volar forearm and cheek and include participants ages 0 to 80 years.

Image classification in one of the four epidermal layers was obtained using a hybrid deep
learning algorithm,27 allowing to focus only on images of the stratum granulosum (SG) and
stratum spinosum (SS), where keratinocytes are visible and identifiable on RCM images and

Fig. 3 RCM image analyzed with the eight presented algorithms. DermoGAN outperforms five out
of six other methods on all images and outperforms FIAP on six out of nine images.
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arranged in a honeycomb pattern28 inside of islands surrounded by dark grooves representing
micro-relief lines.8,29

Ground truth used for the evaluation of all the tested approaches was generated by a single
expert manually pointing out cell centers on nine RCM images of seven subjects (children and
adult women), ages 5 months to 35 years old. The use of ground truth generated by a sole expert
in the evaluation of our results is a limitation of our work but is justified by the previously doc-
umented inter-expert variation in keratinocyte identification.8

3.1.1 Generated binary synthetic images

Binary (synthetic) images, of the size 256 × 256 pixels, were created by generating a random
tissue mask using random Bezier curves. Within these shapes, seeds, mimicking cell centers,
were used to initiate a Voronoi tessellation, which have been previously used to represent both
skin cells30 and other types of cells.31–33 These synthetic binary images are user-controlled,
and the associated ground truth is given by the seed locations. The seeds are generated with
a “hard-core” process simulation controlled by the density parameter (see Fig. 4).

Synthetic RCM images were generated by adding different levels of noise and brightness
heterogeneity to the binary images, as shown in Fig. 4 and detailed in Ref. 8.

3.2 DermoGAN Implementation Details
The used model was trained for 5172 epochs on 46.9 central processing unit (CPU) cores and
85.4 GiB of random access memory (RAM). The training took ∼4 days. All deep learning mod-
els were implemented using PyTorch.

Intermediate models were saved every 400 epochs, and the model with the best performance,
i.e., accuracy metrics (precision and recall summarized into the F1-score), was chosen.

3.3 Comparison to Other Automated Methods
The proposed method is compared with seven other approaches: (1) a deep learning approach
based on the U-net architecture,16 (2) a StarDist algorithm applied to Gabor-filtered RCM
images, (3) a cycle-GAN trained to translate RCM images into binary images, (4) a second
cycle-GAN trained to turn Gabor-filtered RCM images into binary images, (5) a full-image
analysis pipeline based on traditional image analysis methods,8,10,34 (6) CellPose algorithm for
cellular segmentation, and (7) DermoGAN followed by postprocessing with CellPose.

The proposed combination of cycle-GAN models into a multi-task approach improves
results by mimicking manual expertise, disregarding noise to focus on membrane location and
tissue structure.

3.3.1 U-net

A U-net architecture, pre-trained on the 2012 ImageNet Large Scale Visual Recognition
Challenge dataset35 with an EfficientNetB3 backbone,36 was further trained on 43 real RCM
images of the size 256 × 256 pixels (four participants, 20 to 35 years) and 203 synthetic RCM
images and tested on 13 real RCM images and 68 synthetic RCM images. The corresponding
ground truths were obtained by the same expert and do not include the nine images used in the

Fig. 4 Synthetic images used in the training of the models. (a) A synthetic binary image used in
the DermoGAN training. (b) and (c) RCM images of different noise levels and cell sizes used in
U-net training. (d) Real RCM image. RCM, reflectance confocal microscopy.
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model evaluation. The network used a combination of two loss functions: Dice loss37 and focal
loss38 to account for class imbalance between cell membranes and background. The model is
trained with the ADAM optimizer with an initial learning rate of 0.0001, a batch size of 64, and
a sigmoid activation function. The model was trained for 500 epochs on 46.9 CPU cores and
85.4 GiB of RAM. Training took ∼3 days. The selected U-net model was obtained following
multiple iterations, as described in Refs. 8 and 39.

3.3.2 StarDist applied to Gabor-filtered images

A Gabor filter was applied to ROI-masked RCM images to highlight membrane positions. The
result was normalized with a histogram equalization and binarized with a Gaussian adaptive
thresholding. A pre-trained StarDist was then applied to the binary-masked Gabor-filtered RCM
image.

3.3.3 Cycle-GAN-based models

Two cycle-GAN models were trained on 862 RCM images and 400 binary images, each one
representing a task in the DermoGAN architecture, to evaluate each model independently and
later emphasize the importance of combining the two tasks into one architecture. The first one
aimed to translate RCM images into binary images, whereas the second sought to convert
Gabor-filtered RCM images into binary images. Both tested cycle-GAN models were refined
using star-convex shape detection as performed in the DermoGAN architecture. Training was
performed for 12,068 epochs on 46.9 CPU cores and 85.4 GiB of RAM and took 2 days.

3.3.4 Full image analysis pipeline (FIAP)

A three-step pipeline for keratinocyte detection8,10,34 based on membrane detection using image
filters was applied to full RCM images of size 1000 × 1000 pixels. First, the ROI containing the
epidermal cells is identified. Texture filters (Gabor and Sato filters) are then applied to the image
to accentuate tube-like structures (membranes) within the ROI and identify individual cells
within it. The detected contours are then post-processed using prior biological knowledge40

on expected cell size to remove contours that are too small (cell area < 100 pixels for contours
detected on RCM images of the SG and cell area < 50 pixels for contours detected on RCM
images of the SS). The texture filters were reapplied locally on detected regions presumed to
be too big to be considered a single cell and divided into multiple cells if needed. The FIAP
is applicable to images of the SG and SS and requires a different set of parameters for each
layer, which were determined manually. Computational time is 7 to 10 min per image depending
on image complexity and required post-processing steps.

3.3.5 CellPose

The pre-trained CellPose model was applied, without retraining, to the full RCM images of
the size 1000 × 1000 pixels where the ROI had already been identified. CellPose is a generalist
single-class instance segmentation algorithm optimized for cellular segmentation across different
microscopy modalities. The model was run with the following parameters: ROI diameter = 50
for SG images, ROI diameter = 50 for SS images, and flow threshold = 0.4, cell probability
threshold = 0.2, and stitch threshold = 0.

3.3.6 DermoGAN followed by CellPose

We replaced the previously described postprocessing step with StarDist using the TissueNet cell
model available in CellPose. The model was run with the following parameters: ROI diameter =
50 for SG images, ROI diameter = 50 for SS images, and flow threshold = 0.4, cell probability
threshold = 0.2, and stitch threshold = 0.

All eight tested methods were evaluated against the same RCM images. While the two cycle-
GAN-based approaches and DermoGAN were trained on the same images, U-net was not.
Indeed, U-net is a supervised learning approach, and ground truth was not available for all images
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used in the training of the other tested methods. This may limit the comparability of the
approaches to each other but highlights the importance of unsupervised learning methods, which
are not limited by the available labeled data.

3.4 Keratinocyte Identification Results
The proposed DermoGAN architecture was evaluated using nine full RCM images, each divided
into nine patches. Accuracy (precision and recall summarized into the F1-score) was calculated
using d-accuracy41 against a manually obtained ground truth and compared with the results
obtained using the eight described methods, as shown in Fig. 3 and Table 1.

The poor performance of the pre-trained U-net model augmented with real and synthetic
RCM images with Focal and Dice loss functions is in part due to the limited training set.
Being a supervised approach, it may also suffer from missing cells in the ground truth used for
training due to inter and intra-expert variability and subjectivity in manual keratinocyte identi-
fication on RCM image8 and from membranes in the ground truth images created by Voronoi
tessellation initiated from manually determined cell centers, not matching the actual membrane
position in RCM images.

The pre-trained StarDist applied to Gabor-filtered images also performs poorly. Indeed,
although the Gabor filter highlights most membranes, it may also highlight noise due to, for
example, organelles, leading to false positives and low precision. Although the StarDist post-
processing greatly improves results by segmenting (correctly or not) the detected contours into
star-convex shapes, it does not manage to correct for all missing cells, leading to false negatives
and consequently low recall and overall low F1-score.

Both cycle-GAN-based approaches have low F1-scores as they fail to detect complete mem-
branes, as shown in Fig. 2. Indeed, the cycle-GAN model trained on RCM and binary images
struggles to distinguish between noise and microstructures making up the membranes. On the
other hand, the cycle-GAN trained on Gabor-filtered images with binary images is corrupted by
the spatial correlation of noise and fails to detect any structure present in the image, as seen in
Fig. 2, which also hints at the reason behind the DermoGAN greater performance. Indeed,
it seems that adding up the two independent cycle-GAN outputs would close most holes in the
detected membranes by focusing on membrane detection and omitting any noise visible in them.

The pre-trained CellPose applied to the full RCM images without retraining has a low F1-
score and better performance for SG images compared with SS images, as shown in Table S1 in
the Supplementary Material. Overall precision is higher than recall, showing that this method is
more conservative in detecting positive instances.

Overall, the last test method using the TissueNet cell model from CellPose as a postprocess-
ing step to the proposed DermoGAN model performs well against both SG and SS images. This
method has a good F1-score but tends to have higher precision than recall. It is still outperformed
by the selected method (DermoGAN followed by StarDist-based postprocessing), which has
a better trade-off between recall and precision and therefore is better suited for keratinocyte
identification on RCM images.

Both DermoGAN and FIAP outperform the other models, as shown in Table 1 and Tables S1
and S2 in the Supplementary Material, and show a great trade-off between precision and recall.
DermoGAN has a higher F1-score than FIAP for six out of nine images. The first seems to favor
recall and is less likely to miss existing cells and produce false negatives, whereas the second
seems to favor precision and is less likely to invent cells and create false-positive detections.

The DermoGAN architecture does not require manual parametrization nor a different set of
parameters per epidermal layer, contrary to the FIAP. This argues in favor of the DermoGAN
since multiple epidermal layers are often present in one RCM image. Once trained, its execution
time is faster. It is based on the discovery of potentially unknown patterns in the image, making it
less explainable than the FIAP. The latter is built on membrane detection using tubeness filters,
with all its parameters being determined using general prior knowledge of the morphological
features of the studied tissue. It is well documented that the keratinocyte area increases with
age and differs from one body site to another; thus, general parameters determined on a specific
dataset may not be appropriate for all images. This point favors the DermoGAN architecture
as more adaptable to different datasets and potentially to different image acquisition techniques
and/or observed tissue.
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4 Discussion
Although the presented method was trained using RCM images for the detection of keratino-
cytes, we hypothesized that it can be extended without retraining to images generated by other
instruments. Indeed, multi-task learning methods tend to perform well on domain adaptation and
generalization and are therefore less data-dependent. On the other hand, such adaptability can
lower pixel-level segmentation and therefore is more suited when the accuracy is calculated at the
object level and not at the pixel level. In the following paragraphs, we aim to explore the potential
applications of DermoGAN to images acquired using different imaging modalities. Accuracy
metrics will not be presented as this is a preliminary step to future research.

Fig. 5 DermoGAN can be extended to images acquired by different imaging techniques using
retraining and outperforms traditional thresholding algorithms. (a) Input fluorescence microscopy
images. (b) Output of DermoGAN applied to image A. (c) Output of CellPose cyto model.
(d) Application of 18 thresholding approaches to the same image.

Lboukili, Stamatas, and Descombes: DermoGAN: multi-task cycle generative. . .

Journal of Biomedical Optics 086003-11 August 2024 • Vol. 29(8)



To explore the possibility of applying DermoGAN to other images without retraining, we
applied the presented model trained on RCM images to fluorescence microscopy images and
compared the obtained results with 18 thresholding methods and the pre-trained CellPose cyto
model, as shown in Fig. 5. We observed that although trained on different images of a different
tissue, DermoGAN managed to identify membranes while omitting the noisy background and
outperformed traditional thresholding methods. It had a similar performance to the pre-trained
CellPose model which has better performance at image borders but misses a cell. It is important
to note that the fluorescence microscopy image does show a similar tissue organization, i.e.,
cohesive tissue with cells sharing membranes, to RCM images of the epidermis. However, when
tested on cell culture images where cells were not always confluent, we noticed a loss in accuracy
when using DermoGAN for cell identification. We therefore trained a second model on images
where cells were not confluent using a different tissue prior to simulating binary images and a
different filter to enhance contours, which will be referred to for simplicity as DermoGAN2.

4.1 Retraining the Model with Only Synthetic Images
DermoGAN2 was trained entirely on synthetic images. This served as a test of the generalization
of the method when the available dataset is even more limited and serves to prove that the com-
bination of the two tasks in the proposed model can capture general information and therefore
can be extended to different images and tissues with similar organization, architecture, or texture,
even when the images of interest were not included in the training set.

The first task in DermoGAN2 maps synthetic non-confluent images created using SIMCEP
software for the simulation of fluorescence microscope images of cell populations42 [Fig. 6(a)] to
binary non-confluent images [Fig. 6(c)]. The binary images were obtained by simulating a
marked point process embedding a constraint on the overlap between objects defined by
disks.43 The second task aims to learn the translation of Canny-filtered synthetic non-confluent
images [Fig. 6(b)] toward the same binary non-confluent images.

The resulting DermoGAN2 was then applied to images of cell cultures and mass spectros-
copy images.

4.1.1 DermoGAN2 on cell culture images

We applied DermoGAN2 on an image of BV-2 microglial cells derived from C57/BL6 murine
from the LIVECell dataset,44 as seen in Fig. 7. We obtained an accurate segmentation of the cells
on the image. To avoid border effects in the image, a 10px frame was applied to the image. We
compare DermoGAN output to the pre-trained CellPose cyto model (diameter = 10, flow thresh-
old = 0.4, cell probability threshold = 0, and stitch threshold = 0). We observe a drop in per-
formance for both methods.

We also applied DermoGAN2 to an image of the SK-BR-3 human breast cancer cell line,
where cells display morphological heterogeneity [Fig. 8(a)]. Good cell detection was observed
[Fig. 8(b)] on most cells when contrast is high enough. This proves that DermoGAN2 can be

Fig. 6 DermoGAN2 was trained entirely on synthetic images. (a) Synthetic non-confluent images
created using the SIMCEP. (b) Canny-filtered non-confluent images created using the SIMCEP.
(c) Binary non-confluent images.
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Fig. 7 DermoGAN2 applied to an image of confluent BV-2 cells (a), resulted in the accurate detec-
tion of cells with both DermoGAN (b) and CellPose (c). Manually determined cell centers were
plotted on the DermoGAN2 output in yellow and on the CellPose output in red.

Fig. 8 DermoGAN2 applied to an image of SK-BR-3 cells (a) resulted in accurate detection with
both DermoGAN (b) of cells and CellPose (c), compared with thresholding methods (d).
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extended to different cell shapes and is not limited to the detection of the circular cells it was
trained on and that it is not restricted by the aspect of the cells. Indeed, the synthetic images used
for training the model were more similar to fluorescence images, with high luminosity, which is
not the case for the tested cell culture images. Similar results can be observed when applying
the pre-trained CellPose live-cell model (diameter = 10, flow threshold = 0.4, cell probability
threshold = 0, and stitch threshold = 0) [Fig. 8(d)], which seems to visually outperform
DermoGAN in this case.

4.1.2 DermoGAN2 on mass spectroscopy images

Similar observations were made on mass spectroscopy images, where DermoGAN2 managed to
detect hazy cell contours, with a tendency to merge close cells into one detected region, as shown
in Fig. 9. This can be solved by post-processing using StarDist as done on RCM images. When
applying the pre-trained CellPose cyto model to the same mass spectroscopy image, we observe a
drop in detection in areas suffering from a drop in contrast, which is not the case for DermoGAN,
but borders are sharper when using CellPose compared with DermoGAN.

The success of DermoGAN in segmenting cohesive tissues, including that of DermoGAN2
in detecting non-confluent cells, highlights the importance of the binary denoised image domain
(domain B in DermoGAN). This domain serves as a prior domain incorporating anterior knowl-
edge in the model by describing the structure of the studied tissue. In DermoGAN, the prior is
represented as a tissue island containing adjacent cells of similar size, while in DermoGAN2, this
prior is represented by circular non-confluent cells. This prior domain summarizes our degree of
certainty concerning the studied tissue and steers the training of the model toward the right sol-
ution. Therefore, to obtain the best results, the appearance of the tissue should guide the choice of
the appropriate DermoGAN model based on the corresponding prior domain.

In all the iterations of DermoGAN so far, training was performed using cell membrane posi-
tions. It would be of interest to see if the performance of the models could be improved by
replacing the images representing cell membranes in the training with images representing the
entire cell (cell membrane and inside of the cell), therefore having two classes in the data, cell
versus background instead of cell membrane versus background as currently done.

5 Conclusion
This paper has presented a novel multi-task cycle-GAN architecture for the identification of
keratinocytes on RCM images and was compared with seven other methods. Supervised deep
learning approaches obtained poor scores due to the lack of annotated data, even when using
transfer learning. Unsupervised learning, such as cycle-GAN, failed to capture information at
different scales simultaneously. Therefore, the FIAP approach outperformed these attempts.
However, the proposed DermoGAN, which combines two cycle-GANs to embed both local and
global structure information, outperformed the classical FIAP, in terms of accuracy and execu-
tion time.

Fig. 9 DermoGAN2 applied to a mass spectroscopy image (a) resulted in accurate cell detection
with both DermoGAN (b) with the merging of adjacent cells and CellPose (c).

Lboukili, Stamatas, and Descombes: DermoGAN: multi-task cycle generative. . .

Journal of Biomedical Optics 086003-14 August 2024 • Vol. 29(8)



We showed that the proposed fully unsupervised architecture used with or without retraining
on other types of imaging and tissue types, bypassing the problem of required annotated data and
potential label noise/missing labels, provided the creation of simulated data and that it is not
limited by the training set but rather determined by the prior data domain, i.e., tissue organization
and architecture in the training set. It would be of interest to generate new prior domains using
marked point processes to generate more specific priors, which would help extend the use of
DermoGAN to images with multiple cell types or when the spatial dependence among different
structures is important.
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