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ABSTRACT. Significance: Hyperspectral cameras capture spectral information at each pixel in
an image. Acquired spectra can be analyzed to estimate quantities of absorbing and
scattering components, but the use of traditional fitting algorithms over megapixel
images can be computationally intensive. Deep learning algorithms can be trained to
rapidly analyze spectral data and can potentially process hyperspectral camera data
in real time.

Aim: A hyperspectral camera was used to capture 1216 × 1936 pixel wide-field
reflectance images of in vivo human tissue at 205 wavelength bands from 420 to
830 nm.

Approach: The optical properties of oxyhemoglobin, deoxyhemoglobin, melanin,
and scattering were used with multi-layer Monte Carlo models to generate simulated
diffuse reflectance spectra for 24,000 random combinations of physiologically rel-
evant tissue components. These spectra were then used to train an artificial neural
network (ANN) to predict tissue component concentrations from an input reflectance
spectrum.

Results: The ANN achieved low root mean square errors in a test set of 6000 in-
dependent simulated diffuse reflectance spectra while calculating concentration val-
ues more than 4000× faster than a conventional iterative least squares approach.

Conclusions: In vivo finger occlusion and gingival abrasion studies demonstrate
the ability of this approach to rapidly generate high-resolution images of tissue com-
ponent concentrations from a hyperspectral dataset acquired from human subjects.
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1 Introduction
Biological tissues contain a complex mixture of components, including blood, water, fat, and
collagen. The quantification of these components has relevance in physiology and diagnosis of
disease. For example, melanoma diagnosis can benefit from accurate melanin quantification,1

whereas peripheral arterial disease diagnosis can be improved through precise blood volume
and oxygen saturation measurements.2 Traditional methods such as blood sampling or tissue
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biopsy are invasive and provide information from a small biological sample at a single point in
time. Non-invasive probe-based optical spectroscopy can quantify tissue blood content, oxygen
saturation, water, lipid, and melanin content but lacks spatial information.3–10 Imaging
approaches including planar multi-spectral reflectance imaging,11,12 spatial frequency domain
imaging,13–17 and diffuse optical spectroscopic imaging18 suffer from either limited spatial or
spectral resolution.

Spectral imaging integrates conventional imaging and spectroscopy to attain both high-res-
olution spatial and spectral information. This approach has enabled morphological and biological
tissue analysis for applications including cancer detection, ophthalmology, and microscopy.3,19–29

Multispectral imaging utilizes only a few wavelengths (typically < 10),23,30 whereas hyperspec-
tral imaging20,24–29,31–34 provides full spectroscopic sampling (typically > 100 wavelengths).
High-resolution hyperspectral imaging thus generates very large datasets (e.g., 1,000,000 spatial
pixels × 100 wavelengths), typically requiring dimensionality reduction and machine learning
for analysis.20,24,35

When spectral imaging is based on collecting diffusely reflected light from an object, the
spectrum measured at each image pixel depends on the object’s local absorbing and scattering
properties. In biological tissue, oxyhemoglobin, deoxyhemoglobin, melanin, water, and other
tissue components have optical properties that are tabulated in the literature.36,37 Given a meas-
urement of an object’s diffuse reflectance and knowledge of the absorption and reduced scatter-
ing spectra of these pure components, an estimate of the concentration of each component within
the measured tissue can be made. This can be done using a variety of fitting algorithms including
least squares regression.38–40 However, iterative fitting approaches can often be computationally
intensive.39–42 To reduce computation time, machine-learning approaches have been developed
for predicting blood volume, oxygen saturation, epidermal thickness, and melanin from hyper-
spectral images of human skin.41,43 These methods rely on training data generated through
analytical or numerical simulations4,42–44 or on hyperspectral image data acquired from in vivo
studies. In each of these previous studies, the wavelength-dependent scattering intensity was
either assumed or not predicted despite the variation of scattering among tissues and individuals.
However, predicting scattering rather than assuming it is crucial as it significantly enhances the
accuracy of component predictions by capturing its variability. This approach acknowledges the
interplay between scattering and absorption, leading to more reliable and precise estimations of
all tissue components. By accurately predicting scattering, the overall model becomes more
robust, reflecting the true optical properties of the tissue. Unlike the previously mentioned
studies, by incorporating a scattering intensity prediction, this work aims to provide a more
comprehensive analysis of tissue properties and extend the analysis beyond commonly studied
tissues, such as skin, to include less commonly studied tissues, such as gingiva.

Gingiva, or gum tissue, is particularly significant due to its role in oral health. Gingivitis, the
inflammation of the gums, is a common condition that can lead to more severe periodontal
diseases if left untreated.45 Detecting gingivitis early is crucial as it can prevent the progression
to periodontitis, which is associated with tooth loss and other systemic health issues such as
cardiovascular disease and diabetes.46,47 Therefore, the ability of our device and model to detect
gingivitis can have substantial clinical implications, improving patient outcomes through early
intervention and management of oral health.

Here, two separate artificial neural networks (ANNs) were trained on simulated data to pre-
dict the blood volume, oxygen saturation, melanin content, and scattering intensity of human
skin and gingival tissue from simulated diffuse reflectance spectra. The trained model was then
applied to real diffuse reflectance spectra obtained from in vivo hyperspectral imaging of tissue.
Occlusion was used to induce changes in tissue oxygenation by temporarily removing the arterial
supply, abrasion was used to induce inflammation and produce changes in blood content and
oxygenation, and subjects with visibly different levels of melanin were imaged to analyze the
effects of pigmentation. The method presented here combines high spatial and spectral resolution
hyperspectral imaging with neural network analysis to predict in vivo blood volume, oxygen
saturation, melanin content, and scattering intensity for both skin and gingival tissues. The
increasing availability of robust hyperspectral imaging hardware paired with rapid neural net-
work-based analysis may enable new applications in non-invasive tissue assessment in the
clinical setting.
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2 Materials and Methods

2.1 Hyperspectral Imaging Setup
Figure 1 shows the hyperspectral imaging setup used in this study. The camera is a TruTag
Technologies Hinalea 4250 (1216 × 1936 pixels) with a 45 to 50 mm focal length lens (f/5.6)
providing a 15 deg field of view. This camera uses a Fabry–Pérot interferometer to collect images
at 299 wavelengths from 400 to 1000 nm with a full width at half maximum (FWHM) bandwidth
of 4 nm. The light source was a Schott DCR III halogen lamp connected to a 110 mm diameter
ring illuminator with a mounted linear polarizing film. An orthogonal linear polarizer (Heliopan,
P/N 703030, Gräfelfing, Germany) mounted on the camera lens prevents the acquisition of
specular reflection from the sample. The extraoral setup includes a bite piece at a working dis-
tance of 150 mm, which serves to stabilize the jaw during image acquisition. On the camera side
of the bite piece is a set of six 5 × 5 mm calibrated diffuse reflectance standards, mounted at the
same working distance as the tissue or sample being imaged.

2.2 Preprocessing and Calibration
The camera acquires raw images at 450 different Fabry–Pérot mirror spacings. Each spacing
permits light at multiple distinct wavelengths to reach the sensor. The TruScope NRT v1.9.1
software provided by the camera manufacturer is used to process the raw dataset into images
at each of 299 wavelength bands in the range 400 to 1000 nm, resulting in a 1216 × 1936 × 299

ðx; y; λÞ data cube (Fig. 2).
Illumination non-uniformity was corrected by first capturing a data cube Istd ðx; y; λÞ for a

uniform 50% diffuse reflectance standard covering the entire field of view. Istd;max (λ) is the
maximum pixel value measured at wavelength λ. Raw images of unknown objects, Iraw ðx; y; λÞ,
were then corrected for illumination non-uniformity according to Eq. (1), giving a corrected data
cube, Ic ðx; y; λÞ

EQ-TARGET;temp:intralink-;e001;117;173Icðx; y; λÞ ¼ Irawðx; y; λÞ
Istd;maxðλÞ
Istdðx; y; λÞ

: (1)

Diffuse reflectance standards (FOSS) with manufacturer-specified reflectance values of
0.02, 0.10, 0.20, 0.40, and 0.80 were imaged to determine the wavelength-dependent reflectance
of the grayscale tiles mounted on the camera side of the bite piece (Fig. 2). The sum of the pixel
values within 40 × 40 pixel regions were calculated for each of the reflectance standards and
each of the grayscale tiles in the field of view. The diffuse reflectance values of the grayscale
tiles were then determined based on the values obtained from the reflectance standards.

Fig. 1 (a) Hyperspectral extraoral imaging system showing subject biting bite piece.
(b) Hyperspectral extraoral imaging system hardware diagram. BP is the bite piece for the subject’s
teeth with diffuse reflectance standards facing the camera, L is the lens on the camera, RI is the
ring illuminator, and P1 and P2 are linear polarizers mounted on the camera lens and ring illu-
minator, respectively, with their transmission axes orthogonal.
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A second calibration relationship was then developed to convert corrected object pixel val-
ues to diffuse reflectance at each wavelength using the bite-piece grayscale tiles that are captured
in each tissue image. A data cube was acquired for the grayscale tiles and corrected for illumi-
nation non-uniformity according to Eq. (1). At each wavelength, a linear least squares fit was
applied to the six data points of measured pixel value versus known diffuse reflectance, providing
a pair of calibration parameters (slope and intercept) for each wavelength, mðλÞ and bðλÞ. The
diffuse reflectance of subsequent objects, Rdðx; y; λÞ, was determined at each wavelength from
the corrected pixel value image Ic ðx; y; λÞ according to Eq. (2)

EQ-TARGET;temp:intralink-;e002;114;440Rdðx; y; λÞ ¼
Icðx; y; λÞ − bðλÞ

mðλÞ : (2)

2.3 Training and Testing an Artificial Neural Network for Spectral Analysis
Each spatial pixel in a calibrated hyperspectral data cube contains the diffuse reflectance spec-
trum RdðλÞ at the object location being imaged. To estimate the blood volume (B), oxygen
saturation (S), scattering intensity (a), and melanin content (fm) at each pixel, an ANN was
developed. To train the ANN, simulated diffuse reflectance spectra were generated using two
separate Monte Carlo models: one for skin and one for gingiva (Fig. 3).50 First, absorption and

Fig. 3 Skin and gingivamodels used for Monte Carlo simulations to train the ANN. The skin (a) was
modeled with three layers (epidermis, dermis, and subcutis). The gingiva (b) was modeled with four
layers (epithelium, lamina propria, dentin, and pulp).48,49

Fig. 2 Hyperspectral data cube for a large circular reflectance standard imaged with six square
in-frame reflectance standards. The data cube contains 1216 × 1936 spatial pixels and 299 wave-
lengths ranging from 400 to 1000 nm.
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reduced scattering coefficients were calculated by selecting a physiologically relevant combina-
tion of B, S, fm, a, and water content (W)36,51 and combining these with their respective extinc-
tion coefficients, according to Eqs. (3) and (4).52 Rather than the subcutis layer that is present in
the skin, dentin and pulp layers were added to simulate the tooth under the gingiva.48,49,53

Both the skin and gingiva models included a constant background absorption in the top
two layers.4,40,51 Example spectra are shown in Fig. 4 for the specific choices of B ¼ 1%,
S ¼ 60%, W ¼ 60%, fm ¼ 5%, and a ¼ 0.3 mm−1. The ranges of physiological values were
selected to represent a variety of skin pigmentations, skin compositions, and tissue
structures.36,37,51,52,54

A tissue’s overall absorption coefficient μaðλÞ is given by

EQ-TARGET;temp:intralink-;e003;117;377μaðλÞ ¼
Xn
i¼1

ciεiðλÞ; (3)

where λ represents wavelength, ci is the concentration, and εi is the extinction coefficient of
absorber i. Similarly, the tissue’s reduced scattering coefficient μ 0

sðλÞ was modeled by

EQ-TARGET;temp:intralink-;e004;117;312μ 0
sðλÞ ¼ a

�
λ

500 nm

�
−b
; (4)

where a is the scattering intensity and b ¼ 2.52

These absorption and reduced scattering coefficients were used as inputs to the multi-layer
Monte Carlo model, generating a diffuse reflectance spectrum RdðλÞ for the specific set of B, S,
fm, and a values.

In this work, the tissue refractive index (n) was held constant at 1.4, epidermal water content
was held constant at 50%, and dermal water content was held constant at 70%. For the skin
model, the epidermal thickness was held constant at 100 μm, the dermal thickness was held
constant at 2 mm, and the subcutis was semi-infinite.8,37,52,55,56 In the gingiva model, the epi-
thelial thickness was held constant at 200 μm, lamina propria thickness was held constant at
1.5 mm, dentin was held constant at 2 mm, and the pulp was semi-infinite.48,49 This method
was used to generate 30,000 simulated diffuse reflectance spectra, RdðλÞ, for each tissue model.
Gaussian noise with varying standard deviations was added to the simulated spectra to replicate
experimental conditions, resulting in average signal-to-noise ratios ranging from ∼10 to 16 dB.
The 30,000 simulated diffuse reflectance spectra were separated into 19,200 spectra to train the
ANN, 4800 spectra to validate the ANN, and 6000 spectra to test the ANN. Due to the output
wavelength range from the halogen light source and the optimal collection range of the hyper-
spectral camera, reflectance spectra were generated in the range of 420 to 830 nm, resulting in a
total of 205 wavelengths used as input for the ANN. The diffuse reflectance spectra were scaled

Fig. 4 Absorption and reduced scattering coefficients of typical human tissue components given a
blood volume of 1%, oxygen saturation of 60%, water content of 60%, melanin content of 5%, and
scattering intensity of 0.3 mm−1.
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at each wavelength across the entire training set using the min–max scaling method provided by
the scikit-learn Python library.57 The same scaling method was applied to the B, S, fm, and
a values in the entire training set. Outputs of the ANN were then unscaled to produce the pre-
dicted values of the tissue properties. The ANN structure (Fig. 5) consisted of three hidden layers
and was tested using the previously mentioned independent set of 6000 simulated diffuse reflec-
tance spectra that were not included in the training step. To determine the size and number of the
dense layers in the ANN, the complexity of the input data, output data, and function being fit
were all taken into consideration. The size and number of dense layers that were chosen yielded
the lowest root-mean-square prediction errors among the networks tested. The rectified linear
unit activation (ReLU) was utilized in each hidden layer. The ANN was trained and tested using
an AMD Ryzen 7 4700U CPU.

2.4 In Vivo Experiments
To test the ability of the ANN to predict B, S, fm, and a values for tissue in vivo and detect
changes in these values, experiments on skin and gingiva were performed on three subjects under
an Institutional Review Board approved protocol (U.S.IRB2023CP/04). First, to show the ability
to measure changes in oxygen saturation, two fingers were imaged in the same field of view at the
same plane as the in-frame grayscale calibration bar (Fig. 1). Blood flow in one finger was
occluded for 5 mins using a rubber band before being released, whereas the other finger was
unimpeded. Next, the ability to detect small differences in tissue oxygen saturation and melanin
content was demonstrated by performing a 10-s finger occlusion in subjects with a range of
pigmentation levels. To demonstrate the measurement of physiological changes in gingival tis-
sue, inflammation was induced on one lateral side of the mouth by 1 min of brushing with a stiff-
bristle toothbrush, whereas the contralateral side remained unbrushed. Finally, a change in blood
volume (B) was shown with a corresponding decrease in gingivitis over a 3-week timespan from
a clinical study investigating oral health.

3 Results

3.1 Simulated Experiments
The ANN was trained in 4 mins and 38 s on an AMD Ryzen 7 4700U CPU and tested using 6000
diffuse reflectance spectra generated from known B, S, fm, and a values. Using these reflectance

Fig. 5 Structure of the ANN. The input is a diffuse reflectance spectrum with values at 205 wave-
lengths in the range [420, 830 nm]. Example skin (red) and gingiva (blue) reflectance spectra are
shown as inputs to the ANN. These spectra were obtained from 2 × 2 regions of experimental data
captured by the system shown in Fig. 1. The three dense middle layers of the ANN each utilize a
rectified linear unit (ReLU) activation function. The 4 × 1 output of the ANN contains the log (blood
volume), oxygen saturation, melanin content, and the scattering intensity.
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spectra as input, the ANN model predicted B, S, fm, and a values with low root mean squared
error (RMSE) values (Fig. 6). Furthermore, the ANN was compared with Monte Carlo iterative
least squares regression using another separate test set of 100 gingiva Monte Carlo simulations
with added noise. The ANN and Monte Carlo iterative least squares regression each performed
very well with the fitted spectra averaging RMSE of 0.021 and 0.027, respectively. The average
time required for the ANN to analyze one spectrum was only 0.07 s on the AMD Ryzen 7 4700U
CPU, whereas the Monte Carlo iterative least squares approach took significantly longer, aver-
aging 301.74 s per spectrum on an NVIDIA GeForce RTX 3080 Ti Laptop GPU, making it over
4000 times slower.

3.2 In Vivo Experiments
Figure 7 shows the results of the first finger occlusion experiment, where a region of interest was
selected on both the occluded and non-occluded fingers. The images shown along the top of the
plot show the decrease in oxygen saturation of the occluded finger (top finger) over time, whereas
the non-occluded finger (bottom finger) remained the same. This is shown in the plot as well
where oxygen saturation of the occluded finger gradually decreases until the rubber band is
released at the 285-s time point, at which time, the oxygen saturation spikes and begins to return
to the initial state. The blood volume also showed elevated levels in the occluded finger immedi-
ately after the occlusion began. The melanin content remained relatively unchanged, as expected.
Scattering intensity showed small changes before and after occlusion while remaining consistent
with the expected in vivo results.52

Figure 8 shows the blood volume, oxygen saturation, and melanin maps predicted using the
ANN for a 10-s finger occlusion of three subjects with visibly different levels of pigmentation.
The pigmentation differences are further shown in an additional RGB image for each subject.
The occluded finger, shown at the top of the images, shows slightly lower oxygen saturation than
the non-occluded finger for each subject, as expected. In addition, higher melanin content was
measured in the subjects with darker skin pigmentation.

By selecting a region of interest on each fingertip, the average blood volume, oxygen
saturation, and melanin content were calculated for each subject and can be seen in Table 1.
The blood volume, melanin content, and scattering intensity were relatively unchanged between
the occluded and non-occluded fingers for each subject. However, the oxygen saturation level
in the occluded finger was lower than the non-occluded finger for all subjects. Given that the
occlusion only lasted 10 s, the oxygen saturation only decreased by ∼3% to 5% for each subject.
The measured melanin content for subject 1 was the lowest followed by subjects 2 and 3,
as expected.

Fig. 6 Example test spectrum with ANN and iterative least squares (LSQ) fits are plotted on the
left. The ANN fit all 100 test spectra with an average RMSE of 0.021, whereas LSQ fit the spectra
with an average RMSE of 0.027. The plots on the right show predicted versus ground truth 2D
histograms of B, S, f m , and a for 6000 simulated reflectance spectra, obtained from the ANN.
The RMSE values for each parameter are shown on their respective plots. The ANN made its
predictions for the entire test set of 6000 spectra in 0.4 s.
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Fig. 8 Predicted blood volume (B), oxygen saturation (S), melanin (f m), and corresponding RGB
images for the pigmentation/occlusion experiment. The top finger was occluded by a rubber band
that is indicated by the white asterisk in each image, and the middle finger was not occluded. Each
subject’s skin was assigned a score based on the Fitzpatrick skin type scale, where I is least pig-
mented and VI is most pigmented. Subject 1 showed Fitzpatrick type II, subject 2 showed type III,
and subject 3 showed type IV.

Fig. 7 Predicted oxygen saturation (S), blood volume (B), melanin (f m), and scattering intensity (a)
for 80 × 80 pixel regions of interest on the occluded and non-occluded fingers. The images along
the top of the plot correspond to the oxygen saturation maps from the ANN at every 60 s. The
occluded finger is at the top of each image, and the non-occluded finger is at the bottom of each
image. Average oxygen saturation values from a region of interest on each finger are shown in the
large plot below the oxygen saturation images. Blood volume, melanin content, and scattering
intensity are shown in the bottom three plots.
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The effects of abrasion on gingival tissue are apparent in Fig. 9. Teeth and gingiva only on
the left side of the images were brushed. The white arrowheads indicate regions where the blood
content (B) is higher on the brushed (left) side of the gingiva than the not brushed (right) side.

The increase in blood volume shown in Fig. 9 is an effect of toothbrush abrasion causing
inflammation in the gingival tissue. Figure 10 shows the gingival tissue above a tooth afflicted
with gingivitis before and after a 3-week regimen of improved oral health. The images show a
clear decrease in blood volume, consistent with a decrease in inflammation.

4 Discussion
A hyperspectral imaging system was assembled to capture images at 299 wavelengths between
400 and 1000 nm. The acquisition time for the whole data cube was 25 s, with individual image
exposure times of 40 ms, plus a short interval due to tuning of the Fabry–Pérot interferometer.
Subject movement during image acquisition was found to be negligible due to the stabiliza-
tion bar.

Illumination uniformity correction and calibration using in-frame reflectance standards
ensured accurate calculation of the pixel-by-pixel reflectance spectra. The multi-layer Monte

Table 1 Average tissue component values for regions of interest on occluded
and non-occluded fingers.

Subject Tissue component Non-occluded finger Occluded finger

1 Blood volume, B 1.23% 2.83%

Oxygen saturation, S 73.95% 69.22%

Melanin, f m 1.63% 1.70%

Scattering intensity, a 2.27 mm−1 2.71 mm−1

2 Blood volume, B 1.26% 0.74%

Oxygen saturation, S 82.37% 78.86%

Melanin, f m 2.58% 2.43%

Scattering intensity, a 2.54 mm−1 2.24 mm−1

3 Blood volume, B 2.86% 3.44%

Oxygen saturation, S 80.03% 77.98%

Melanin, f m 2.88% 3.14%

Scattering intensity, a 3.45 mm−1 3.41 mm−1

Fig. 9 Predicted blood volume (B) for a human subject pre- and post-brushing. The teeth and
gingiva on the left side of the mouth were brushed with a stiff-bristled toothbrush for 1 min.
The increase in blood volume after brushing is indicated by arrowheads on the left side of the
white-dashed line in the gingiva images.
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Carlo approach relied on accurate calibration for the detection of changes in the optical properties
and tissue components. The unique spectra of the main absorbers in the visible wavelength range
(oxyhemoglobin, deoxyhemoglobin, and melanin) were key factors in successful spectral fitting.
This was clear in the finger occlusion shown in Fig. 7 where the melanin was relatively
unchanged between the occluded and non-occluded fingers, but the oxygen saturation map
showed clear differences. By incorporating melanin in the spectral analysis, this system and
ANN analysis are suited for imaging skin with a range of pigmentations for tissue component
estimation, as demonstrated in Fig. 8. These experiments demonstrated the potential of this sys-
tem for use in both human skin and gingival tissue in vivo. The finger occlusion tests not only
validated the system’s ability to differentiate tissue parameters effectively but also demonstrated
the importance of including scattering intensity in the spectral fitting. The scattering intensity
showed consistency with expected in vivo measurements, reinforcing the system’s robustness.
However, the lack of experimental confirmation that predicting scattering improves model
robustness suggests that further validation with in vivo data is necessary. Although this system
successfully demonstrated the ability to monitor these parameters in vivo, these results cannot be
used to gauge the accuracy of this system due to the lack of an in vivo ground truth. Additional
subjects will be necessary to fully assess the clinical relevance and effectiveness of this device.

Despite the camera’s ability to collect wavelengths from 400 to 1000 nm, the current ANN
used wavelengths from 420 to 830 nm due to the low signal-to-noise ratio obtained at the shorter
and longer wavelengths. A different light source that covers the full 400 to 1000 nm range can
possibly improve the ANN predictions by incorporating the short wavelengths where blood and
melanin absorption are higher while also opening the possibility of including water content in the
ANN prediction with longer wavelengths. In addition, other models can be explored, such as
random forests, in the future to potentially enhance prediction accuracy, robustness, and speed.
The multi-layer Monte Carlo approach for generating ANN training data can also be improved by
generating data from multilayered Monte Carlo simulations that include more layers. By doing
so, the ANN may be further tailored to tissues with different physiological behaviors. In addition,
incorporating training data to model specific conditions and diseases can help capitalize on this
method as a fast diagnostic technique.

Although neural networks are commonly used for tissue parameter quantification, the spe-
cific focus on skin and gingival tissues and the integration of a multi-layer Monte Carlo model
with hyperspectral imaging present a novel contribution. This comprehensive approach enhances
the accuracy and applicability of the system, providing a robust framework for tissue parameter

Fig. 10 Predicted blood volume (B) for a human subject with gingivitis, before and after 3 weeks of
improved oral health. The white arrow indicates the region of decreased blood volume. Changes in
B on the surface of the tooth should be disregarded due to the fact that the ANN was not trained on
teeth spectra.
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estimation. Future work will focus on obtaining ground truth values for in vivo data to provide
more rigorous validation and developing a more generalized model capable of accurately quan-
tifying tissue parameters for both skin and gingiva.

5 Conclusion
This study reported a unique and versatile method for the prediction of blood volume, oxygen
saturation, melanin content, and scattering intensity in both skin and gingival tissue. The hyper-
spectral camera provides high spatial and spectral resolution. The ANN provides high-speed
analysis that can be used in the clinic non-invasively on a variety of human tissues in vivo.
Future work aimed at enhancing validation and expanding the model’s applicability to multiple
tissue types will further establish the clinical relevance and effectiveness of this imaging system.
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