Significance
Accurate cell segmentation and classification in three-dimensional (3D) images are vital for studying live cell behavior and drug responses in 3D tissue culture. Evaluating diverse cell populations in 3D cell culture over time necessitates non-toxic staining methods, as specific fluorescent tags may not be suitable, and immunofluorescence staining can be cytotoxic for prolonged live cell cultures.
Aim
We aim to perform machine learning-based cell classification within a live heterogeneous cell culture population grown in a 3D tissue culture relying only on reflectance, transmittance, and nuclei counterstained images obtained by confocal microscopy.
Approach
In this study, we employed a supervised convolutional neural network (CNN) to classify tumor cells and fibroblasts within 3D-grown spheroids. These cells are first segmented using the marker-controlled watershed image processing method. Training data included nuclei counterstaining, reflectance, and transmitted light images, with stained fibroblast and tumor cells as ground-truth labels.
Results
Our results demonstrate the successful marker-controlled watershed segmentation of 84% of spheroid cells into single cells. We achieved a median accuracy of 67% (95% confidence interval of the median is 65-71%) in identifying cell types. We also recapitulate the original 3D images using the CNN-classified cells to visualize the original 3D-stained image’s cell distribution.
Conclusion
This study introduces a non-invasive toxicity-free approach to 3D cell culture evaluation, combining machine learning with confocal microscopy, opening avenues for advanced cell studies.