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Sarah Dietz-Terjung ,c Jose Guillermo Ortiz Sucre,d Sivagurunathan Sutharsan ,d

Christoph Schöbel ,c Karsten Seidl ,b and Gunther Notni a,e

aIlmenau University of Technology, Department of Mechanical Engineering, Ilmenau, Germany
bUniversity of Duisburg-Essen, Chair of Electronic Components and Circuits, Duisburg, Germany
cUniversity Medicine Essen, Ruhrlandklinik, Chair of Sleep and Telemedicine, Essen, Germany

dUniversity Medicine Essen, Ruhrlandklinik, Department of Pneumology, Essen, Germany
eFraunhofer Institute for Applied Optics and Precision Engineering, Jena, Germany

ABSTRACT. Significance: Monitoring oxygen saturation (SpO2) is important in healthcare, espe-
cially for diagnosing and managing pulmonary diseases. Non-contact approaches
broaden the potential applications of SpO2 measurement by better hygiene, comfort,
and capability for long-term monitoring. However, existing studies often encounter
challenges such as lower signal-to-noise ratios and stringent environmental
conditions.

Aim: We aim to develop and validate a contactless SpO2 measurement approach
using 3D convolutional neural networks (3D CNN) and 3D visible-near-infrared
(VIS-NIR) multimodal imaging, to offer a convenient, accurate, and robust alterna-
tive for SpO2 monitoring.

Approach: We propose an approach that utilizes a 3D VIS-NIR multimodal camera
system to capture facial videos, in which SpO2 is estimated through 3D CNN by
simultaneously extracting spatial and temporal features. Our approach includes
registration of multimodal images, tracking of the 3D region of interest, spatial and
temporal preprocessing, and 3D CNN-based feature extraction and SpO2 regression.

Results: In a breath-holding experiment involving 23 healthy participants, we
obtained multimodal video data with reference SpO2 values ranging from 80% to
99% measured by pulse oximeter on the fingertip. The approach achieved a mean
absolute error (MAE) of 2.31% and a Pearson correlation coefficient of 0.64 in the
experiment, demonstrating good agreement with traditional pulse oximetry. The dis-
crepancy of estimated SpO2 values was within 3% of the reference SpO2 for ∼80%
of all 1-s time points. Besides, in clinical trials involving patients with sleep apnea
syndrome, our approach demonstrated robust performance, with an MAE of less
than 2% in SpO2 estimations compared to gold-standard polysomnography.

Conclusions: The proposed approach offers a promising alternative for non-con-
tact oxygen saturation measurement with good sensitivity to desaturation, showing
potential for applications in clinical settings.
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1 Introduction
Vital signs, such as body temperature, heart rate, respiratory rate, and blood pressure are standard
indicators of an individual’s physiological functions in most medical settings.1 Monitoring these
vital parameters is crucial for early diagnosis, medical treatment, risk assessment, and patient
recovery monitoring.2,3 With the advancement of medical measurement technology, oxygen
saturation has increasingly become recognized as an indispensable fifth vital sign.4 Oxygen
saturation indicates the percentage of oxygenated hemoglobin (HbO2) and hemoglobin (Hb)
in the blood, in which the artery should be in the range of 95% to 100% in healthy individuals.5

Many pulmonary diseases cause abnormalities in oxygen saturation values, such as acute
pneumonia, chronic obstructive pulmonary disease (COPD), and sleep apnea syndrome (SAS).
Furthermore, the outbreak of coronavirus (COVID-19) has further underscored the critical
importance of oxygen saturation measurement.

The gold standard for measuring arterial oxygen saturation (SaO2) is the invasive arterial
blood gas (ABG) test,6 which is performed by medical professionals. Mixed venous oxygen
saturation (SvO2) is normally measured via a pulmonary artery catheter. Non-invasive methods
based on near-infrared spectroscopy are developed to measure tissue oxygen saturation (StO2),
which directly provides an assessment of the oxygenation status of tissues. Time-domain near-
infrared spectroscopy (TD-NIRS) is an established technique, which allows the estimation of
StO2 at multiple depths, including beyond 2 cm deep.7,8 This capability opens a range of appli-
cations, such as determining StO2 in the brain.

9 The estimation of SaO2 at peripheral capillary is
called SpO2. A non-invasive pulse oximeter is known for its convenience for real-time SpO2

estimation. Polysomnography (PSG) systems 10 used in sleep monitoring also incorporate pulse
oximeter to record SpO2 overnight. A typical pulse oximeter employs a light source that projects
red and infrared light onto fingertips or earlobes. Oxygenated hemoglobin and deoxygenated
hemoglobin exhibit distinct characteristics of absorption spectra. By contrasting the transmitted
light intensities at 660 and 940 nm wavelengths captured by the photoelectric sensor, the pulse
oximeter determines the SpO2 by utilizing the ratio-of-ratios (RR) method.11 However, contact-
based methods face challenges for patients with infectious diseases or allergies,12 especially dur-
ing long-term measurements such as sleep monitoring. To overcome these limitations of contact-
based methods, there is an increasing focus on camera-based SpO2 measurement. Bui et al.13 and
Ding et al.14 utilized a camera-based approach, where participants placed a finger over the smart-
phone’s camera and flash, diverging from true contactless methods. Many studies on contactless
SpO2 measurements usually use red, green, and blue (RGB) cameras to capture hands15,16 or
faces17–19 with ambient light and extract weak pulsatile temporal features from remote photo-
plethysmogram (rPPG) signals through different analytical filtering techniques20–22 or neural
networks23–25 to calculate SpO2. Acquiring high-quality rPPG signals is a challenging task,
which can be affected by factors like illumination conditions, sampling rate, and sensor noise,
along with disruptions from facial movements such as smiles or blinks, which compromise
SpO2-related information. The spatial encoded patterns of the captured skin regions have been
proven by Wieringa et al.26 and Rosa and Betini27 to contain oxygen saturation information.
Hu et al.28 employed a 2D residual cascade and coordinate attention mechanism to analyze
feature channel correlations of spatial data, using neural networks to extract and concatenate
spatial features for estimation. Few studies simultaneously consider both spatial and temporal
features. To fill in the gap, in our previous work,29 3D convolutional network (3D CNN) are used
to extract spatial-temporal information from the near-infrared multispectral videos for SpO2

estimation. Besides, in our literature review scope, we observed that current research gaps of
camera-based contactless SpO2 measurement include region of interest (ROI) tracking, acquiring
datasets with significant SpO2 fluctuations, and validation in clinical settings. We noted that most
studies are based on datasets containing only a few instances of low SpO2 levels and the over-
whelming majority of SpO2 ranges between 95% and 100%. To address these challenges, in this
work, we propose a 3D convolutional neural networks-based approach to estimate SpO2 from
videos captured by our 3D visible-near-infrared (VIS-NIR) multimodal camera system. The per-
formance is verified through both short-term daytime measurements on healthy participants and
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continuous long-term nighttime monitoring of patients with sleep apnea. The contributions of
this work include the following:

1. We utilized a 3D VIS-NIR multimodal camera system to capture multimodal facial videos
and proposed steps including multimodal image registration, 3D ROI tracking, spatial and
temporal preprocessing, and 3D CNN-based spatial-temporal features extraction to enable
oxygen saturation estimation in both during day and night.

2. We conducted a breath-holding study on 23 healthy participants with different skin types,
achieving an MAE of 2.31 and a Pearson correlation coefficient of 0.64 compared to the
reference oxygen saturation ranging from 80% to 99%measured by pulsed oximeter on the
fingertip. In addition, our approach was also validated by a trial study involving long-term
overnight monitoring of four real sleep disorder patients, demonstrating good agreement
with the gold standard PSG.

3. We discussed various feature extraction strategies, different image channel combinations,
and diverse neural network architectures (including light-weight networks) for their
capability and performance to estimate SpO2 from 3D VIS-NIR multimodal videos.

2 Proposed Approach Based on Multimodal Imaging
Multimodal imaging refers to the integration of various imaging modalities such as 3D imaging,
multispectral imaging, and thermal imaging. It allows for enhanced and more dependable analy-
sis to realize intricate tasks30–33 based on diverse feature combinations from different imaging
modalities. In our work, we use four imaging modalities, which include images from color
(RGB) cameras, NIR 780 and NIR 940 nm cameras, and disparity maps produced by active
stereo matching based on two NIR 850 nm cameras and GOBO projector.34 The details of our
camera system setup will be introduced in Sec. 3. In this section, the proposed approach will be
introduced, detailing how to regress SpO2 using 3D CNN from multimodal video sequences after
multimodal image registration, 3D ROI tracking, and spatial and temporal preprocessing.

2.1 Multimodal Image Registration
For the purpose of pixel-wise fusion of information from different 2D modalities, the 2D images
were registered together using 3D information. Camera calibration is always the initial step. The
intrinsic parameters of the two NIR cameras for stereo matching and also other 2D cameras are
calibrated using Zhang’s algorithm.35 Simultaneously, the extrinsic camera parameters are cal-
culated with respect to a reference 2D camera, for example, the RGB camera, using the method
introduced in Ref. 36. Based on the NIR 850 nm camera parameters, a disparity map can be
converted to a 3D point cloud. Assume ðui; viÞ is the projection of one 3D point ðxi; yi; ziÞ of
the point cloud on the image plane of one of the 2D cameras (RGB, NIR 780 nm or NIR 940 nm),
the transformation can be calculated as follows:

EQ-TARGET;temp:intralink-;e001;117;280s ·

" ui
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where s is a factor for the normalization of homogeneous 2D points, Kc is the intrinsic param-
eters matrix of this camera, Rc and Tc are the rotation matrix and translation vector of this cam-
era, and Rrect is the rotation matrix of the reference camera for stereo rectification. When the
projected image point does not align precisely with a pixel, bilinear interpolation among adjacent
pixels is performed. Through this method, each 2D image captured by the cameras can be accu-
rately mapped to the corresponding 3D point cloud. In this way, once an ROI is selected on a 2D
image modality, it can be converted to the corresponding 3D ROI. The 3D ROI can be projected
onto the images from other 2D cameras to assign gray values to these 3D points. In our work, the
forehead region was used as the ROI for SpO2 estimation because of good blood flow, thin
epidermis, and no hair.37,38 As shown in Fig. 1, we select a forehead region with width h and
height w as ROI ðh; w; 3Þ on the color face image, and it can be converted to a 3D ROI. This 3D
ROI is then projected to NIR 780 and NIR 940 nm images to obtain registered NIR 780 nm ROI
ðh; w; 1Þ and NIR 940 nm ROI ðh; w; 1Þ, from which corresponding gray values can be obtained.
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2.2 Face Analysis and 3D ROI Tracking
For a continuous, registered multimodal facial video, we firstly utilized the MediaPipe Face
Mesh framework,39 a pretrained, light-weight deep learning model, for high-precision facial
feature extraction, leveraging its capability to identify and track 468 distinct landmarks across
various facial regions on RGB video. Each landmark, along with its image coordinates, is
uniquely indexed, enabling us to perform automatic video anonymization. This is achieved by
pinpointing the landmarks of the eyes and mouth regions in each frame and overlaying black
rectangles over these areas across all registered imaging modalities. Subsequently, the image
coordinates of landmarks on the forehead region in the first frame of the RGB video are used
to define a forehead 2D ROI, which is then converted to 3D ROI. From the second frame
onwards, the 3D ROI was tracked based on the 2D coordinates of the facial landmarks and the
3D point cloud as shown in Fig. 2. At each frame, the facial landmarks will be converted to the
registered point cloud as 3D facial landmarks. Let the set of 3D facial landmarks on the first video
frame be denoted as P1 ¼ fp1i ∈ R3ji ¼ 1;2; : : : ; ng, where each p1i is a 3D point represented
as a column vector in homogeneous coordinates p1i ¼ ½x1i; y1i; z1i; 1�T . Similarly, for the kth
frame, the set of corresponding 3D facial landmarks is Pk ¼ fpki ∈ R3ji ¼ 1;2; : : : ; ng, with
each landmark pki also represented in homogeneous coordinates pki ¼ ½xki; yki; zki; 1�T . Assume
that the head is a rigid body, which means that the participant’s facial expression was unchanged
over the video period. To model the current 3D head pose relating to the 3D face pose on the first
frame, the rigid body transformation with six degrees of freedom (DoF) from P1 to Pk described
by a rotation Rk and a translation tk can be estimated as follows:

EQ-TARGET;temp:intralink-;e002;114;287ðRk; tkÞ ¼ arg min
R;t

Xn
i¼1

kRp1i þ t − pkik2: (2)

Thus, by employing the rotation Rk and the translation tk, all points within the 3D ROI
defined on the first frame can be transformed to their corresponding positions on the kth frame.
Head movements typically occur in three dimensions, not confined to a single plane. Tracking a
fixed skin area is evidently more suitable using 3D information, whether there is significant
movement or subtle involuntary motion. As shown in Fig. 3, we demonstrate the tracking effec-
tiveness when projecting the tracked 3D ROI back into an RGB 2D ROI. One of the participants
is instructed to remain as still as possible for 4 min. However, slight involuntary head movements
are inevitable. Whether assessing reference regions visually or evaluating by structural similarity
(SSIM), the proposed 3D-based tracking method can more exactly track the ROI throughout
the video.

2.3 Spatial and Temporal Preprocessing
As shown in Fig. 4, the tracked 3D ROI of the head in a video can be projected onto each modal-
ity to obtain 2D ROI videos. When these modalities are concatenated, a registered multimodal
forehead ROI video is formed, encompassing five channels including R, G, B, 780, and 980 nm.

Fig. 1 Schematic of 3D information-based multimodal facial image registration.
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Then, spatial and temporal preprocessing is applied. Assuming there is a multimodal forehead
ROI video V, and for a given channel, each frame has a height h and width w. The videos are
spatially partitioned into m × n block videos, with each block video spatially sized bhmc × bwnc,
discarding residual pixels at the edges. For the ith block video in a specific channel, each of its
pixel values can be represented as Biðx; y; tÞ, where x and y denote spatial coordinates and
t denotes time. A cubic polynomial Pi ¼ ait3 þ bit2 þ citþ di can be fitted as the temporal
trend of Bi:

EQ-TARGET;temp:intralink-;e003;117;157ðai; bi; ci; diÞ ¼ arg min
ai;bi;ci;di

X
t
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jBij
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Thus, for a certain pixel value of this Bi, it can be decomposed into the trend part
Tiðx; y; tÞ ¼ PiðtÞ and the detrended part B 0

i ðx; y; tÞ ¼ Biðx; y; tÞ − PiðtÞ. This blockwise tem-
poral detrending is replicated across all blocks and five channels, decomposing the multimodal
forehead ROI video V into two components: one devoid of temporal trend, presumably carrying
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Fig. 2 Illustrative example of the 3D ROI tracking across sequential frames.
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more information similar to the AC component in traditional methods, and the trend component,
encapsulating more DC component information. Then, these two parts of the video are tempo-
rally sliced into 15 frames detrended video sequences and trend video sequences of 1-s time
length, respectively. Concatenating a detrended video sequence and a trend video sequence forms
an “observation,” which serves as the input to the deep learning model.

2.4 Oxygen Saturation Regression with 3D CNN
These observations serve as input of spatial-temporal convolutional layers for feature extraction.
Spatial-temporal convolution, also known as 3D convolution, enhances the feature extraction
ability on volumetric data, thereby integrating information across various spatial dimensions and
the temporal axis.40 The 3D convolutional kernel slides across the input “observation,” comput-
ing a dot product between its learnable weights and the corresponding local regions of the input at
each position.

As shown in Fig. 5, we use a ResNet 1841-like structure with 3D convolution as a feature
extractor. The input “observation” is firstly fed into a 3D convolutional layer with a kernel size of
[7,7,7] and then forwarded to four residual blocks with a convolutional kernel size of [3,3,3].
To accentuate global feature representation while diminishing the focus on local textural details,
a 3D global average pooling layer is situated before the residual blocks. The extracted features
are flattened to the feature vector as the input of the regressor, which is composed of two fully
connected layers (FC). The output of the regressor is normalized to be between 0 and 1, which is

Fig. 3 Comparative analysis of ROI tracking for a forehead region initialized in the first frame of
a video sequence. The black elliptical outlines in the ROI highlight reference features such as hair
and skin hyperpigmentation, serving as markers to intuitively observe the tracking performance.
Structural similarity (SSIM) is calculated to quantitatively assess the tracking performance.

Fig. 4 Process flow from 3D ROIs of a video sequence to input of the deep learning model.
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estimated SpO2 after scaling. Every “observation” is associated with one SpO2 output from the
regressor and a reference value. For training the neural network, mean square error (MSE) is
used as the loss function and Adam42 is chosen as the optimizer. We use both dropout and early
stopping to prevent overfitting. Hyperparameters are set empirically. Neither commercial pulse
oximeters nor clinical devices used for oximetry analysis provide decimal values, so we obtained
oxygen saturation reference values as integers. Although neural networks are capable of produc-
ing outputs with decimals, we have rounded the outputs as the only post-processing step.

3 Experiment Setting and Data Acquisition

3.1 Multimodal Imaging Camera System
We utilized a multimodal imaging system manufactured by the Fraunhofer Institute for Applied
Optics and Precision Engineering in our previous work43 and established an experimental setup
at University Medicine Essen as shown in Fig. 6.

The sensor head of this camera system contains a real-time 3D sensor unit composed of two
NIR 850 nm high-speed cameras with a full width of half maximum (FWHM) of 50 nm and a
high-speed GOBO projector34 at the same light wavelength. Besides the 3D sensor, a color cam-
era, two NIR cameras at 780 and 940 nm, and a thermal camera are integrated into the housing. In
this study, the thermal camera is inactive, which is integrated for the estimation of other vital
signs. The frame rates of these 2D cameras are 15 Hz, and they are hardware-triggered and
synchronized with the 3D video stream. The spatial resolution of these active 2D cameras is
896 × 704. The system utilizes a light-emitting diode (LED) array for homogeneous illumina-
tion, comprising one LED operating at 780 nm and three LEDs at 940 nm. Each LED in the array
has a beam angle within half-maximum intensity ranging from 90 deg to 120 deg, with an output
power of 1 W. The camera system encompasses a lateral measurement field of ∼500 mm by
400 mm when positioned at an intermediate distance of 1.5 m, and the cumulative irradiation
from this LED array configuration is ∼1.255 μW∕mm2, thereby adhering to the safety standards
for ocular exposure.44

Fig. 5 Neural network structure for oxygen saturation estimation.

Fig. 6 Multimodal camera system with sensor head composed of a GOBO projector (1), two NIR
cameras at 850 nm (2, 3), NIR camera at 780 nm (4), NIR camera at 940 nm (5), thermal camera
(6), LED array with LEDs at 780 and 940 nm (7), and color camera (8).
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3.2 Video Data Acquisition and Reference Value Recording
To validate our approach, a total of 23 cardiopulmonary healthy participants (numbered Par#1 to
Par#23) were recruited for a breath-holding study. The study is approved by the Ethics
Committee of the Faculty of Medicine, University of Duisburg-Essen (approval no. 21-
10312-BO). Informed consent was obtained from all individual participants included in this
experiment. Their Fitzpatrick skin types45 range from type II to type V. To obtain video data
with low SpO2 values, participants were expected to exhale as much as possible and then hold
their breath for a while during a video shoot. For comfort and health reasons, the duration of
breath-holding was determined by the participants themselves. When they felt they could not
tolerate breath-holding anymore, they would breathe normally for a period of time. Participants
repeated the cycle of exhalation, breath-holding, inhalation, and normal breathing three times in
∼4 min. While we advised participants to face the camera system with the front view, we
could not constrain their head movements. Especially, the breath-holding can lead to momentary
discomfort, resulting in some unavoidable involuntary movements. Participants were engaged in
two separate measurements, interspersed with a 5-min break to regulate their breathing. During
the video capture, a Pulox PO-200 pulse oximeter was clipped to the fingertip to measure the
participant’s reference SpO2 values. A webcam was used to capture the pulse oximeter display
with a frame rate of 1 Hz. Pre-trained optical character recognition model by EasyOCR was used
to read the SpO2 reference from captured displays. By holding breath, the SpO2 value can drop
below 95%, which is considered the lower limit of the normal range,46 and some participants can
even drop to 80%. After the participant resumes normal breathing, the SpO2 will quickly return to
the healthy range. Captured video and reference recording were first synchronized by time-
stamps. It is worth mentioning that since the face and fingertips are different parts of the body,
the synchronization in recording time does not mean that the SpO2 obtained from facial videos
and those obtained from fingertip pulse oximeters are synchronized. According to Refs. 47 and
48, the SpO2 obtained from facial videos are ∼20 s. faster than those obtained from fingertip
pulse oximeters. Therefore, in our subsequent experiments, for training, we applied a constant
20 s time advance to the reference values from the pulse oximeter. For evaluating the inference,
we shifted the reference time trace within a range of 20 s� 5 s to maximize its correlation with
the estimated time trace.

Through our experiment, a total of 168.5 min of multimodal videos were captured, equating
to 10,112 1-s “observations” after preprocessing. Each 1-s “observation” corresponds to a spe-
cific SpO2 value. The reference SpO2 values ranged from 80% to 99%. In our literature review,
we observed that open-source datasets for camera-based SpO2 estimation are scarce, and no
studies utilizing 3D VIS-NIR multimodal imaging have been found. Most of the datasets do
not focus on SpO2 but rather on heart rate and respiration. Within our research scope, we found
the PURE,49 VIPL-HR,50 and UBFC-rPPG51 datasets. In the PURE dataset, the researchers used
an RGB camera to record 10 healthy subjects. The VIPL-HR dataset includes 107 healthy par-
ticipants, mostly recorded with RGB modality, and a few with both RGB and NIR multispectral
videos. The UBFC-rPPG dataset has only a few participants with SpO2 reference values and
includes only RGB videos. It can be seen from Table 1, that within the limited camera-based
benchmark datasets available, reference SpO2 values rarely drop below the healthy range, with
almost no instances falling below 90%. Despite the challenges associated with obtaining data on

Table 1 Comparison of reference SpO2 coverage and distribution of benchmark datasets with
ours.

Dataset

SpO2 (%) Coverage Centile of SpO2 (%)

[80, 85] [86, 90] [91, 95] [96, 100] 5th percentile Q1 Median

PURE49 - 0.55 14.19 85.26 95 96 98

VIPL-HR50 - 0.20 13.02 86.78 94 96 97

UBFC-rPPG51 - - 2.27 97.73 96 96 97

Ours 2.82 11.66 31.78 53.74 87 92 96
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low SpO2 levels, our dataset successfully includes 40% of “observations” with desaturation.
Specifically, it encompasses 2.82% of “observations” with SpO2 from 80 to 85 and 11.66%
within the SpO2 range 86% to 90%. In addition, the 25th percentile (Q1) of SpO2 reference
in our dataset is located at 92%. A comparison of four histograms has been shown in Fig. 7,
representing the distribution of SpO2 values in different datasets. Unlike the other datasets, which
show a steep decline in instances frequency below 95%, ours maintains a more gradual decrease,
including many lower values. This suggests that our dataset captures a broader instances spec-
trum of SpO2 values, potentially offering richer insights for desaturation scenarios.

4 Results and Discussion
As introduced in the previous section, this work involved 23 participants, each of whom was
recorded in two separate around 4-min measurement sessions. We embarked on our validation by
addressing a “participant-dependent” scenario, also referred to as “precision healthcare” valida-
tion, which means using one measurement from each participant as training data, with the sub-
sequent measurement serving as the test data. This scenario emphasizes personalized analysis.
Our focal point of result discussion shifts towards a more practical and generalizable scenario
known as the “participant-independent” scenario or “leave-one-participant-out” validation. We
systematically designate the two measurements of each participant as the test data while utilizing
all available measurements from the remaining 22 participants as the training dataset. This strat-
egy is aimed at validating the robustness and generalizability of our approach across different
subjects. We will also explore the performance of various feature extraction strategies and the
corresponding network architectures. In addition, we will also present test results and application
scenarios with different input modalities. Finally, a clinical trial involving sleep apnea patients
will be introduced to demonstrate the transferability and potential applications of our approach.

4.1 Performance Metrics
To evaluate the performance of the proposed approach, we employed two standard metrics com-
monly utilized in regression analyses: mean absolute error (MAE) and Pearson’s correlation

coefficient (ρ). If yi ∈ Y denotes the from proposed approach estimated SpO2 and ŷi ∈ Ŷ denotes
their corresponding reference values, the MAE and ρ can be defined as

Fig. 7 Histograms of reference SpO2 distributions in benchmark and our datasets. In PURE and
UBFC-rPPG dataset 1, each sample corresponds to one frame, while in VIPL-HR and our dataset,
each sample represents 1 s. The dashed line to the left indicates desaturation, that is, SpO2 values
below 95%.
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i¼1ðŷi − ŶÞ2

q : (5)

In addition, we introduced bias (B), also known as “mean,” to represent the average
discrepancy between all estimated SpO2 values and their corresponding reference values.
Meanwhile, the 95% limits of agreement (95% LoA) are defined as the range covering 1.96
times the standard deviation of these discrepancies, offering an insight into the consistency of
our estimations.

4.2 Results with Proposed Approach
Table 2 summarizes the performance of SpO2 estimation with the proposed approach in the
aforementioned two validation scenarios. Across both scenarios, the average correlation coef-
ficients of all test measurements (Avg. ρ) remain robust, suggesting a strong correlation between
estimated and actual SpO2 values. The bias (B) is generally low, indicating minimal systematic
underestimation or overestimation. In the “Precision Healthcare” scenario, the overall MAE
stands at 2.12%, with a slightly higher MAE of 2.41% observed during desaturation events.
The “leave-one-participant-out” scenario exhibits an overall MAE of 2.31%, with desaturation
events resulting in a higher MAE of 3.26%. No significant deterioration in results is noted across
any specific skin type. However, skin type V displayed a notably better MAE compared to others,
potentially due to the data obtained with narrow reference SpO2 values distribution from par-
ticipants with this skin type.

Considering the generalizability of the proposed approach and the prospect of practical
applications, all the results presented and discussed next will be based on the more complex
“leave-one-participant-out” scenario.

As shown in Fig. 8, we have introduced the percentage of time the discrepancy between the
estimation and reference values falls within a certain range (PERC) and the Bland–Altman plot52

to analyze the agreement between our proposed approach and pulse oximeter recordings in the

Table 2 Results summary of the performance of the proposed approach.

Skin type

MAE (%)

Avg. ρ B (%) 95% LoA (%)All Normal Desaturation

Precision healthcare scenario

II 2.06 1.63 2.45 0.72 −0.63 [−5.44, 4.17]

III 2.04 1.81 2.20 0.70 −0.13 [−5.59, 5.33]

IV 2.48 1.67 3.02 0.80 −1.16 [−7.77, 5.44]

V 1.38 0.84 1.83 0.55 −0.50 [−4.24, 3.23]

All 2.12 1.71 2.41 0.72 −0.46 [−6.19, 5.27]

Leave-one-participant-out scenario

II 2.04 2.02 2.08 0.54 0.71 [−4.14, 5.55]

III 2.42 1.76 3.40 0.62 −0.51 [−6.76, 5.75]

IV 2.23 1.56 3.46 0.72 −0.05 [−6.15, 6.05]

V 1.80 1.98 1.28 0.68 1.31 [−2.33, 4.95]

All 2.31 1.74 3.26 0.64 −0.20 [−6.29, 5.88]
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“leave-one-participant-out” scenario. It is observed in Fig. 8(a) that the discrepancy of estimated
SpO2 values is within 3% of the reference values for ∼80% of all time points. Both Table 2 and
Fig. 8(a) demonstrate that our approach does not perform significantly worse in estimating SpO2

for any specific skin type. Furthermore, as shown in Fig. 8(b), the vast majority of the data points
in the Bland–Altman plot lie within the 95% LoA, suggesting a strong agreement between the
two SpO2 measurement approaches. But the 95% LoA range from −6.29 to 5.88, which is higher
compared to those reported in some classic works.27,53 This can be due to the wide distribution of
SpO2 values in our dataset, which ranges from 80% to 99%, and includes a significant number of
low-oxygen saturation values, with nearly 3% of values falling below 85%. Besides, the higher
95% LoA reflects the suboptimal performance of our approach in extreme cases, which may be
due to the imbalance in the training data. Capturing more data with a low SpO2 level for super-
vised learning could be expected to improve this situation. The estimated SpO2 signals and refer-
ence signals in the “leave-one-participant-out” scenario for all the participants are presented in
Fig. 9. We spliced two videos for one participant so that the SpO2 curves of each participant
should contain several dips that result from breath-holding. The MAE of estimated and reference
signals across the participants ranges from 1.57% to 3.53%, and the Pearson correlation coef-
ficient varies from 0.49 to 0.73. For the majority of the time, even during the desaturation events,
the estimated SpO2 values track closely with the reference SpO2 values, although some variations
exist. As shown for Par#14, Par#19, and Par#22, when the reference SpO2 values are exception-
ally low, typically below 85%, the estimated values indicate a downward trend but do not reach
those low levels. This could be attributed to the scarcity of extremely low data points involved
during the training.

4.3 Discussion of Feature Extraction Strategies and Network Structures
In our proposed approach, we treat a 1-s “observation,” namely a 15-frame video sequence of
preprocessed multimodal videos with both DC and AC components, as the input to a 3D CNN
feature extractor for simultaneous extraction of temporal and spatial features. In this subsection,
we compare the performance of various feature extraction strategies and corresponding network
architectures, which are schematically depicted in Fig. 10, with the proposed approach.

1. Strategy A: we process the DC and AC components of multimodal videos by averaging
them spatially to obtain multimodal DC and AC signals. These signals are then sliced into
1-s sequences, each containing 15 time points, to serve as inputs for shallow 1D-CNN
feature extractors. This strategy only focuses on temporal feature extraction but not spatial
features.

Fig. 8 Performance visualization of the proposed approach in the “leave-one-participant-out” sce-
nario. (a) The percentage of time (PERC) within the range of absolute error 1% to 10% between
reference SpO2 and estimated SpO2. (b) The Bland–Altman plot shows the agreement between
the proposed approach and the commercial pulse oximeter. The y -axis represents the differences
between the estimated and reference SpO2, while the x -axis represents the average of the two
values. Three lines represent respectively the mean difference (bias) and upper and lower 95%
limit of agreement. The transparency of the triangle markers reflects the number of overlapping
scatters.
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2. Strategy B: similar to strategy A, this strategy begins by spatially averaging the DC and AC
components of multimodal videos to obtain multimodal spatially averaged signal sequen-
ces. However, unlike strategy A, each time point within a sequence is flattened and fed into
a long short-term memory (LSTM) network54 as a one-time step. The LSTM model out-
puts one SpO2 estimation value after processing all time points within the sequence. This
strategy aims to capture the dependencies between different time points within the signal
sequence. But there is also spatial feature neglect.

3. Strategy C: we blockwise spatial average the DC and AC components of multimodal
videos and concatenate them to obtain multiple multimodal signals corresponding to
the number of blocks. These multiple signals are then sliced into sequences as inputs for
shallow 2D CNN feature extractor. In this way, both temporal features and some spatial
features between the blocks are concurrently considered.

4. Strategy D: similar to strategy C, we can obtain multiple multimodal signals. Then, at each
time point, multiple signal values from different channels are first processed through a 1D
CNN to extract spatial features, which are then flattened and fed into an LSTM as a one-time
step. The LSTM extract then temporal dependencies related features within the sequence.

5. Strategy E: each frame of an “observation” is processed through a 2D CNN feature extrac-
tor to get spatial features. Subsequently, the features of each frame are flattened and serve
as a one-time step for the LSTM. This approach initially extracts features in the spatial
domain and then analyzes temporal dependencies within these spatial features.

Fig. 9 Estimated SpO2 values and pulse oximeter measured reference SpO2 values of 23 par-
ticipants in the “leave-one-participant-out” scenario. For each participant, the model is trained by
all measurements from the other 22 participants and tested on the left two measurements of this
participant. Between two test measurements, there is a break. The green lines represent the esti-
mated values, while the reference signals are dashed gray lines.
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As shown in Table 3, the proposed strategy (strategy F), in which temporal and spatial fea-
tures are simultaneously extracted by 3D CNN, yields the best regression outputs. The distri-
butions of MAE and Pearson correlation coefficients for the estimation SpO2 using different
strategies compared to reference values across 23 participants are presented in Fig. 11. It is note-
worthy that in terms of both MAE and Pearson correlation coefficients, the proposed strategy
demonstrates better results statistics (median, Q1, Q3) and distribution. Besides, strategies C and
E exhibited similar performances and both achieved an MAE below 2.5 and an average Pearson
correlation coefficient above 0.6.

We also compared different 3D CNN structures for feature extraction, considering both
regression performance and the complexity of the models (size and computational load).
Therefore, MACs, inference time, and the number of learnable parameters are introduced for
a comprehensive evaluation of the network structure’s performance. As shown in Table 4,
3D ResNet 10, 3D ResNet 18, and 3D ResNet 34 have no significant difference in regression
performance for our task, while 3D AlexNet performs comparatively worse. Our proposed

Fig. 10 Schematic of different feature extraction strategies and corresponding network architec-
tures. (a) Strategy A. (b) Strategy B. (c) Strategy C. (d) Strategy D. (e) Strategy E.
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Table 3 Result comparison between different feature extraction strategies.

Index Feature extraction strategy
Network as feature

extractor MAE (%) Avg. ρ

A Only temporal features 1D CNN 3.14 0.45

B Only temporal features LSTM 3.24 0.46

C Simultaneously extract temporal features and
spatial features between blocks

2D CNN 2.49 0.61

D Extract firstly spatial features between blocks
and then temporal features

1D CNN + LSTM 2.63 0.59

E Extract firstly spatial features on each frame and
then temporal features

2D CNN + LSTM 2.43 0.63

F (proposed) Simultaneously extract spatial and
temporal features

3D CNN (ResNet 18) 2.31 0.64

Fig. 11 Raincloud plots, which combine elements of box plots, violin plots (“cloud” part), and scat-
ter plots (“rain” part), for performance metrics across different feature extraction strategies. The
“cloud” part represents result distribution, while the “rain” indicates individual results of 23 partic-
ipants. For each metric, boxes are used to describe the interquartile range (IQR) of the “leave-one-
participant-out” test results on 23 participants with different strategies, which spans from the 25th
percentile (Q1) to the 75th percentile (Q3). The whiskers extending from the boxes represent non-
outlier results within 1.5 times IQR. The lines inside the boxes are medians. (a) Mean absolute
error (MAE). (b) Pearson correlation coefficient (ρ).

Table 4 Performance comparison between different 3D CNN-based networks as feature
extractor.

Model MACs (G) Inference Time (ms) Learnable Parameters (M) MAE (%) Avg. ρ

3D AlexNet 0.73 28.10 2.07 2.81 0.52

3D ResNet 10 3.49 34.90 14.56 2.33 0.64

3D ResNet 18 4.27 45.80 33.36 2.31 0.64

3D ResNet 34 5.55 69.10 63.67 2.36 0.63

3D MobileNet V1 0.14 29.90 3.31 2.61 0.59

3D MobileNet V2 0.22 44.40 2.36 2.73 0.57

3D ShuffleNet V1 0.11 52.30 0.95 2.87 0.52

3D ShuffleNet V2 0.11 30.90 1.30 2.57 0.59
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approach is just to choose the best network structure based on MAE and Avg. ρ, which is 3D
ResNet 18. Lightweight networks such as 3D MobileNet V1, 3D MobileNet V2, 3D ShuffleNet
V1, and 3D ShuffleNet V2 significantly reduce model complexity without a noticeable loss in
regression performance.55 Among them, 3D ShuffleNet V2 performs the best in these lightweight
networks, achieving 2.57% MAE and 0.59 average Pearson correlation coefficient, which pro-
vides valuable reference for potential applications on mobile and embedded platforms.

4.4 Discussion of Image Modalities
After image registration, our method permits the combination of different imaging modalities for
SpO2 regression. Utilizing only NIR 780 and NIR 940 nm allows for overnight measurement,
thereby broadening the applicability of this approach, such as in sleep monitoring scenarios.
Table 5 illustrates the overall results when employing different modalities. Although the con-
current use of both RGB and NIR modalities yields the best estimation performance, relying
solely on RGB or NIR does not lead to a collapse but only a slight MAE increase and an accept-
able decrease of the Pearson correlation coefficient. From Fig. 12, it can be seen that estimations
using only NIR resulted in a slightly higher MAE distribution for several participants and pre-
sented completely outlying Pearson correlation coefficients for two participants. However, in
general, the distribution of the estimation results is similar to that when only RGB is used.

4.5 Clinical Validation on Sleep Apnea Patients
To clinically validate our method, we conducted a patient study in cooperation with the Center
for Sleep and Telemedicine, University Medicine Essen, and recruited four patients with sus-
pected SAS. SAS is a sleep-related breathing disorder characterized by repetitive breathing inter-
ruptions during sleep, resulting in daytime drowsiness, concentration difficulties, and increased

Table 5 Comparison of different input 2D imaging modalities.

Input modalities Overnight measurement MAE (%) Avg. ρ

RGB - 2.58 0.55

NIR ✓ 2.68 0.51

RGB + NIR - 2.31 0.64

Fig. 12 Raincloud plots, which combine elements of box plots, violin plots (“cloud” part), and
scatter plots (“rain” part), for performance metrics across different input modalities. The “cloud”
part represents result distribution, while the “rain” indicates individual results of 23 participants.
For each metric, boxes are used to describe the interquartile range (IQR) of the “leave-one-
participant-out” test results on 23 participants with different strategies, which spans from the
25th percentile (Q1) to the 75th percentile (Q3). The whiskers extending from the boxes represent
non-outlier results within 1.5 times IQR. The lines inside the boxes are medians. (a) Mean absolute
error (MAE). (b) Pearson correlation coefficient (ρ).
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risk of cardiovascular diseases. Furthermore, recurrent breathing interruptions lead to a decrease
in blood oxygen levels and eventually hypoxemia. The age of the included patients ranged from
51 to 58, while their apnea-hypopnea index (AHI) ranged from 29 to 69.9 and the oxygen desa-
turation index (ODI) from 10.7 to 62.8. AHI measures the severity of sleep apnea by calculating
the number of apnea and hypopnea events per hour of sleep, while ODI quantifies the frequency
of oxygen desaturation events, specifically drops of 3% or more, per hour of sleep.56,57 Each
patient is assigned a unique identifier, ranging from patients #1 to #4. The study is approved
by the Faculty of Medicine, University of Duisburg-Essen (approval no. 21-10312-BO).
Informed consent is obtained from all individual patients. These patients spent one night in the
sleep laboratory, being simultaneously monitored by our camera system and the PSG system for
reference. The color camera of our system is inactive during the measurement. Thus, the pre-
viously RGB-based facial landmark extraction and forehead ROI definition have been shifted to
operate on NIR 780 images. In this experimental phase, our camera system’s sensor head cannot
move or rotate, resulting in a fixed field of view. We can check that the patient’s face is within the
camera’s view at the start of recording, but patients might turn or move their heads after falling
asleep. Therefore, in Table 6, we list some information about these four patients with their total
sleep hours, the corresponding duration of available data, and MAE between estimated SpO2 and
reference in this duration.

To provide a more intuitive demonstration of the clinical results, we demonstrate in Fig. 13
the dynamic response of the estimated and reference SpO2 signals during periods with

Table 6 Results of SpO2 estimation in trial clinical validation on SAS patients.

Age (years) AHI ODI Sleep time (h) Available data (h) MAE (%)

Patient #1 51 29.0 34.6 6.23 3.61 2.17

Patient #2 56 69.9 78.0 5.62 4.76 1.97

Patient #3 80 20.9 10.7 5.40 3.69 1.34

Patient #4 58 59.7 62.8 6.18 1.16 1.19

Fig. 13 Estimated SpO2 values and PSGmeasured reference SpO2 values of 4 SAS patients (two
periods with desaturation events for each patient). The model is trained by all measurements from
23 healthy participants. The test was conducted at night and used only the infrared channels. The
green lines represent the estimated values, while the reference signals are dashed gray lines.
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desaturation and resaturation events. For each patient, two separate time periods with desatura-
tion events are presented in two consecutive subplots. In a previous article of our research
group,58 we showed that we can distinguish periods with and without desaturation events in
SAS patients, however without estimating the SpO2 value. In this study, we show that we are
able to accurately estimate the SpO2 value in patients with a highly dynamic SpO2 behavior with
low MAE and high Pearson correlation coefficient. Furthermore, we have shown that the
approach developed on healthy awake subjects can be applied to symptomatic SAS patients
during sleep.

5 Conclusion and Future Work
This study introduced a contactless approach for SpO2 estimation using 3D CNN and 3D VIS-
NIR multimodal imaging. Through multimodal image registration, accurate 3D ROI tracking,
multimodal video preprocessing, and spatial-temporal feature extraction, oxygen saturation can
be accurately estimated from facial videos. The approach exhibited promising results, achieving
an MAE of 2.31% and a Pearson correlation coefficient of 0.64 in a breath-holding study on
healthy participants during short-term daytime measurements, showing a strong response to
desaturation events and good agreement with recordings from contact-based commercial pulse
oximeters. In clinical trials involving patients with sleep apnea syndrome, our approach dem-
onstrated robust performance, with an MAE of less than 2% in SpO2 estimations compared to
gold-standard polysomnography (PSG). For the further improvement of SpO2 estimation, we
plan to utilize 3D information to incorporate illumination correction, aiming to further reduce
distortions that are unrelated to oxygen saturation. Besides, future studies will focus on expand-
ing the dataset to include a broader range of real patients, including varied skin types and more
extensive pathological conditions (both stationary and ambulatory settings), to further validate
the approach’s effectiveness and generalizability. Furthermore, we aim to combine other non-
contact measured vital signs, such as heart rate, respiration, and oxygen saturation, for correlation
analysis to enhance disease diagnosis and patient recovery process monitoring.
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