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ABSTRACT. Significance: Oral cancer surgery requires accurate margin delineation to balance
complete resection with post-operative functionality. Current in vivo fluorescence
imaging systems provide two-dimensional margin assessment yet fail to quantify
tumor depth prior to resection. Harnessing structured light in combination with deep
learning (DL) may provide near real-time three-dimensional margin detection.

Aim: A DL-enabled fluorescence spatial frequency domain imaging (SFDI) system
trained with in silico tumor models was developed to quantify the depth of oral
tumors.

Approach: A convolutional neural network was designed to produce tumor depth
and concentration maps from SFDI images. Three in silico representations of oral
cancer lesions were developed to train the DL architecture: cylinders, spherical har-
monics, and composite spherical harmonics (CSHs). Each model was validated with
in silico SFDI images of patient-derived tongue tumors, and the CSH model was
further validated with optical phantoms.

Results: The performance of the CSH model was superior when presented with
patient-derived tumors (P-value < 0.05). The CSH model could predict depth and
concentration within 0.4 mm and 0.4 μg∕mL, respectively, for in silico tumors with
depths less than 10 mm.

Conclusions: A DL-enabled SFDI system trained with in silico CSH demonstrates
promise in defining the deep margins of oral tumors.
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1 Introduction
Of the 10 most common solid tumors, oral cancer has the highest prevalence of positive margins
following surgery.1 This has a negative impact on patient outcomes, as clear surgical margins are
a consistent prognostic factor for local control and overall survival in oral cancer.2,3 Surgical
intervention is required for most oral cancer patients, yet tumor delineation remains a significant
challenge.4,5 With these procedures, a balance is required between complete tumor resection and
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conservation of healthy tissue to prevent tumor recurrence and preserve functionality.6 Although
palpation, visual cues, pathology, and anatomical imaging modalities are common intraoperative
techniques to define the tumor, these methods are limited in their precision; consequently, the
incidence of positive margins in oral cancer has been reported as high as 85%.7,8

Fluorescence-guided surgery is emerging as an intraoperative imaging technique for cancer
surgery, as it provides high-resolution contrast to differentiate tumor from healthy tissue.9 A
growing number of fluorescence contrast agents are approved or currently under investigation
across a wide spectrum of surgical specialities.10 In oral cancer, recent clinical trials are establish-
ing fluorescence imaging for intraoperative assessment of surgical margins.11,12 The use of near-
infrared (NIR) fluorophores (650 to 900 nm) enables visualization of sub-surface structures due
to lower absorption in the biological imaging window.13 Although this can provide surgical guid-
ance in many clinical scenarios, one key limitation is that clinical fluorescence devices do not
quantify the depth of sub-surface structures.14,15 This is particularly important for oral cancer, as
determining the depth of tumor invasion is often the key challenge leading to positive margins.16

The sentinel margin technique developed by van Keulen et al. is an important advance to help
identify the closest sub-surface margin based on relative fluorescence measurements of the
ex vivo surgical specimen,17,18 but as yet this lacks quantitative capabilities. Results from a phase
II fluorescence guidance trial demonstrate the challenge of oral cancer depth assessment.11

Specifically, de Wit et al. report that the accuracy of margin classification degraded as margin
thickness increased (i.e., from 1 to 3 mm to 3 to 5 mm of overlaying tissue in post-resection
surgical specimens). These same authors also suggest that fluorescence depth detection might
improve results, citing the potential for variable aperture (VA) and spatial frequency domain
imaging (SFDI) techniques.11

Several imaging techniques are under development for intraoperative fluorescence depth
detection. Using VA, the dual-aperture fluorescence ratio technique recently reported by
Rounds et al.19 accurately classified close versus clear margins in ex vivo surgical specimens
of an initial patient cohort. For depth quantification using SFDI, techniques have been developed
to quantify the depth to sub-surface inclusions based on the fluorescence decay rate across spatial
frequencies.20,21 Alternative techniques using hyperspectral acquisition (i.e., multi-excitation
and/or multi-emission wavelength bands) and ratiometric techniques have also been validated
in pre-clinical neurosurgery models of buried tumors.22–24 All of these examples focus on iden-
tifying the top surface of buried tumors lying below the tissue surface. In these cases, which we
refer to as a “submarine” model, depth is defined as the thickness of healthy tissue covering a
fluorescent inclusion. These techniques have been motivated by clinical applications including
guidance of neurosurgical procedures that involve “piecemeal” resection of layers of tissue over-
lying a buried tumor20–24 or for imaging the basal surface of an ex vivo surgical specimen.19,25 As
oral cancer tends to originate at the mucosal surface and infiltrate deeper into healthy tissue,16

here, we focus on identifying the bottom surface of infiltrative tumors, which we refer to as an
“iceberg” model. In this case, depth is the thickness of the fluorescent tumor, as would be
encountered during in vivo imaging of the mucosal surface in oral cancer.

For depth quantification, we are using SFDI acquisition in combination with deep learning
(DL) reconstruction. SFDI captures wide-field reflectance images while projecting patterns of
light to enable quantification of the optical scattering and absorption properties of the tissue.26,27

SFDI fluorescence images provide depth information: high-frequency patterns capture shallow
information, and low-frequency patterns obtain deeper information.28 Many existing fluores-
cence depth quantification approaches use ratiometric or analytical methods with approximations
to simplify the inverse problem, such as assumptions of semi-infinite mediums or fluorescence
originating from point-source inclusions.20,22–24 DL techniques offer the potential to use learning-
based techniques to relax the requirement for mathematical simplicity or complex numerical
inversion.29,30 Furthermore, although time-intensive to train, DL methods rapidly generate infer-
ences after image acquisition, which lends itself to intraoperative applications. Here, we adopt an
in silico training approach that directly incorporates the physics of light propagation into the
training process.31,32 The lack of SFDI images of patient tumors and the requirement for a com-
prehensive training dataset presented a need for synthetic images. Here, we investigate a custom
“Siamese” convolutional neural network (CNN) for tumor delineation and corresponding in sil-
ico model for training. In this initial investigation, we employ 10 patient contours from pre-
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operative radiological imaging to generate optical testing data for simulations and phantom
experiments.

2 Methods

2.1 Spatial Frequency Domain Imaging System
The prototype SFDI system under development is in Fig. 1. A light engine with six light-emitting
diodes (LEDs) (Spectra X, Lumencor, Beaverton, Oregon, United States) that has 20-nm band-
width sources centered at 390, 438, 475, 512, 586, and 632 nm is the light source for the system.
A 3-mm liquid light guide (LGG0338, Thorlabs, Newton, New Jersey, United States) couples
the light engine to the digital light projector (DLP), a spatial modulator (DLi6500 1080p
Optics Bundle, DLi, Austin, Texas, United States) based on a 1920 × 1080-pixel DLP develop-
ment kit (LightCrafter 6500, Texas Instruments, Dallas, Texas, United States). All images are
captured with a 1392 × 1040-pixel, 14-bit, monochrome charge-coupled device (CCD) camera
(Pixelfly USB, PCO AG, Kelheim, Germany) that is coupled to a 25-mm focal length lens
(model 67715, Edmund Optics, Barrington, New Jersey, United States). A synchronization cable
couples the projector and the camera so that images are acquired sequentially at each spatial
frequency. In this study, the SFDI system collects fluorescence and reflectance images across
six spatial frequencies fx ¼ ½0; 0.05; 0.1; 0.15; 0.2; and 0.25� mm−1 using the 632-nm light
source. Reflectance images are required to obtain the optical properties of the tissue; absorption
and scattering ðμa; μ 0

sÞ are computed from reflectance images at two separate spatial frequencies
fx ¼ ½0 and 0.2� mm−1 using SFDI lookup tables.26,33 A 650-nm-long pass filter (FELH0650,
Thorlabs, Newton, New Jersey, United States) is used when capturing fluorescence images
of protoporphyrin IX (PpIX). To remove specular reflection, the system includes crossed linear
polarizers (LPVISE2X2, Thorlabs, Newton, New Jersey, United States). Prior to data acquisition,
the SFDI system is calibrated with a polyurethane-based phantom containing titanium dioxide
and carbon black (Biomimic PB0317, INO, Quebec City, Quebec, Canada).

2.2 Deep Learning Approach for Fluorescence Topography
We investigate a DL model for obtaining fluorescence concentration and depth topography from
SFDI images. The Siamese CNN architecture shown in Fig. 2 was adapted from the work done
by Smith et al.31 in which DL was used to predict depth to the top surface of a submerged inclu-
sion (“submarine” model) and the corresponding fluorescence lifetime from SFDI-derived
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Fig. 1 SFDI system prototype.
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optical properties and macroscopic fluorescence lifetime imaging. Our Siamese CNN differs as it
uses optical properties and SFDI fluorescence images as separate inputs to predict the depth to
the bottom surface of an infiltrative inclusion (“iceberg” model) and the corresponding fluores-
cence concentration. In addition to changing the model inputs and outputs, we also modified
a few of the internal model details to improve performance, most notably changing 1 × 1 kernel
sizes to 3 × 3 for improved deblurring and including residual blocks (ResBlocks) in both arms
prior to concatenation.

As shown in Fig. 2, optical properties go through a series of two-dimensional (2D) con-
volutions with 3 × 3 filters, 1 × 1 stride, ReLU activation functions, and zero padding to maintain
X × Y image dimensionality. Before concatenation, the images are fed into a 2D ResBlock in
which two additional 2D convolutions are performed with a skip connection in which the input
also bypasses the two sets of convolutions. Fluorescence images are passed to a single three-
dimensional (3D) convolution with 3 × 3× 6 filters, 1 × 1 × 1 stride, a ReLU activation function,
and zero padding to maintain dimensionality. These images are then passed to two 2D convolu-
tional layers and a 2D ResBlock. As concentration and depth predictions depend on the optical
properties and fluorescence images, the fluorescence data are reshaped and concatenated with the
optical properties. A separable convolution and a 2D ResBlock are applied to the concatenated
data. The concatenated data are split into two arms and a series of 2D convolutions that reduce
the number of feature maps while maintaining X × Y image dimensionality and are applied to
produce the fluorescence concentration map and depth map.

All DL implementation is in Amazon Web Services (AWS) SageMaker with a ml.g4dn.
2xlarge instance type (1 NVIDIA T4 GPU, 8 vCPU). During training, 920,514 parameters are
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Fig. 2 DL architecture and parameters. Depth and concentration maps are predicted from optical
properties and fluorescence images collected from SFDI.
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learned with Adam as the optimizer and learning rate decay (initial learning rate ¼ 5 × 10−5).
Training continued for a maximum of 100 epochs unless the early stopping criteria were met.
Training the CNN took approximately 8.6 h at 311 s∕epoch for the in silico datasets described
below.

2.3 In Silico Training Data
Figure 3 compares the three shape model iterations used to mimic oral cancer tumors: cylinders,
spherical harmonics, and composite spherical harmonics (CSHs). A set of 10,000 of each shape
model is generated in MATLAB. Cylinders were chosen as the first shape model as a proof of
concept to assess the potential for DL in combination with fluorescence SFDI. Cylinders are
generated with randomly chosen widths = 10 to 40 mm and depths = 1 to 10 mm, and to mimic
the “iceberg” tumor model, the top surface of the cylinder is set to Z ¼ 0 (i.e., the tissue surface).
Spherical harmonics were chosen as the second shape model as they could be quickly generated
and introduced more complex geometric features. Spherical harmonics are originally generated
with a radius of 10 mm and then scaled to have widths = 10 to 40 mm and depths = 1 to 10 mm.
To create perturbations in the shape and diversity in the training set, the order and degree of the
spherical harmonic are randomly selected with order = 2 to 20 and degree = order-20. To achieve
the “iceberg” model, the section of the spherical harmonic protruding above Z ¼ 0 is cut. CSHs
were developed to add asymmetry to the tumor model. The CSH model was intended to have
organic features that varied significantly within the dataset. A CSH comprised four spherical
harmonics joined as separate quadrants based on two randomly generated reciprocal functions
in the XY plane as shown in Fig. 4. A series of transformations were included when developing
the shape model to add regions of buried tumor for the primarily “iceberg” tumor. The CSH is
rotated in the X, Y, and Z directions, shifted in the Z direction, scaled separately along X and Y
axis to have widths = 10 to 40 mm, and scaled in the Z direction to have depths = 1 to 10 mm. The
section of the CSH that is protruding over Z ¼ 0 is cut so that the tumor is flush with the back-
ground tissue.

All shape models were passed to an in-house tissue simulator based on a diffusion theory
light propagation model in MATLAB to generate in silico images for DL training. Specifically,

Fig. 3 Shape models for deep learning training. All dimensions are in millimeters, and the color
scale represents the relative maximum (blue) and minimum (yellow) depths of the inclusion.

Fig. 4 Method of generating a CSH. Four spherical harmonics are (a) randomly generated and
(b) merged to create a base CSH, which is then (c) randomly shifted, scaled, rotated, and cut to
create a final CSH. The color scale represents the relative maximum (blue) and minimum (yellow)
depths of the shape at each step.
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the simulator was based on a perturbation approach to model the tumor as a single-region hetero-
geneity using steady-state Green’s functions calculated on a 3D Cartesian grid.34,35 The tissue
simulator produced in silico images over a field of view of 50 mm2 (0.5 mm∕pixel resolution)
with Poisson additive noise. A set of reflectance and fluorescence images across spatial frequen-
cies, optical property maps, and true depth and concentration maps were generated for each
synthetic tumor shape. The fluorescence and reflectance images were generated for six spatial
frequencies fx ¼ ½0; 0.05; 0.1; 0.15; 0.2; and 0.25� mm−1 using PpIX properties for the fluoro-
phore and a range of optical properties within tissue: absorption μa ¼ 0.0015 to 0.015 mm−1

and scattering μ 0
s ¼ 0.75 to 2 mm−1. Optical property maps were calculated using SFDI lookup

tables with in silico reflectance images at fx ¼ ½0 and 0.2� mm−1. Fluorophore concentration was
considered homogeneous and randomly chosen between 1 and 10 μg∕mL, with an assumed
PpIX quantum efficiency (η ¼ 0.046).36 Depth was calculated at each pixel; for areas in which
the top surface of the tumor was at/above the healthy tissue (Z ≥ 0), depth was calculated as the
distance between the top surface and the bottom surface; for regions where the top surface of the
tumor was buried (Z < 0), depth was the distance from Z ¼ 0 to the bottom surface of the tumor.
The cylinder, spherical harmonic, and CSHmodels used during in silico testing were trained with
fluorescence solely in the tumor. A fourth training set based on CSH was developed for the
phantom study and included a randomized amount of fluorescence in the healthy background
tissue ranging from 0.1% to 50% of the fluorescence concentration of the tumor. Although the
phantoms did not contain fluorescence in the background, this model provided better agreement
with the experimental data that are subject to fluorescence filter leakage, camera electronic noise,
and SFDI calibration errors not currently included in the training process. These factors led to a
mismatch in background fluorescence between experimental and in silico SFDI images.

2.4 In Silico Implementation
To assess the feasibility of DL for predicting depth and concentration from SFDI fluorescence
images and optical properties, in silico test sets were developed. A test set of 100 shapes was
generated for each respective model (cylinder, spherical harmonic, and CSH). The geometric and
optical properties remained within the range of the training data for all three sets. Images were
passed to each model to confirm that the networks could make accurate predictions for new cases
of the same data type as the training set.

Meshes of patient-derived oral cancer were used to evaluate the ability of the DL training
data to capture complex features seen in real tumors. After institutional ethics board approval for
retrospective patient data access (University Health Network REB #22-5471), 10 pre-operative
magnetic resonance imaging (MRI) of tongue cancer surgical patients were contoured to produce
corresponding meshes (average depth = 8.3 mm) as displayed in Fig. 5. Tongue cancer was
selected as an initial model for evaluation as these are the most prevalent oral cancer
subsite.37 The contoured tumors had widths and depths that fell within the geometric range
of the training data. To increase the number of test samples, the 10 contours were scaled in each
plane (widths = 10 to 40 mm and depths = 1 to 10 mm) and randomly rotated around the z axis
(−180 to 180 deg). These transformations provided a second validation set of 100 patient-derived
tumors (average depth = 5.4 mm). As the invasion depth of late-stage oral cavity cancer (e.g., T3–
T4 tumors exceeding 1 cm depth) can exceed the penetration depths of near-infrared light, a third
evaluation case was included based on an additional patient case (depth = 12.5 mm) to assess DL
performance in out-of-range cases. The tumor exceeded the functional depth of our system but
had widths that remained within the imaging field of view.

Both test sets were passed to the tissue simulator twice to produce a test set without
background fluorescence and a test set with a randomized amount of fluorescence in the
background (0.1% to 50% of the fluorescence concentration of the tumor). The sets with back-
ground fluorescence were used to assess the in silico performance of the model trained with CSH
and background fluorescence. The tissue simulator produced synthetic fluorescence images
(PpIX concentration ¼ 5 μg∕mL), reflectance images, optical properties (μa ¼ 0.0045 mm−1,
μ 0
s ¼ 1 mm−1), concentration maps, and depth maps for each test set. The patient tumors pro-

truded above the z ¼ 0 plane, the depth for each pixel was calculated as the difference between
the bottom surface of the tumor, and the top surface, which was either the Z ¼ 0 plane or the top
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surface of the protruding tumor. Images were passed to each DL model to assess how well the
training data could capture the complex geometry of real patient tumors.

2.5 Phantom Implementation
Optical phantoms were used to assess the performance of the DL model when experimentally
collected images were passed to a model trained with in silico images. Figure 6 illustrates each
stage within the phantom process. The contoured meshes used for in silico validation were 3D
printed to create imprints for agar phantoms. These phantoms required two solutions: (i) non-
fluorescent agar solution to represent the background tissue and (ii) fluorescent agar solution to
represent the tumor. In both the background and tumor agar, India ink (μa;Background ¼ 0.0047 and
μa;Tumor ¼ 0.0093 mm−1) was the absorbing agent, and intralipid (μ 0

s;Background ¼ 1.44 and

Fig. 5 Validation set included 10 meshes of MRI-contoured patient tongue tumors.
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μ 0
s;Tumor ¼ 1.42 mm−1) was the scatterer. The fluorescent agar solution included PpIX

(5 μg∕mL) as the fluorophore and iohexol as a contrast agent for computed tomography
(CT) scanning. The background solution was poured into a dish, and the 3D-printed tumors
were held at the surface of the solution to create a negative mold. Once the background agar
solidified, the 3D-printed tumor was removed, leaving behind a negative imprint for the fluo-
rescent tumor solution. The fluorescent solution was poured into the negative imprint to create a
fluorescent tumor.

To model the true geometry, cone beam CT scans (Cios Spin, Siemens Healthineers,
Erlangen, Germany) of the phantoms were taken to get the geometry and orientation of the tumor
to the background agar. The CT scans were contoured in the 3D-Slicer software,38 to get a 3D
mesh that was manually rotated to align with the images taken by the SFDI system. The cali-
brated mesh from the CT was then passed to our tissue simulator to obtain the ground truth for
depth and concentration maps.

The training data for deep learning assumed the background healthy tissue was uniform and
spanned the entire 50-mm2 imaging field of view. To accommodate this, the background of the
phantoms was designed to exceed the field of view. Although the images were originally the
correct field of view, subsequent manual cropping was required to remove artifacts in the periph-
ery of the images due non-uniform fluorescence filtering. The SFDI images were collected at a
resolution of 10 pixels∕mm and had varying dimensions based on the manual crop. If the manual
crop created a region smaller than the required 50-mm2 field of view, images required padding.
To resize the image to have at least a 50-mm2 field of view, the images were padded with the
values within one standard deviation of the mean background intensity of non-fluorescent agar.
As the pixel size at the imaging plane was not an even multiple of the pixel size of the training
data (101 × 101 images at 0.5 mm2), an interpolation step was required to convert camera
images. Specifically, to obtain images of 101 × 101 pixels at a resolution of 0.5 mm∕pixel, the
padded images were cropped to 505 × 505 pixels at the original camera resolution
(0.1 mm∕pixel), and box interpolation was used to reduce the resolution to 0.5 mm∕pixel.
This process was repeated for all reflectance, fluorescence, absorption, and scattering images.
Processed images were automatically uploaded to an AWS S3 bucket for DL depth and con-
centration predictions.

3 Results

3.1 In Silico Results
To confirm that the architecture and parameters of the DL model were suitable, the models were
tested with 100 images derived from the same data type as the training data: the cylinder model
was tested with cylinders, the spherical harmonic model was tested with spherical harmonics, and
the CSH model was tested with CSH. As shown in Fig. 7, each model made reasonable pre-
dictions for both depth and concentration. The cylinder model had an average (standard
deviation) depth error of 0.36 (0.55) mm and a concentration error of 0.091 ð0.12Þ μg∕mL.
The spherical harmonic model had depth errors of 0.72 (1.04) mm and concentration errors

Fig. 6 Optical phantoms of patient-derived tongue tumors as test data. (a) Contoured MRI of the
tongue tumor. (b) 3D print of the tumor. (c) Optical agar phantom of the tumor. (d) SFDI system
imaging phantom.
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of 0.18 ð0.47Þ μg∕mL. The CSHmodel had the highest errors with an average depth error of 0.90
(1.28) mm and an average concentration error of 0.29 ð0.59Þ μg∕mL.

In silico SFDI fluorescence images and optical properties of the original and augmented
patient-derived tongue tumors were passed to all three models. Although the architecture and
parameters remained constant across all models, the model predictions differed significantly
depending on the training data. Figure 8 illustrates DL predictions across models for a sample
from the unscaled in silico set and a sample from the augmented set. Table 1 includes the pre-
dictive errors associated with each model when validated with the original patient-derived data
(n ¼ 10). The model trained with cylinders had the overall highest error when testing with
patient-derived tumor meshes. Complex geometric features within the testing set were not cap-
tured in the cylinder training set and the model could not accurately make predictions as shown
in Fig. 8. The depth and concentration predictions had significant errors. The spherical
harmonic model had significantly lower errors in concentration predictions (concentration
P-value ¼ 1.2 × 10−3) but did not demonstrate a significant improvement in depth predictions
(depth P-value ¼ 0.34) when compared with the cylinder model. Due to the lack of asymmetry
in this training set, many of the predictions had features intrinsic to spherical harmonics:
deepest in the center with a gradual radial decrease in depth. The model trained with CSH had
significantly lower errors than the cylinder model (depth P-value ¼ 4.7 × 10−5 and concentra-
tion P-value ¼ 5.4 × 10−10) and spherical harmonic model (depth P-value ¼ 5.5 × 10−3 and

Fig. 7 Architectures trained with different data types were tested with in silico data of the same
class as the training data: the cylinder model was validated with 100 cylinders, the spherical har-
monic model was validated with 100 spherical harmonics, and the CSH model was validated with
100 CSH.
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concentration P-value ¼ 1.6 × 10−4). As the complexity of the shape model increased and the
data became more diverse, the model could learn geometric features intrinsic to real tumors.

The improvement in DL predictions as training data complexity increased was apparent
when the models were validated with the augmented patient-derived data (n ¼ 100). The cyl-
inder model had significantly higher errors than both the spherical harmonic model (depth
P-value ¼ 2.6 × 10−3 and concentration P-value ¼ 2.1 × 10−25) and the CSH model (depth
P-value ¼ 9.3 × 10−19 and concentration P-value ¼ 5.7 × 10−63). The CSH model continued to
have significantly lower error than the spherical harmonic model (depth P-value ¼ 3.7 × 10−8

and concentration P-value ¼ 9.6 × 10−15), indicating that the CSH had superior predictive per-
formance when working with patient-derived data. The difference in errors between the two
validation sets was likely due to the average depth of the data. As the average depths of the

Fig. 8 In silico images of patient-derived tumors for validating all models. As the complexity of the
training data increased, the depth and concentration results improved for both unscaled (left col-
umn) and augmented (right column) tumors.

Table 1 DL models were validated with the original unscaled and augmented patient-derived
tumors. This table includes the depth and concentration average (standard deviation) errors asso-
ciated with each DL model.

Original tumors (n ¼ 10) Augmented tumors (n ¼ 10)

Depth error
(mm)

Concentration
error (μg∕mL)

Depth error
(mm)

Concentration
error (μg∕mL)

Cylinders 4.2 ± 4.9 2.8 ± 2.1 1.62 ± 2.5 1.9 ± 2.0

Spherical harmonics 3.3 ± 3.6 1.78 ± 1.3 1.2 ± 2.0 0.9 ± 1.1

CSH 1.0 ± 1.5 0.5 ± 0.8 0.4 ± 0.6 0.4 ± 0.6
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augmented tumors matched the average depths of the training set, the errors were consistently
lower in the augmented validation set as shown in Table 1.

The unscaled and augmented tumor sets were also used to assess the effects of adding back-
ground fluorescence. The CSH model trained with background fluorescence was validated with
in silico images of the unscaled and augmented test sets containing background fluorescence.
The respective depth and concentration error for the unscaled set was 1.0� 1.5 mm and
0.6� 1.0 μg∕mL, and the augmented set was 0.4� 0.7 mm and 0.3� 0.6 μg∕mL. In compari-
son with the CSH model trained and tested with the same tumor sets without background
fluorescence, there was no significant difference between depth and concentration estimates
for the unscaled (depth P-value ¼ 0.9, concentration P-value ¼ 0.2) and augmented (depth
P-value ¼ 1.0, concentration P-value ¼ 0.2) tumor sets.

Figure 9 illustrates a patient-derived case with maximum depth (12.5 mm) that exceeds the
ranges of depths (1 to 10 mm) included in the CSH training model. This case was specifically
selected to assess what happens when the DL model encounters “out-of-range” depths (i.e., is
there evidence of “AI hallucinations”?), with additional cases required in the future to assess this
fully. Here, the depth predictions truncate at ∼10 mm and the error increases as depth increases.

3.2 Phantom Results
As the CSH model had the lowest errors in silico, it was used as the primary model for phantom
studies. Figure 10 illustrates the predictions from this model on two patient-derived phantoms
(maximum depths of 5.70 and 5.25 mm) made from separate batches of agar-based material.
Phantoms 1 and 2 had average depth errors of 0.62 and 0.75 mm, respectively, and average
concentration errors of 1.84 and 5.65 μg∕mL. One possible source of error in the concentration
map is the choice of PpIX fluorescence quantum efficiency used to train the DL model; here, we
used η ¼ 0.046 for PpIX,36 but a number of values are reported in the literature.39 Batch-to-batch
variability in phantom preparation may also contribute to concentration estimate uncertainties.

4 Discussion and Conclusion
This pre-clinical study demonstrates the potential to use CSH as an in silico oral cancer tumor
model to train a DL-enabled SFDI system for fluorescence depth quantification. Simulation stud-
ies using 10 patient tongue tumor contours were used for initial validation, as well as to generate
an augmented data set of 100 simulated cases for more comprehensive testing. Although initially

Depth True (mm)

Conc �Error� ( g/mL)Conc Pred ( g/mL)Conc True ( g/mL)

Depth Pred (mm) Depth �Error� (mm)

Fig. 9 CSH model predictions for an in silico patient-derived tumor with a maximum depth of
12.5 mm. The average depth error is 1.83, mm and the concentration error is 0.32 μg∕mL.
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focused on oral cancer, this work also establishes a generalizable deep learning architecture for
SFDI-based fluorescence depth quantification to support future developments for other surgical
oncology applications (e.g., breast, brain, and ovary).

Without a large database containing 3D meshes of patient-derived oral tumors for deep
learning training, CSHs serve as a promising alternative. Training with patient-derived tumors
would be optimal; however, contouring MRI images of oral cancer is time-consuming and prone
to errors. In contrast, automatically generating synthetic tumor shapes offers a fast method of
creating a diverse training set. Cylinders and spherical harmonics as tumor models were vital in
the preliminary stages of developing a shape model as they served as a proof-of-concept for
initial studies and led to the development of CSH as tumor surrogates. Although the primary
concern associated with such synthetic datasets is that they are unable to capture the complexities
of real data, the CSH shape model demonstrated its ability to capture geometric features intrinsic
to patient-derived oral tumors in an initial test of 10 subjects.

Although the geometry of patient-derived tumors is captured by the training data, there are
multiple limitations associated with this initial study, beyond the limited number of test samples.
First, although the CSH model demonstrates its ability to capture the bulk geometries of real
tumors, the shape model does not account for the complex infiltrative boundaries of oral tumors.
Although in practice oral tumors are also defined on the bulk geometry, large margins are
required to account for the infiltrative tumor boundaries. Pathology reveals that these boundaries
contain irregular “finger-like” protrusions, satellite tumor nodules, and tumor buds.40 As diffuse
optical imaging techniques have a limited ability to capture microscopic features, surgical mar-
gins will still be required. Future work should involve integrating small, localized regions of
tumor to the shape model to mimic the infiltrative boundaries of real tumors. This addition
is also required to assess our system’s limits in terms of fluorophore accumulation and diffuse
optical imaging in small nodules. Second, the light propagation model assumed a homogeneous
distribution of the fluorophore completely localized to the tumor. This simplified the calculations
required for generating the fluorescence images and optical property maps; however, this
assumption does not align with in vivo studies as tumors tend to have heterogeneous distributions
of the fluorophore. Third, to simplify the training data, we assumed that the tumors were com-
pletely flush with the background and that the tissue surface was level. This approximation will
not hold for real patient cases as tumors and healthy tissue have some degree of topography. To
address this, phase-shifted profilometry will be integrated into the SFDI workflow to correct for
irregular surfaces,41 in combination with Monte Carlo simulations of light propagation.32 Further
assessment of the optical properties and reproducibility of the phantom recipe is required.
Finally, only two phantoms were included here as an initial proof-of-concept demonstration,
but future work will include results from additional patient cases and investigate other fluoro-
phores of known quantum efficiencies.

One limitation of our approach is the assumption of a known fluorophore quantum effi-
ciency (η) to relate fluorescence yield (ημa;f) to concentration (μg∕mL). Although this is feasible
in a controlled laboratory setting (e.g., PpIX in a known solvent), in the in vivo setting, it is
known that PpIX η depends on unknown local environmental factors (e.g., pH, oxygen, and
temperature).39 In this case, it may only be possible to recover PpIX concentration estimates
within a linear scale factor of the known concentration, as previous authors have suggested for
PpIX fluorescence reconstruction.36 Future studies will be required to assess how quantum

Fig. 10 Phantom results from the CSH model trained with background fluorescence.
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efficiency variations affect depth and concentration estimates under more realistic conditions, not
only for PpIX but potentially for other NIR fluorophores that may exhibit different in vivo
behavior.

The exact depth at which DL estimates start to degrade due to the limited penetration of near-
infrared light is subject to more extensive evaluation. The simulation and phantom test cases
reported here were specific to nominal absorption coefficients (μa < 0.01 mm−1 at 632 nm),
showing <0.4-mm error for tumors with depth <1 cm. Additional testing is required across a
broader range of conditions, including cases with higher absorption coefficients. Certainly, accu-
rate depth estimation will not be feasible in reflectance mode for all oral cancers, particularly late-
stage cases with depths in the centimeters (e.g., T3 and T4).42 Nonetheless, although this paper
focused on depth quantification suitable for in vivo imaging of mucosal oral cancer tumors (i.e.,
“iceberg scenario” of depth to bottom tumor surface), in the future, this system will be applied to
quantify margin thickness of “inverted” tumors (i.e., “submarine scenario” of depth to top tumor
surface), in which depth quantification is required down to a 5-mm depth to confirm margin
status.11 For both in vivo and ex vivo scenarios, future pre-clinical experiments in animal models
with complex, heterogeneous optical properties and fluorophore distributions will be essential to
validate this technology under more realistic clinical conditions.
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