Deep-learning-based approaches to depth estimation are rapidly advancing, offering superior performance over existing methods. To estimate the depth in real-world scenarios, depth estimation models require the robustness of various noise environments. We propose a pyramid frequency network (PFN) with spatial attention residual refinement module (SARRM) to deal with the weak robustness of existing deep-learning methods. To reconstruct depth maps with accurate details, the SARRM constructs a residual fusion method with an attention mechanism to refine the blur depth. The frequency division strategy is designed, and the frequency pyramid network is developed to extract features from multiple frequency bands. With the frequency strategy, PFN achieves better visual accuracy than state-of-the-art methods in both indoor and outdoor scenes on Make3D, KITTI depth, and NYUv2 datasets. Additional experiments on the noisy NYUv2 dataset demonstrate that PFN is more reliable than existing deep-learning methods in high-noise scenes. |
ACCESS THE FULL ARTICLE
No SPIE Account? Create one
CITATIONS
Cited by 8 scholarly publications.
Data modeling
RGB color model
Model-based design
Feature extraction
Visualization
Network architectures
Performance modeling