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ABSTRACT. Purpose: The interpretation of image data plays a critical role during acute brain
stroke diagnosis, and promptly defining the requirement of a surgical intervention will
drastically impact the patient’s outcome. However, determining stroke lesions purely
from images can be a daunting task. Many studies proposed automatic segmentation
methods for brain stroke lesions from medical images in different modalities, though
heretofore results do not satisfy the requirements to be clinically reliable. We investi-
gate the segmentation of brain stroke lesions using a geometric deep learning model
that takes advantage of the intrinsic interconnected diffusion features in a set of multi-
modal inputs consisting of computer tomography (CT) perfusion parameters.

Approach: We propose a geometric deep learning model for the segmentation of
ischemic stroke brain lesions that employs spline convolutions and unpooling/
pooling operators on graphs to excerpt graph-structured features in a fully convolu-
tional network architecture. In addition, we seek to understand the underlying prin-
ciples governing the different components of our model. Accordingly, we structure
the experiments in two parts: an evaluation of different architecture hyperparameters
and a comparison with state-of-the-art methods.

Results: The ablation study shows that deeper layers obtain a higher Dice coeffi-
cient score (DCS) of up to 0.3654. Comparing different pooling and unpooling meth-
ods shows that the best performing unpooling method is the proportional approach,
yet it often smooths the segmentation border. Unpooling achieves segmentation
results more adapted to the lesion boundary corroborated with systematic lower val-
ues of Hausdorff distance. The model performs at the level of state-of-the-art models
without optimized training methods, such as augmentation or patches, with a DCS of
0.4553� 0.0031.

Conclusions: We proposed and evaluated an end-to-end trainable fully convolu-
tional graph network architecture using spline convolutional layers for the ischemic
stroke lesion prediction. We propose a model that employs graph-based operations
to predict acute stroke brain lesions from CT perfusion parameters. Our results prove
the feasibility of using geometric deep learning to solve segmentation problems, and
our model shows a better performance than other models evaluated. The proposed
model achieves improved metric values for the DCS metric, ranging from 8.61% to
69.05%, compared with other models trained under the same conditions. Next, we
compare different pooling and unpooling operations in relation to their segmentation
results, and we show that the model can produce segmentation outputs that adapt to
irregular segmentation boundaries when using simple heuristic unpooling operations.
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1 Introduction
In the emergency room, physicians use neuroimaging to assess changes in blood irrigation in the
brain and to define treatments.1 In particular, perfusion imaging is used to quantify the core and
penumbra of the lesion in ischemic stroke patients and hereby tailor the treatment decision based
on standardized procedures, as well as to predict effectiveness. Studies show that diffusion and
perfusion weighted imaging based on magnetic resonance (DWI-MRI and PWI-MRI) are highly
accurate methods for inferring the infarct core of the ischemic lesion.2–4 These techniques are
very sensitive to intracellular water shifts after cell depolarization; hence it is easy to identify the
core lesion.5 In practice, these scanners are often unavailable, or their acquisition time exceeds
the time frame to extend a diagnosis to the patient,6 and computer tomography (CT) methods
using contrast agents are preferred. Diagnosis using computer tomography perfusion (CTP) is
rated as of equivalent value in trial and medical practice;7 nonetheless, CTP imaging is
inherently more difficult to interpret because CTP is less sensitive to the small change in attenu-
ation caused by water uptake in the acute ischemic brain tissue. In addition, apparent diffusion
coefficient contrast increases linearly over time, and the image contrast changes at different
time points during the diagnosis time. We are interested in improving the image analysis
by making use of a graph neural network to automatically segment stroke lesions from
CTP-parameter maps.

Imaging is essential in modern medical practice among all different specializations, but its
analysis has many difficulties. Practitioners use them to assess the dimensions, structures, and
topology of internal organs to identify abnormalities and establish a medical treatment. Although
trained professionals can evaluate the patient’s condition from unprocessed images, the precise
delimitation of relevant components remains difficult and time consuming. Studies confirm that
there exists an intra- and inter-observer variability of manual segmentation that depends on the
complexity of the target structure.8–10 These discrepancies could be associated with the intrinsic
limitations of the cognitive processes in the human vision system.11 Moreover, in the case of a
stroke diagnosis, many highly debated factors make harder the estimation of final infarct lesions
for perfusion imaging methods. For example, reversal of the core and penumbra is sometimes
observed, albeit the reported results were regarded as non-clinically significant.12,13 The exten-
sion of collateral vascularization, genetics, and external stimuli (e.g., chronic hypoperfusion)
leads to changes in preliminary estimations of volumes mismatch estimations.6 Another factor,
the lack of standardized software for the calculation of stroke parameters encumbers the defi-
nition of an optimized threshold value to make a simple threshold segmentation.14–16 In addition,
the location of the ischemic stroke lesion affects the vulnerability of hypoperfusion and the out-
come of the treatment.15 All of these difficulties make the estimation of penumbra from CTP a
burdensome task, and a successful manual segmentation of stroke lesion from CTP images
depends greatly on the expertise and ability of the interpreter. As a result, in an ischemic stroke
diagnosis, manual segmentation is unpractical and prone to errors. In this regard, automated
segmentation methods demonstrated promising potential to support the diagnosis of stroke
patients.

In recent years, machine learning methods have been applied to solve the stroke lesion seg-
mentation from CTP images problem with improved, yet not perfect, results.17–19 In general, the
segmentation of brain structures from MRI or CT images is a difficult task and entails a con-
siderable number of problems. For example, training machine learning models requires large
amounts of data,20 but available datasets have only a few samples.10,21–23 Likewise, medical con-
ditions, such as tumors, oedemas, and other lesions, introduce other problems such as fuzzy
boundaries and have a high variance of shapes and locations.19,24,25 Additionally, imaging
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artifacts, different scanners/protocols, and anatomical variability (e.g., age and neurodegener-
ation) introduce contrast and intensity variations that also affect the stroke lesion datasets.26

Despite the success of convolutional neural networks (CNNs) in medical image analysis, in the
case of ischemic stroke, there are many issues not thoroughly solved,17 and it is an active research
area. Currently, the best solution is proposed in Ref. 27, which combines a generative model that
produces a pseudo-DWI from the CTP-parameters and an attention-based loss. Additionally,
other relevant solutions use U-Net on patches or 3D-convolutions in Refs. 28 and 29, respec-
tively. However, the domain of CNN is a Euclidean domain, i.e., pixel grids, meaning that the
structure of the features is limited by pixel position.30,31

An emerging field in deep learning denominated “geometric deep learning” proposes an
extension of CNN to non-Euclidean structured convolution, which allows for positioning of
inter-pixel features. Geometric deep learning has proven to successfully solve image classifica-
tion of natural 2D images using spectral and spatial non-Euclidean convolutions.32,33 In neuro-
science, graph neural networks have also been extensively used for the analysis of cortical
gyrification: modeling of anatomical features,34 cortical parcellation,35–38 and understanding
subtle topological dependencies in classification of functional MRI signals.39–41 Geometric deep
learning leverages non-Euclidean convolution on meshes preserving cortical brain topology.35

In image segmentation, geometric deep learning is used to address the loss of feature
localization.42–44 In a similar line to our proposed model, Juarez et al.43 and Lu et al.44 proposed
graph fully convolutional network (GFCN) and U-Net-graph, respectively, to leverage the node
connectivity but without using pooling operations. The absence of pooling introduces the dis-
advantage of increasing computational cost and memory footprint to process inputs. In addition,
the mentioned models are based on spectral convolution, which lacks directional information and
critical information to define the object boundaries.32 Our method differs from other graph
encoder–decoder models,44,45 as we use spline convolution and pooling operators, allowing
us to have different weights in different directions, thus extracting richer geometrical
information.

In this work, we defined a deep learning model with graph convolutional operations in an
encoder–decoder architecture for the task of segmentation of stroke lesions. To this end, we
propose an architecture for graph-structured data that resembles the fully convolutional network
(FCN),46 in which the convolution blocks are replaced with the spline convolutions proposed in
Ref. 32, and upsampling layers are an approximation of interpolation in graphs. We theorize that
a graph neural network could leverage from a more complex feature map and its capacity of
connecting inter-pixel information in different angles to detect the lesion more accurately.
We evaluated this by inferring the internal functionality of a graph-based CNN on the segmen-
tation masks generated by our algorithm. The inputs to our model are non-contrast CT and
CTP-parameters from the ischemic stroke lesion segmentation 2018 (ISLES2018) challenge
dataset.47,48 We specifically study the flaws and benefits of using a geometric deep learning
algorithm to predict ischemic tissue from CT-perfusion parameters and non-contrast CT in the
ISLES2018 dataset.47,48 The ground truth corresponds to the core lesion; thus the model predicts
irreversible lesion tissue probability. The model is trained under different configurations to
extrapolate the internal processes of the model in correspondence to its hyperparameters. We
compare the model against the reported results of Refs. 27–29. In addition, we train and compare
the results of a U-Net,49 FCN-8s,46 and PointNet++.50

In summary, the contributions of this work are as follows.

• An end-to-end deep learning segmentation model for graph represented images using
spline convolution layers is proposed.

• A comparison of the proposed GFCN and other methods in the literature for the prediction
of acute stroke lesion in the ISLES2018 dataset challenge is given.

In Secs. 2.2 and 2.1, we discuss the dataset, preprocessing, evaluations approaches, and
model architecture. In Sec. 3, we present the results of the ablation study to understand the
function of different components of our algorithm. In addition, we unfold the results of the com-
parison of our model against the mentioned models. Finally, in Secs. 4 and 5, we discuss and
present our conclusions.
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2 Materials and Methods
In this section, we describe the network architecture in terms of the different depth configurations
and the pooling and unpooling methods used. Next, we present the dataset, preprocessing, and
evaluations approaches that were developed.

2.1 Network Architecture
The model used in this work has a similar architecture to the FCN in Ref. 46. We consider three
variants, FCN-32s, FCN-16s, and FCN-8s, which differ in the way that skip connections are
added to the upsampling path. The FCN-32s requires a 32× upsampling after five pooling layers
of half-steps. The FCN-16s uses skip connections fusing features from previous layers by
element-wise addition and requires a 16× upsampling because the output comes from four pool-
ing layers of half-steps. Similarly, the FCN-8s uses a two-skip connection, so the output requires
a 8× upsampling step, here the final output comes after three pooling layers of half-steps. In
general, the FCN is built from local operations: convolution, pooling, and deconvolution.
The deconvolution reconstructs a fine pixel a representation out of a coarser pixel structure.
Subsequently, the network is divided into two parts: the downsampling path and the upsampling
path.

• The downsampling path extends the receptive fields, increasing the contextual information
in the next convolution layer; this is accomplished by the pooling layer. In the Euclidean
case, the pooling uniformly reduces the pixel indices, increasing the receptive fields for the
next convolutional layers. Conversely, in the case of the graph model, the pooling reduces
the number of nodes and alters the topology of the network to a coarser and non-uniform
grid. In our case, the coarsening is applied after every two concatenated convolutional
layers. Each convolutional block doubles the feature dimensionality.

• The upsampling path redistributes the features to their previous location and recovers the
initial node topology. The number of skip connections defines three variants of the FCN.
The skip connections transfer local information to the forward layers by summing the pre-
viously generated features to the upsampled outputs; this helps to bring contextual infor-
mation and to define the location of objects.

The FCN architectures are implemented using equivalent graph-based components, namely
spline convolution filters,32 graph-based pooling operators, and two graph-based unpooling
operators, described in Sec. 2.1. Figure 1 shows the FCN-8s variant of the FCN with graph
operations. These variants are denoted GFCN.

• GFCN-32s. In this architecture, upsampling is built forward, reverting the coarsening
operations without any skip connection.

• GFCN-16s. In this architecture, upsampling sums the output from the second pooling with
graph topology V2 to the upsampled transformation from the layer of the last downsam-
pling path. Next, a direct upsampling to the input topology V0 is applied.

• GFCN-8s. This architecture upsamples the prediction in three steps. In the first step, the
unpooling is performed on the output of the last layer of the downsampling path, i.e., the
pooling topology V4. Next, it processes the sum of the last result and pooling topology V3.

Fig. 1 Direct graph of the GFCN-8s architercture. The notation i ;V j represents a graph topology
level j with i feature channels.
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Finally, it makes the double unpooling of the sum of the last result and the pooling topology
V2 to the input topology V0.

The argument to use upsampling operators has the same meaning as in the Euclidean
domain, where upsampling allows for recovering the initial dimensionality of the input and cre-
ating the segmentation map. In the case of the GFCN, the downsampling path and upsampling
path have a non-uniform field of view expansions and contractions, which might help with the
problem of insufficient localization of long-range features in the standard Euclidean CNNs as
described in Ref. 51. This is also implemented in Ref. 45, though we explore two different ways
to recover the features: the first approach simply copies the values to the neighbor nodes and the
second approach distributes the values proportionally to their feature value in previous pooling
topologies. The latter looks for having a perfect reconstruction of the previous feature space.
However, proportional unpooling will be an approximation because we employ a max function
as aggregation in the pooling layer, and a perfect reconstruction will only have an effect if aver-
age pooling was used. We decide on maxpooling because average pooling introduced vanishing
gradients during training in our preliminary experiments; we do not report any results of those
experiments in this manuscript.

2.1.1 Pooling operators

The pooling layer reduces the number of nodes aggregating sets of similar nodes and applying a
symmetry invariant operator, in this case, the max operator. Therefore, the pooling operation in
layer l is done in two steps: first, a clustering forms a subset Vci ⊆ Vl and the second step aggre-
gates them with the max operator maxðVciÞ to form the feature of the node vi ∈ Vlþ1 in the next
layer. We explore three pooling approaches (i) the Top-k pooling,45 (ii) the radius clustering of
points selected by the farthest point sampling algorithm as in Ref. 50, and (iii) finally the Graclus
algorithm.52

2.1.2 Unpooling operators

The unpooling operators restore the previous graph topology. We propose two approaches: the
isotropic operator and the “proportional unpooling operator.” As a benchmark, we also use the
KNN unpooling operator from Ref. 50, which computes the weighted sum of K neighbor nodes
in the current layer to the node in the next layer. The weights are inversely proportional to the
square distance of the nodes.

The “isotropic unpooling operator” copies the features in the positions of the previous nodes
vi ∈ Vci that were aggregated into the target node v 0

i ∈ Vl; this is shown in Fig. 2, where the

(a) (b)

Fig. 2 Representation of the unpooling approaches isotropic and proportional. (a) Isotropic
approach. The features are copied to the position of the vertices that were aggregated into v 0

i ,
namely the set Vci ¼ fv1; v2; v3; v4; v5; v6g. (b) Proportional unpooling operation. The features
are weighted by a factor pi for i ∈ ½1;5� to the position of the vertices that were aggregated into v 0

i ,
namely the set Vci ¼ fv1; v2; v3; v4; v5g.
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values from the target node topology v 0
i ∈ Vl in layer l are copied to the position of the nodes

vi ∈ Vlþ1 of the next layer. For that, we store the pooling assignment Vci for node vi ∈ Vl in the
target topology, where Vci ⊆ Vl−1 ≡ Vlþ1; hence we write

EQ-TARGET;temp:intralink-;e001;114;698v 0
i ¼ vi ∀ v 0

i ∈ Vci : (1)

The proportional unpooling operator applies a factor pi that weights the feature propagation
proportional to the sum of all members of the cluster Vci ; then the propagation is written as

EQ-TARGET;temp:intralink-;e002;114;648v 0
i ¼ pi vi ∀ v 0

i ∈ Vci with pi ¼
viP

vj∈Vci

vj
: (2)

The operations are computed without calculating the gradient of the weights pi to reduce the
GPU memory, and the gradient is preserved in the upsampled node v 0

i , i.e., pi is independent of
the weights.

2.2 Data and Preprocessing

2.2.1 ISLES2018 dataset

We use the dataset from the challenge for stroke lesion segmentation, ISLES2018, which consists
of CTP images within 8 h after the stroke episode, and a DWI within 3 h after the CTP was
performed. The dataset consists of the perfusion parameter maps: cerebral blood flow, cerebral
blood volume, mean transit time, and time to peak (Tmax). The original partition has 94 samples
for training with mask information and 63 samples for testing without mask information. In the
comparison experiments, we use a 3:1 rate training and testing cross-validation scheme out of the
94 cases with a mask. The training set in the cross validation is additionally split into a 9:1 rate for
unbiased best model selection. Thereby, the final dataset splits use 65 cases for training, 6 for
validation, and 23 for testing.

2.2.2 Preprocessing

Preprocessing is considered a critical step in training the model. We use as inputs the structural
CT and the CTP parameters, as well as a min–max instance normalization in each volume in a
similar line as in Ref. 53. In the case of the CT, we enhance the contrast of the brain using a mask
on the non-zero values of the sum of the CTP-parameters for each sample, in a similar way as in
Ref. 28. No augmentation method was employed.

2.2.3 Evaluation

We train the networks in the ablation study for 100 epochs equivalent to 4500 optimization steps
with a batch of 4. We train most cases with different learning rates to ensure convergence, with
the exception of variations of model architectures in which the learning rate was kept constant, as
we want to evaluate the convergence speed due to the increment of features or the placement of
the batch normalization layer. The training is done in a GEFORCE RTX 2080 TI with 11 GB of
memory, an Intel® Xeon® CPU E5-2665 0 at 2.40 GHz, and 124 GB of RAM. The qualitative
analysis considers the calculation of the Dice coefficient score (DCS):

EQ-TARGET;temp:intralink-;e003;114;193DCS ¼ 2TP

2TPþ TNþ FN
; (3)

where TP, TN, and FN stand for the cardinality of the sets of true positive, true negative, and false

negative voxel sets corresponding to a given segmentation Ŷ with respect to a ground truth Y. In
addition, the Hausdorff distance (HD), recall, precision, and coefficient of determination (COD)
are computed:

EQ-TARGET;temp:intralink-;e004;114;109HDðY; ŶÞ ¼ max

�
sup
y∈Y

ky; Ŷk; sup
ŷ∈Ŷ

kŷ; Yk
�
; (4)
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EQ-TARGET;temp:intralink-;e005;117;724recall ¼ TP

TPþ FN
; (5)

EQ-TARGET;temp:intralink-;e006;117;696precision ¼ TP

TPþ FP
; (6)

EQ-TARGET;temp:intralink-;e007;117;667COD ¼ 1 −
P ðŷ − yÞ2P ðŷ − E½y�Þ2 : (7)

The models are trained under a fourfold cross-validation regime with splits for training,
validation, and testing of 65, 6, and 23, respectively. The best model trained in the training set
is selected using the validation set, and the metrics reported correspond to the unseen samples on
the testing set. The significance of comparisons is done with a pair t-student test on the test-
ing set.

We compute the metrics DCS, accuracy, recall, precision, HD, and COD on average for
every slice in the validation set after each epoch. The calculation is done in a sample-wise man-
ner, meaning that the values are averaged over all slices in one batch and then averaged on the
whole dataset. These values were relatively small because using 2D slices makes some of them
have a mask of zero, which makes the values drop. We cope with this by calculating the evalu-
ation metrics at the end of the training in the testing set in a case-wise (volume-wise) manner, i.e.,
we consider all of the voxels of a corresponding case volume in the dataset and then average these
values for all cases in the dataset.

3 Results
We structured our study in two parts. First, we made a component evaluation in which we inves-
tigated different elements of our model and the correlation with the segmentation results. The
second part of the study compared the performance of our model against other representative
deep learning methods in the literature.

3.1 Ablation Study: Understanding Model Components
We have three degrees of freedom in the design of the model: (i) the architecture variants with
different depths, i.e., 32s, 16s, and 8s; (ii) the unpooling operators, proportional and isotropic;
and (iii) the pooling operators, Top-k, and Graclus. Therefore, the first experiments aim to find
which is the best architecture and which is the best pooling and unpooling operators combination
for the proposed GFCN model. Accordingly, the evaluation procedures are divided into two
parts. The first part deals with the architecture configuration question and the second with the
pooling and unpooling question, as described below.

3.1.1 Model architectures: down-sampling depth, batch normalization, and
skip connections

The first experiment compares the model architectures GFCN-8s, GFCN-16s, and GFCN-32s by
training on the ISLES2018 challenge dataset (cf., 2.2) over 100 epochs with a constant learning
rate of 1 × 10−6 with soft-Dice-loss as the optimization criterion.54 The training performance of
the three models is compared using the same pooling and unpooling methods for all trials. We
used Graclus pooling and isotropic unpooling. In addition, we investigate the placement of a
batch normalization layer before and after the activation layer.55

The results in Table 1 show the performance metrics on the testing set, in which the best
performing architecture is the GFCN-8s that uses batch normalization before the activation func-
tions. The GFCN-16s shows lower performance than the GFCN-8s, which suggests that a deeper
initial convolutional layer is necessary to extract better descriptors. In addition, comparing the
GFCN-32s and the GFCN-16s cues the positive effect of skip connections. The GFCN-16s uses a
skip connection from the pool-score of the V3 graph topology, whereas the GFCN-32s is devoid
of forwarding loops. We observe this effect as much for pre-batch normalization (pre-BN) as for
post-batch normalization (post-BN).
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Figure 3 shows that the three architectures continue improving after 100 epochs; still, the
GFCN-8s with deeper initial feature extraction improves more quickly than the other two archi-
tectures. Regardless of the post-BN starting at a higher value than the pre-BN, the velocity of
convergence increases in the pre-BN case. This is consistent across the architecture variations,
though the difference increases with a deeper architecture. For example, this can be observed by
comparing the differences between pre-BN and post-BN in the GFCN-8s or GFCN-32s.

3.1.2 Pooling and unpooling methods

The second experiment compares the pooling and unpooling methods. The model architecture
used is the GFCN-8s trained from scratch on the ISLES2018 dataset for 100 epochs with early
stopping. Again, the learning rate is constant. We collect the metrics after each epoch sample-
wise, and at the end of the training, we evaluate volume-wise on the 23 testing samples. We
defined four variants of the models that combine compatible operators, i.e., for pooling:
Graclus and Top-k;45 and for unpooling: isotropic, proportional, and k-NN interpolation of
Ref. 50. The isotropic and proportional unpooling employ the Graclus pooling layers, as detailed
in Sec. 2.1; and in the case of the Top-k, it uses the k-NN interpolation as the pooling method.
Finally, we included one model that uses no pooling operators. This adds up to four models
studied in this experiment: isotropic, proportional, Top-k, and no-pooling.

The results presented in Table 2 show the performance metrics of four variants of pooling
and unpooling layers for a fixed architecture GFCN-8s. We observe that performance of the
isotropic and proportional upsampling remains in a similar range. In all trials, the HD is lower
for the isotropic pooling than for the proportional pooling (2.04% < 5.0% p-value). This is con-
sistent with what is shown in Fig. 4, where the boundaries obtained with the isotropic are closer
to the ground truth, though segmentation probabilities are smoother in the proportional upsam-
pling. It is worth noting that the isotropic approach is less computationally expensive than the
other approaches, which translates into less training time. Top-k and no pooling generally have
better metrics than the proposed upsampling methods but considerably less sensitivity
(0.43% < 1.0% p-value).

3.2 Performance Comparison with Other Methods
In the second part of the experiments, we contrast the proposed model with existing models for
semantic segmentation. Consequently, we train various models in the literature from scratch

Table 1 Comparison of model architectures on the ISLES2018 challenge dataset for segmenta-
tion of ischemic stoke lesions. Metric calculated per volume in average for 23 testing samples.

Arch. DCS Accuracy Precision Recall HD COD

Pre-BN

GFCN-32s 0.2543
±0.0001

0.9186
±0.0004

0.1652
±0.0001

0.8839
±0.0013

100.5624
±62.9937

−31.7704
±218.3604

GFCN-16s 0.2827
±0.0001

0.9350
±0.0001

0.1911
±0.0001

0.8388
±0.0014

98.8227
±79.5752

−22.2204
±149.2124

GFCN-8s 0.3962
±0.0012

0.9749
±0.0001

0.3583
±0.0035

0.6363
±0.0190

73.2866
±123.5770

−3.6425
±0.7375

Post-BN

GFCN-32s 0.1979
±0.0003

0.8762
±0.0009

0.1222
±0.0002

0.9350
±0.0009

104.9627
±42.9018

−38.6241
±303.6866

GFCN-16s 0.2700
±0.0001

0.9300
±0.0002

0.1818
±0.0001

0.8308
±0.0035

99.8393
±60.0495

−22.1760
±115.7197

GFCN-8s 0.3654
±0.0005

0.9697
±0.0001

0.3069
±0.0012

0.6473
±0.0055

80.2424
±69.8212

−5.8978
±7.6697

Best performance in bold.
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Table 2 Upsampling methods comparison on the ISLES2018 challenge dataset. Isotropic stands
for the isotropic unpooling operator. Proportional stands for the proportional unpooling operator.
Comparisons of fixed GFCN-8s architecture with batch normalization before activation, trained
over 100 epochs.

Unpooling DCS Accuracy Precision Recall HD COD

Isotopic 0.3962
±0.0012

0.9749
±0.0001

0.3583
±0.0035

0.6363
±0.0190

73.2866
±123.5770

−3.6425
±0.7375

Proportional 0.4137
±0.0041

0.9713
±0.0001

0.3276
±0.0068

0.7907
±0.0060

101.0747
±90.2888

−17.2369
±75.5638

Top-k 0.3432
±0.0034

0.9833
±0.0000

0.4563
±0.0066

0.3855
±0.0255

60.1466
±228.9974

−0.8958
±0.3723

No-pooling 0.4123
±0.0022

0.9808
±0.0000

0.4157
±0.0039

0.5512
±0.0144

76.0657
±124.6328

−1.7695
±1.3348

Best performances in bold.

Fig. 3 Validation metrics (DCS, precision, recall, HD, and COD) per epoch for the ISLES2018
challenge dataset comparing the GFCN architectures (a) GFCN-32s, (b) GFCN-16s, and
(c) GFCN-8s ordered by columns. Metrics calculated in a sample-wise manner in the validation
set (six samples, being a sample 3D volumes with many 2D slices). Lines: blue avg. (pre-BN)
correspond to average metrics using pre-batch normalization; and orange avg. (post-BN) corre-
spond to average metrics using post-batch normalization. The areas: pink 95%CI (pre-BN) cor-
respond to 95% confidence intervals for metrics using pre-batch normalization; and green 95%CI
(post-BN) correspond to 95% confidence intervals for metrics using post-batch normalization.
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using the same inputs as we use for the proposed model, namely the FCN-8s,46 U-Net,49 and
PointNet++.50

The evaluation is done with fourfold cross validation in the ISLES2018 dataset with the
same splits as the one for the GFCN-8s. In all experiments, the models are trained for a maximum
of 300 epochs with early stopping to avoid overfitting. The learning rate is reduced after 100
epochs by a factor of 10. We train the models using an Adam optimizer and a soft Dice loss.54

The proposed model, denominated GFCN-8s, uses Graclus pooling and isotropic upsampling
layers.

The results in Table 3 showed better metrics for the GFCN-8s compared with the other
models trained under the same configuration. FCN-8s has the second best values among these
four models. It is worth noticing that the used FCN-8s model is not exactly the model from
Ref. 46 but a simplification with a similar architecture to the GFCN-8s. This was adopted
because the low number of training samples would be insufficient to train all weights in the
original configuration. In the case of the U-Net, we use a bilinear interpolation layer for the
upsampling instead of a learnable deconvolution layer, but we include batch normalization.
Despite these differences, we preserve the original U-Net architecture in Ref. 49. Finally, in the
case of the Pointnet++, we employ the same configuration described in the original work.50

Table 3 Comparison of segmentation models on the ISLES2018 challenge dataset. 2D-ARED
stands for 2D asymmetric residual encoder–decoder from Ref. 28. COD and accuracy are not
reported in Refs. 29, 28, and 27 in the original papers, as well as the dataset partitions. We simply
exclude these values in the comparison.

Approach DCS Accuracy Precision Recall HD COD

U-Net 0.3821
±0.0000

0.9456
±0.0070

0.3631
±0.0146

0.3833
±0.0142

87.3667
±1270.2201

−13.6742
±36.8269

FCN-8s 0.4177
±0.0007

0.9816
±0.0000

0.4731
±0.0159

0.4079
±0.0025

54.8429
±28.9919

−1.9943
±4.9677

PointNet++ 0.2216
±0.0007

0.9630
±0.0016

0.3011
±0.0276

0.2728
±0.0056

89.8277
±646.9835

−2.9903
±23.6567

GFCN-8s (ours) 0.4553
±0.0031

0.9864
±0.000

0.4916
±0.0007

0.4447
±0.0130

62.3893
±13.0795

−1.5305
±0.8267

3D U-Net29 0.5144 — 0.4737 0.7065 34.7591 —

2D-ARED28 0.5470
±0.242

— 0.578
±0.291

0.609
±0.25

23.5 ±15.8 0.82

SLNet27 0.6211
±0.1718

— 0.6197
±0.2198

0.6952
±0.1789

19.27 ±15.05 —

Fig. 4 Segmentation contour results for the ISLES2018 challenge dataset comparing (a) upsam-
pling operations isotropic, (b) proportional, (c) Top-k, and (d) no-pooling. The ground truth is in
green, and the segmentation probability with a threshold of 0.5 is in yellow.
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In addition, we append the results reported in Ref. 27 on the SLNet, a 2D-patch-based U-Net
presented in Ref. 28, and the 2018 winner algorithm with a 3D U-Net reported in Ref. 29 as
reference. Comparing the GFCN-8s against the external models, we notice that a considerable
difference exists in the metrics unfavorable to our model, which is especially important in DCS
and HD. Notice that the models reported in these external references are extensively optimized
and employ complex feature extraction pipelines, special arrangements of convolutional layers
and/or advanced augmentation methods. We stay in a simple input configuration and employ no
augmentation methods because we are solely interested in understanding the process of graph
CNNs for detecting stroke lesions.

Figure 5 shows a comparison of the segmentation boundaries for the trained models. The
PointNet++, despite being able to successfully capture small structures, has several regions of
false positives and therefore has the lowest average accuracy. Comparing the FCN-8s and U-Net,
we notice that a deeper model will require more samples to train and refine the prediction as the
U-Net successfully localizes the lesion but fails to correctly define the boundaries. The U-Net
tends to produce fewer false positives, but it is less sensitive. On the other hand, the results of the
FCN-8s are similar to the proportional unpooling from the previous experiment. The FCN-8s
extracts smooth probability maps, as depicted in Fig. 5, but the prediction misses reaching the
edges of the lesion. In contrast, GFCN-8s has a very flexible prediction output, and regardless of
having a lower precision, compared with additional external models, it has the best average met-
ric values among the models that we trained.

Figure 6 shows the distribution of metric values calculated volume-wise and stratified into
three categories according to the lesion’s volume, namely small, medium, and large lesion sizes.
The sets are constructed from the distribution of the number of lesion voxels per scan split into
three evenly distributed groups using a quantifier discrete cut. We observe that the PointNet++ is
able to collect a higher number of lesion masks consistently along with the distribution of sizes,
which leads to high recall values, yet it has the lowest precision values. The proposed GFCN-8s
scores higher values compared with the other models trained. A trend of the lesion size in which
smaller lesions have worse values than bigger lesions is also noticeable. This is consistent in all of
the trained models.

Fig. 5 Comparison of segmentation mask generated with 0.5 probability threshold for models
trained in the ISLES2018 challenge dataset, namely (a) U-Net, (b) FCN-8s, (c) PointNet++, and
(d) GFCN-8s. The contour lines of the mask are in yellow, and the ground truth segmentation mask
is in green.

Fig. 6 Comparison of the distribution of metric values along lesion size volume percentage.
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4 Discussion
Our study focuses on identifying the relevance of GFCN in solving the segmentation problem of
acute ischemic stroke lesion prediction and investigating the behavior of its components con-
cerning the segmentation results. In this section, we analyze the results concerning the evaluation
of different model architectures based on the number of convolutional blocks, pooling/unpooling
operations, and batch normalization. In addition, this section also covers the comparison with
selected methods trained under the same regime and state-of-the-art methods.27–29 This section
discusses, in particular, the significance and limitations of the experiments, as well as points out
recommendations for future research.

4.1 Understanding Model Components

4.1.1 Feature extraction and perception filters

Including more convolutional blocks in the downsampling path improves the feature extraction
and as a consequence the segmentation results. In the early days of deep learning, Jia et al.56

showed that spatial pooling allows for constructing overall semantics from the low-level features
in analogy to the biological mechanics of the mammalian visual cortex.57 Moreover, images
subject to inner and outer scale information exhibit the property of being invariant to small spatial
shifts.58 Research suggests that in CNNs this property comes from the denominated upscaled
receptive fields.59 The coarsening of the output of a convolutional layer expands the receptive
field by a factor equal to the stride, as explained in the FCN original work.46 Further, the pooling
factors allow for effectively calculating gradients when the receptive fields overlap. Therefore,
the model with a deeper downsampling path has faster improvements and better metric values on
their prediction values due to their increased receptive fields.

From the analysis, it is difficult to unequivocally identify the feature propagation across
nodes. However, the irregular and close adaptation to the edges of lesions might suggest a flex-
ible feature projection, yet we do not provide enough evidence to support this. Further research
should be conducted exploring the perception fields and activation maps as in Refs. 60 and 61.

4.1.2 Pooling and unpooling methods

Different pooling and unpooling approaches lead to vast differences in the segmentation results.
This is shown in the differences in metric values as well as segmentation boundaries with and
without pooling operations. Albeit the results obtained with the model “without pooling (no-
pooling)” have smooth boundaries and by itself the spline CNN allows for extracting local infor-
mation, the perception field does not change, which led to diminished performance. In Ref. 34,
their model also used a spline CNN convolution layer and no pooling, so they also showed that it
is possible to obtain good results. However, we found that the model was more difficult to train
due to the high computational requirements during the calculation of gradients. Therefore, we
show that pooling plays a major role and it is important to efficiently compute the predictions.

Simple heuristic upsampling approaches, such as the isotropic or proportional upsampling,
which are independent of the gradient of the model, obtain comparable results to optimized
approaches with fewer complications during training. For example, considering the case of the
denominated Top-k model, we found that it is rather unstable and prone to vanishing gradients.
This problem might be due to the dependence of gradients and the inline optimization of neigh-
bors. In fact, the learnable projection of the Top-k pooling voids the pixel location conversely to
the classical 2D pooling scheme; though, to some degree, this might be compensated by the
spline-CNN, the optimization remains difficult. In the original work,45 this is not an issue because
the local information is not relevant for their problem. As a result, we might expect that heuristic
upsampling can reach a more stable and efficient optimization in other segmentation problems.

4.1.3 Batch normalization

As expected, the placement of batch normalization before the activation function evinced a faster
optimization curve than placing it after the activation function; this is shown in Fig. 3 and Table 1,
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where the batch normalization placement effect was compared. Thereby, the position of normali-
zation in graph networks is consistent with what is stated in Ref. 55 as anticipated. This might
imply that, by placing the batch normalization before the activation, different neurons will activate
due to a change of sign induced by the non-linearity during the training. By contrast, by placing
the batch normalization after the activation, the first and second momenta will not affect the sign.
Therefore, it can be inferred that the output of the spline-convolutions have a symmetric non-
sparse distribution as with the Euclidean case, as stated in Ref. 55.

As a limitation, it is worth mentioning that, by comparing the different architecture configu-
rations, the results shown in Fig. 3 are not at the end of the optimization. We aimed to compare the
convergence with a simplified hyperparameter configuration; therefore, we fixed the learning rate
and optimization steps. However, this does not void the results shown in Table 1 because the
optimization curvature will normally tend to reduce and we should not expect major changes
in the optimization trends. In addition, due to the high dimension of the feature spaces, the top-
ology of the optimization will not differ substantially as distances are small.62 Further, the models
start at the exact same optimization points as shown in Fig. 3.

4.2 Comparing GFCN with Other Methods
Smaller lesions present a more difficult challenge than bigger lesions. The analysis of the dis-
tribution of metrics by size revealed that samples with medium and large sizes have better metric
values than smaller samples, which is consistent with what is reported in the literature.19 This
might be explained by the fact that small size lesions are associated with class imbalance. Small
lesion size has somehow blended with the background inherited by the CT acquisition and res-
olution limitations, reported in Refs. 53 and 63. Smaller lesions will tend to blend with the back-
ground signal surrounding the lesion itself.

The GFCN obtained lower metrics compared with state-of-the-art models,27–29 with absolute
differences for the DCS metric ranging from 12.18% to 30.80%. It is probable that the proposed
model would reach comparable metric values in a more optimized input setup. On the other hand,
the GFCN obtained better metrics than the models trained under the same conditions, with abso-
lute differences for the DCS metric ranging from 8.61% to 69.05%. The difference between the
results of U-Net and FCN-8s is in line with research showing that big models require large
amounts of data.25,64 Therefore, the surprisingly low metric values for the U-Net compared with
the FCN-8s might be explained by the simple input and training setup adopted, as the training of
bigger models require augmentation.20,65 Despite this fact, the comparison is still valid as we
wanted to keep the same simplified training environment. As an outlook, a way to cope with
the low number of samples could be to use a patch-wise training approach as in Ref. 28 or the
generative model approach as in Ref. 27.

4.3 Medical Implications
The similar behavior of our model in the results of lesion size stratification suggests that our
model would obtain similar salient and activation maps as a standard U-Net, and thus we could
extrapolate the results of Ref. 31; even so, further study is required to understand these maps with
the graph layers of our model. In medical practice, the volume of the lesion can be calculated
from the segmentation output of our model, although it is possible that the model will overlook
small lesions. An explanation for this can be found in Ref. 31, where bigger lesions generate a
larger response in the neural network than small lesions, which implies that these small volumes
get lost in signals through the layers of the network.

The studies66–68 prove the diagnostic power of penumbra regions extracted from CT per-
fusion and CTP-parameters in correlation with scored studies, such as Alberta Stroke Program
Early CT Score, National Institutes of Health Stroke Scale, or modified Rankin Scale. The same
outputs can be rapidly predicted for new unseen CTP inputs with up to 0.4553 DCS because the
most time-consuming and complex process of training the model is completed at this time point.
Patients will require a non-contrast CT and CTP, with the calculation of the CTP-parameters. The
volumes require a simple min–max normalization calculated directly for each volume at a low
computational cost.

In addition, the proposed model is useful in the assessment of penumbra in cases in which
the onset time is undefined in line with the findings in Refs. 69 and 67. It is shown that the
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determination of penumbra allows for assessing the neurological deficit and infarctic volume in
patients for which the time of stroke intake is unknown. Other studies have shown that, by meas-
uring the size of the penumbra and computing the core/penumbra rate, it is possible to identify
candidate patients for rtPA perfusion within the 6 h window upon stroke intake as it is demon-
strated that these patients might have an improved outcome compared with placebo patients.
Therefore, the proposed model in combination with the regression models proposed in
Ref. 67 could potentially allow for predicting, for example, the NIHSS at 7 days after admission.

5 Conclusions
In this study, we focused on understanding the principles governing a graph-based FCN to esti-
mate irreversible brain stroke lesions and to see how they differ from classical Euclidean models.
Based on the ablation experiments, we observed changes in the results with deeper networks, in
which more convolutional blocks enhanced the segmentation results. Furthermore, an overall
view of the segmentation results showed that feature propagation in the reception fields devel-
oped into an irregular and closer adaptation to the edges of the lesion, evincing the effect of inter-
pixel features. With regard to the different pooling and unpooling approaches used, we noticed
that they lead to visible differences in the segmentation results (cf., Fig. 4), where simple heu-
ristic approaches allow for fewer features and therefore less computation. In general, the model
could be used in medical practice, but it will overlook small lesions. In comparison with other
methods, we found that smaller lesions were more difficult to identify than bigger lesions, which
is consistent with the literature. The evaluation of our model against models trained in the same
regime showed that our model performed better for the metrics reported; for example, in the case
of the DCS metric, we obtained improvements ranging from 8.61% to 69.05%. However, the
training approach can be improved by changing the inputs to precomputed DWI from generative
models as in Ref. 27 or using patch-wise training as in Ref. 28. Moreover, it might be advanta-
geous to restructure the proposed architecture, for example, to introduce a learnable deconvo-
lution as in Refs. 70 and 71. In addition, further visualization methods, such as activation maps or
salient maps as in Refs. 39 and 61, could help to understand better the internal process of the
model. The activation maps are particularly important for validating and assessing prediction in
medical applications.72–74 In addition, they could shed some light on characteristics of the feature
propagation across the field of view within the layers of the GFCN.75–77
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