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Abstract

Purpose: Contouring Collaborative for Consensus in Radiation Oncology (C3RO) is a crowd-
sourced challenge engaging radiation oncologists across various expertise levels in segmenta-
tion. An obstacle to artificial intelligence (AI) development is the paucity of multiexpert datasets;
consequently, we sought to characterize whether aggregate segmentations generated from multi-
ple nonexperts could meet or exceed recognized expert agreement.

Approach: Participants who contoured ≥1 region of interest (ROI) for the breast, sarcoma, head
and neck (H&N), gynecologic (GYN), or gastrointestinal (GI) cases were identified as a non-
expert or recognized expert. Cohort-specific ROIs were combined into single simultaneous truth
and performance level estimation (STAPLE) consensus segmentations. STAPLEnonexpert ROIs
were evaluated against STAPLEexpert contours using Dice similarity coefficient (DSC). The
expert interobserver DSC (IODSCexpert) was calculated as an acceptability threshold between
STAPLEnonexpert and STAPLEexpert. To determine the number of nonexperts required to match
the IODSCexpert for each ROI, a single consensus contour was generated using variable numbers
of nonexperts and then compared to the IODSCexpert.

Results: For all cases, the DSC values for STAPLEnonexpert versus STAPLEexpert were higher
than comparator expert IODSCexpert for most ROIs. The minimum number of nonexpert seg-
mentations needed for a consensus ROI to achieve IODSCexpert acceptability criteria ranged
between 2 and 4 for breast, 3 and 5 for sarcoma, 3 and 5 for H&N, 3 and 5 for GYN, and
3 for GI.

Conclusions: Multiple nonexpert-generated consensus ROIs met or exceeded expert-derived
acceptability thresholds. Five nonexperts could potentially generate consensus segmentations
for most ROIs with performance approximating experts, suggesting nonexpert segmentations
as feasible cost-effective AI inputs.
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1 Introduction

Contouring, also referred to as delineation or segmentation, of regions of interest (ROIs) on
medical images is a crucial aspect of radiation treatment planning and has been reported as
the largest single source of systematic uncertainty in radiotherapy,1 especially in the sense
that, intrinsically, there is often no “ground truth” for absolute determination of patient-
specific segmentation accuracy.2 Manual definition and annotation of target volumes and
organs-at-risk (OARs) is subject to considerable interobserver variability, even among
experts,3,4 leading to inconsistent contour quality,5,6 which has been correlated with disease
control decrement and increased toxicity.7–9 Efforts to reduce manual segmentation variation
have included consensus guidelines,10,11 which generally include a benchmark “gold stan-
dard” contour curated by one expert for clinical use or through a single simultaneous truth
and performance level estimation (STAPLE)-consensus derived by an interdisciplinary expert
panel.2 Several studies have demonstrated that the use of contouring atlases can reduce varia-
tion in contouring12–16 but use is limited in routine practice. More recently, Zhang et al.17

showed the addition of a radiation anatomist could also reduce contour variation, but these
efforts are still exploratory.

Autosegmentation, broadly defined as the automated generation of contours on a digital
image by a computer algorithm, has emerged as an avenue to decrease contour variability and
thereby improve standardization. Although automated contouring methods are evolving, a sig-
nificant challenge in the development of autosegmentation algorithms is the relative paucity of
curated multiexpert observer datasets sufficiently large to train machine learning models, e.g.,
deep learning approaches.18 This is particularly true for disease sites, such as the head and neck
(H&N), which have demonstrated high interobserver segmentation variability.19,20

As such, our team developed the Contouring Collaborative for Consensus in Radiation
Oncology (C3RO), the first public crowdsourced challenge to engage radiation oncologists
across various expertise levels in cloud-based image-segmentation in multiple disease sites.
We sought to: (1) characterize the variability in radiation oncology segmentation performance
across multiple levels of expertise, (2) determine whether aggregate or “composite” segmenta-
tions generated from nonexperts could meet or exceed individual expert performance accept-
ability, and (3) examine the performance dynamics of consensus segmentation generation
using a variable number of nonexperts required to generate acceptable segmentation priors.
An overview of our study is shown in Fig. 1.

2 Materials and Methods

2.1 Study Design

C3RO, initially launched in August 2021, is an online crowdsourced challenge inviting radiation
oncologists around the world to contour a new case every 2 months. At the end of each case,
participants who have completed at least one contour are eligible to win a gift card and have access
to: (1) the contours of recognized disease site experts for the case and (2) a live video podcast
hosted by two to three select experts, reviewing common contouring errors and their decision-
making rationale. A week after the live podcast, the recording of the expert discussion is posted
on YouTube for public access (current address and the permanent archived address in Ref. 21).
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2.2 Participant Recruitment

Participants were recruited through Twitter, word of mouth, the annual symposium at the
Radiation Oncology Education Collaborative Study Group, and via eContour’s userbase.
eContour is an interactive web-based platform our team developed to collect and disseminate
consensus guidelines; it is now used by more than 33,000 radiation oncologists from 128 coun-
tries, 12,650 of whom have been identified as practicing radiation oncologists (attending or res-
ident).22 Participants were categorized as recognized experts or nonexperts. Recognized experts
were identified by our C3RO team (E. F. G., C. D. F., and D. L.) based on participation in the
development of national guidelines or other extensive scholarly activities and recognized exper-
tise within the specific disease site. Notably, an individual could only be considered an expert
observer for one disease site but could have contributed to segmentations as a nonexpert for other
disease sites.

2.3 Data Collection

To register for the challenge, participants completed a baseline questionnaire that included their
name, email address, affiliated institution, country, specialization, years in practice, number of
disease sites treated, volume of patients treated per month for the designated tumor site, how they
learned about this challenge, and reasons for participation.23 Once the participant registered, they
were granted access to the C3RO workspace on ProKnow (Elekta AB, Stockholm, Sweden), a
cloud-based contouring platform that stores and manages the data. Completion of the baseline
questionnaire served as informed consent, and the study was approved as exempt by the institu-
tional review board at Memorial Sloan Kettering [IRB#: X19-040 A(1); approval date: May
26, 2021].

2.4 Imaging Data

Five cases were utilized from the C3RO challenge: breast, sarcoma, H&N, gynecologic (GYN),
and gastrointestinal (GI). Each case contained one computed tomography image of a represen-
tative patient in Digital Imaging and Communications in Medicine (DICOM) format. Notably,
the sarcoma case also included a T1-weighted magnetic resonance imaging scan, while the H&N
and GI cases each contained a positron emission tomography scan. Anonymized data for all
cases were received from study collaborators. Imaging details of the cases are shown in
Table S1 in the Supplementary Material. Participants (experts and nonexperts) were instructed
to contour a set of representative ROIs for each case. ROIs used for each case are shown in
Table 1; ROI naming conformed to the American Association of Physicists in Medicine
Task Group 263 standard.24 Each participant generated one radiotherapy structure (RT-
STRUCT) file for each ROI structure set.

Cases ROI contours Analysis

A BA∩B

dXY

dYX

1 N2

1 N2

H&N

Sarcoma

Breast

Nonexperts

...

...

Experts

STAPLE Nonexpert 
consensus

Expert 
consensus

STAPLEGYN

GI

Fig. 1 Study workflow overview. Radiotherapy planning cases across a variety of disease sites
were used to crowdsource nonexpert and expert ROI contours. These contours were then inves-
tigated to determine interobserver variability and used in consensus segmentation experiments.
H&N, head and neck; GYN, gynecology; GI, gastrointestinal; and STAPLE, simultaneous truth and
performance level estimation algorithm.
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Table 1 ROIs and definitions used for each case.

Case Type of ROI ROI Definition(s)

Breast Target volumes CTV_Ax Clinical target volume of axillary region

CTV_Chestwall Clinical target volume of chest wall

CTV_IMN Clinical target volume of internal mammary
nodes

CTV_Sclav_LN Clinical target volume of supraclavicular lymph
nodes

OARs Heart Heart

A_LAD Left anterior descending artery

BrachialPlex_L Brachial plexus left

Sarcoma Target volumes GTV Gross tumor volume

CTV Clinical target volume

OARs Genitals Genitalia

H&N Target volumes GTVp Gross tumor volume primary: right tonsillar fossa

GTVn Gross tumor volume of nodes: nodal spread to
level II/III on ipsilateral side (with

sternocleidomastoid muscle invaded) and no
contralateral nodal involvement

CTV1 Clinical target volume (high risk)

CTV2 Clinical target volume (low to intermediate risk)

OARs Brainstem Brainstem

Glnd_Submand_L Submandibular gland left

Glnd_Submand_R Submandibular gland right

Larynx Larynx

Musc_Constrict All pharyngeal constrictor muscles (superior,
middle, and inferior)

Parotid_L Parotid left

Parotid_R Parotid right

GYN Target volumes GTVn Gross tumor volume of the involved right
common iliac lymph node

CTVn_4500 Clinical target volume for the elective nodal
volumes at risk that will receive 45 Gy

CTVp_4500 Clinical target volume primary will receive 45 Gy.
This is the combination of “CTV1” and “CTV2”

used in many RTOG protocols

OARs Bowel_Small Small bowel

GI Target volumes CTV_4500 Clinical target volume that will receive 45 Gy

CTV_5400 Clinical target volume that will receive 54 Gy

OARs Bag_Bowel Small and large bowel

Note: H&N, head and neck; GI, gastrointestinal; GYN, gynecology; and OARs, organs-at-risk.
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2.5 Data Processing

Images and segmentation masks were analyzed in Python v. 3.9.0. All DICOM images and
DICOM RT-STRUCT files were converted to Neuroimaging Informatics Technology
Initiative format using the DICOMRTTool v. 3.2.0 Python package.25

2.6 Consensus Methods

The STAPLE algorithm,2 a well-validated and widely implemented consensus segmentation
method based on weighted probabilistic estimation, was utilized to generate consensus multi-
observer ROIs for this analysis. We utilized the SimpleITK26 STAPLE implementation with a
threshold value of 0.95. An example of a consensus segmentation generated from a set of expert
segmentations is shown in Fig. 2.

2.7 Similarity Metric Computations

To compare ROI segmentation quality, we implemented various metrics of geometric similarity.
For our analysis, we focused on the Dice similarity coefficient (DSC), a well-established vol-
ume-based metric for segmentation studies, and the surface DSC (SDSC), a newer surface dis-
tance metric that has been shown to be germane to potentially improving radiation oncology
workflows, particularly for time savings.27,28 Metrics were calculated using the surface-distances
Python package29 and in-house Python code. SDSC was calculated based on ROI-specific
thresholds determined by measuring the median pairwise mean surface distance of all expert
segmentations for that ROI as suggested in the literature;29 tolerance values, required parameters
for SDSC calculation, used for each ROI are shown in Table S2 in the Supplementary Material.
Additional segmentation similarity metrics, including the 95% Hausdorff distance and added
path length, were also investigated in supplementary analyses (Fig. S1 in the Supplementary
Material). Pairwise metric calculations within a group (nonexpert and expert) were used to deter-
mine interobserver metric values for DSC and SDSC. The median interobserver value for experts
was considered as a theoretical threshold of clinical acceptability. Metric values were also com-
puted between the expert STAPLE segmentations and the nonexpert STAPLE segmentations.
ROI volumetric comparisons between nonexperts and experts were also investigated in Fig. S2 in
the Supplementary Material.

2.8 Nonexpert STAPLE Bootstrap Experiments

To determine the dynamics of consensus quality as a function of the number of nonexperts
used in a STAPLE segmentation, we performed a bootstrap resampling experiment where ran-
dom subsets of nonexperts were selected with replacement to generate a STAPLE consensus
segmentation and were compared against the expert STAPLE segmentation. Experiments were
conducted for 2–10, 15, 20, and 25 nonexpert subsets. 100 bootstrap iterations were conducted
for each ROI to construct 95% confidence intervals. Bootstrap iterations took between 10 and

Fig. 2 Head and neck case with (a) expert segmentations of the left parotid gland and (b) cor-
responding consensus segmentation.
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12 h for each ROI on a standard central processing unit (Intel® Core™ i7-8700 Processor).
Bootstrap results were displayed as line plots; reference lines based on the performance using
the maximum number of nonexpert observers and expert interobserver variability based on
experiments from Sec. 2.7 were also displayed.

2.9 Statistical Analysis

Pairwise metrics were compared between nonexperts and experts using Mann Whitney U tests
using the Python statannotations package; Mann Whitney U tests were selected due to the non-
normal distribution of data and imbalance of sample sizes between experts and nonexperts.30

2.10 Code and Data Sharing

All analysis codes are available online in the form of Jupyter Notebooks through GitHub reposi-
tories: https://github.com/kwahid/C3RO_analysis. Anonymised data used in our analysis are
made publicly available on Figshare, doi: 10.6084/m9.figshare.21074182.

3 Results

As of August 2022, C3RO had 1026 unique registrants, 221 of whom contoured at least one
case. Among the participants who contoured, 127 (57%) identify as male and 93 (42%) identify
as female. Participant race and ethnic backgrounds are as follows: 96 (43%) White; 80 (36%)
Asian or Pacific Islander; 22 (10%) Hispanic, Latino, or Spanish origin; and 7 (3%) Black. Only
52 (24%) of participants are from the United States, whereas 169 (76%) of the participants are
international. 169 (76%) participants are practicing radiation oncologists, whereas 40 (18%) are
resident physicians, 7 (3%) are radiation therapists, and 1 (<1%) is a medical physicist. The
median (IQR) years of experience is 5 (3, 10) for attending physicians after residency and
is 3 (2, 4) for resident physician year in residency. 146 (66%) participants work in an academic
setting or are affiliated with a university, 50 (23%) work in a nonacademic hospital, and 21 (10%)
are part of private practice. Participant characteristics can be found in Table 2.

3.1 Interobserver Variability

Interobserver variability of nonexperts and experts based on pairwise segmentation comparisons
is shown in Fig. 3. For the breast case, only CTV_Ax and CTV_IMN had significantly higher
interobserver DSC and SDSC values for experts versus nonexperts. For the sarcoma case, only
GTV had higher interobserver DSC and SDSC values for experts versus nonexperts. For the
H&N case, all ROIs except Larynx had higher interobserver DSC and SDSC values for experts
versus nonexperts. For the GYN case, only CTVn_4500 and Bowel_Small had significantly
higher interobserver DSC and SDSC values for experts versus nonexperts. For the GI case, only
CTV_4500 and CTV_5400 had significantly higher interobserver DSC values for experts versus
nonexperts. Volumetric comparisons for ROIs between nonexperts and experts are shown in Fig.
S2 in the Supplementary Material; only 3 ROIs were significantly different between nonexperts
and experts, namely, the breast case CTV_IMN, the sarcoma case GTV, and the H&N case
Parotid_L.

3.2 STAPLE Comparisons

Comparisons of consensus segmentations for all nonexperts versus consensus segmentations for
all experts are shown in Fig. 4. For the breast case, nonexpert consensus segmentations for all
ROIs crossed the expert interobserver values for both DSC and SDSC. For the sarcoma case,
nonexpert consensus segmentations for only GTV and CTV crossed the expert interobserver
values for both DSC and SDSC. For the H&N case, nonexpert consensus segmentations for
all ROIs except CTV1 and Brainstem crossed the expert interobserver DSC, whereas all
ROIs except GTVp, CTV1, Brainstem, and Glnd_Submand_R crossed the expert interobserver
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Table 2 Participant characteristics.

Case 1:
breast

Case 2:
sarcoma

Case 3:
H&N

Case 4:
GYN

Case 5:
GI

Participants
who

contoured
All

registrants

Number of participants (n) 132 66 81 49 30 221 1026

Recognized experts 8 5 15 5 4

Nonexperts 124 61 66 44 26

Gender (n) (%)

Male 78 (59%) 39 (59%) 42 (52%) 29 (59%) 14 (47%) 127 (57%) 546 (53%)

Female 54 (41%) 27 (41%) 38 (47%) 20 (41%) 16 (53%) 93 (42%) 465 (45%)

Other 0 (0%) 0 (0%) 1 (1%) 0 (0%) 0 (0%) 1 (<1%) 19 (2%)

Race/ethnicity* (n)

White 58 (44%) 30 (45%) 37 (46%) 20 (41%) 15 (50%) 96 (43%) 385 (38%)

Asian or Pacific Islander 46 (35%) 23 (35%) 25 (31%) 15 (31%) 10 (33%) 80 (36%) 347 (34%)

Hispanic, Latino, or
Spanish origin

13 (10%) 6 (9%) 8 (10%) 8 (16%) 3 (10%) 22 (10%) 123 (12%)

Black 5 (4%) 1 (2%) 3 (4%) 2 (4%) 3 (10%) 7 (3%) 55 (5%)

Other 12 (9%) 7 (11%) 10 (12%) 4 (8%) 3 (10%) 21 (10%) 148 (14%)

Geographic setting (n) (%)

United States 30 (23%) 14 (21%) 14 (17%) 8 (16%) 6 (20%) 52 (24%) 197 (19%)

International 102
(77%)

52 (79%) 67 (83%) 41 (84%) 24 (80%) 169 (76%) 829 (81%)

Profession (n) (%)

Radiation oncologist/clinical
oncologist

102
(77%)

47 (71%) 64 (79%) 37 (76%) 21 (70%) 169 (76%) 740 (72%)

Resident physician 24 (18%) 15 (23%) 12 (15%) 7 (14%) 5 (17%) 40 (18%) 210 (20%)

Radiation therapist 3 (2%) 2 (3%) 2 (2%) 2 (4%) 2 (7%) 7 (3%) 33 (3%)

Medical student 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 6 (<1%)

Medical physicist 0 (0%) 0 (0%) 1 (1%) 0 (0%) 0 (0%) 1 (<1%) 9 (<1%)

Other 3 (2%) 2 (3%) 2 (2%) 3 (6%) 2 (7%) 4 (2%) 28 (3%)

Years of experience,
median (IQR)

Attending physician years
after residency

4 (2, 8) 3 (1.75, 8)6 (2, 11.75) 6 (3, 11) 7 (4, 14) 5 (3, 10) 5 (3, 10)

Resident physician year in
residency

3 (2, 4) 2 (1, 3) 2.5 (2, 3.25) 2 (2, 3) 3 (3, 4) 3 (2, 4) 3 (2, 4)

Practice type (n) (%)

Academic/University 83 (63%) 40 (61%) 50 (62%) 32 (65%) 16 (53%) 146 (66%) 651 (63%)

Nonacademic Hospital 35 (27%) 15 (23%) 22 (27%) 10 (20%) 5 (17%) 50 (23%) 219 (21%)

Private Practice (solo or
group)

13 (10%) 8 (12%) 8 (10%) 6 (12%) 6 (20%) 21 (10%) 121 (12%)

*Participants could select multiple options.
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Fig. 3 Interobserver variability based on pairwise segmentation comparisons for observers of
varying expertise (nonexpert and expert). (a), (b) breast; (c), (d) sarcoma; (e), (f) H&N; (g),
(h) GYN; and (i), (j) GI cases. DSC and SDSC metrics shown in left and right panels, respectively.
Stars above plot indicate MannWhitney U test level of significance: ns: p > 0.05; *: 0.01 < p ≤ 0.05;
**: 0.001 < p ≤ 0.01; ***: 0.0001 < p ≤ 0.001; ****: p ≤ 0.0001. H&N, head and neck; GYN,
gynecologic; GI, gastrointestinal, Ax, axilla; IMN, internal mammary nodes; Sclav, supraclavicular
lymph nodes; A_LAD, left anterior descending artery; _L, left; _R, right; GTV, gross tumor volume;
DSC, dice similarity coefficient; SDSC, surface DSC; and CTV, clinical target volume.
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Fig. 4 DSC and SDSC values comparing nonexpert consensus using maximum number of
available cases to expert consensus. (a), (b) breast; (c), (d) sarcoma; (e), (f) H&N; (g), (h) GYN;
and (i), (j) GI cases. DSC and SDSC metrics are shown in left and right panels, respectively.
Black dotted lines indicate median expert interobserver value for that metric. H&N, head and neck;
GYN, gynecologic; GI, gastrointestinal; Ax, axilla; IMN, internal mammary nodes; Sclav, supra-
clavicular lymph nodes; A_LAD, left anterior descending artery; _L = left; _R = right; GTV, gross
tumor volume; DSC, dice similarity coefficient; SDSC, surface DSC; and CTV, clinical target
volume.
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SDSC. For the GYN case, nonexpert consensus segmentations for all ROIs crossed the expert
interobserver values for both DSC and SDSC. For the GI case, nonexpert consensus segmenta-
tions for only CTV_4500 and Bag_Bowel crossed the interobserver DSC, whereas only
CTV_4500 and CTV_5400 crossed the expert interobserver SDSC. In Appendix A, we perform
additional experiments to investigate case-level performance correlations in nonexperts. In
Appendix B, we perform additional experiments based on empirical stratification of nonexperts.

3.3 STAPLE Visual Comparisons

We visually investigated 1 ROI in the H&N case, which exhibited outlier behavior, namely
CTV1. For both DSC and SDSC, the nonexpert STAPLE of CTV1 was unable to cross the
corresponding expert interobserver values. As shown in Fig. 5, the expert STAPLE generally
led to a more conservative estimate of the ROI, compared to the nonexpert STAPLE, which
covered a greater area. For completeness, we also show CTV2 for both experts and nonexperts,
which also showed more conservative estimates for experts versus nonexperts. We show addi-
tional visual representations of STAPLE segmentations for other ROIs that exhibited outlier
behavior in Fig. S3 in the Supplementary Material; the same trend of more conservative esti-
mates for experts versus nonexperts held.

3.4 Nonexpert STAPLE Bootstrap Experiments

Nonexpert STAPLE bootstrap experiments for the breast, sarcoma, H&N, GYN, and GI cases
are shown in Fig. 6. For the breast case, expert interobserver DSC was crossed between a mini-
mum of 2 to 4 observers across the various ROIs; the smallest minimum number of observers
(2) was achieved for BrachialPlex_L and Heart, whereas the largest minimum number of observ-
ers (4) was achieved for CTV_Ax and CTV_IMN. For the sarcoma case, expert interobserver
DSC was crossed between a minimum of 3 to 5 observers across the various ROIs; the smallest
minimum number of observers (3) was achieved for Genitals, whereas the largest minimum
number of observers (5) was achieved for CTV. For the H&N case, expert interobserver
DSC was crossed between a minimum of 3 to 5 across the various ROIs; the smallest minimum
number of observers (3) was achieved for GTVn, Brainstem, Glnd_Submand_L, Glnd_
Submand_R, and Larynx, whereas the largest minimum number of observers (5) was achieved
for Musc_Constrict and Parotid_L. For the GYN case, expert interobserver DSC was crossed
between a minimum of 3 to 5 observers across the various ROIs; the smallest minimum number
of observers (3) was achieved for GTVn, whereas the largest minimum number of observers

Fig. 5 Expert STAPLE consensus segmentation (green) and nonexpert STAPLE consensus seg-
mentation (red) for (a) CTV1 and (b) CTV2 for H&N case. CTV1, high-risk clinical target volume,
STAPLE, simultaneous truth and performance level estimation, and CTV2, low-to-intermediate-
risk clinical target volume.
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(5) was achieved for CTVn_4500. For the GI case, expert interobserver DSC was crossed using a
minimum of 3 observers for all ROIs. Heatmap representations of bootstrap experiments can be
found in Fig. S1r in the Supplementary Material. Of note, the following ROIs showed nonsatu-
rating performance with an increasing number of nonexperts used in the consensus segmenta-
tion: breast (BrachialPlex_L), sarcoma (Genitals), H&N (GTVp, CTV1), GYN (GTVn), and GI
(CTV_5400, Bag_Bowel). Bootstrap experiments for additional metrics in line plot format can
be found in Fig. S1 in the Supplementary Material.
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Fig. 6 Consensus segmentation bootstrap experiments based on DSC. Pink, red, blue, purple,
and green plots correspond to breast, sarcoma, head and neck, gynecologic, and gastrointestinal
regions of interest, respectively. Black dotted lines indicate median expert DSC IOV for a corre-
sponding region of interest. Gray dotted lines indicate DSC performance using the maximum num-
ber of nonexperts in the consensus segmentation. Performance typically increased as a function
of number of nonexperts followed by a plateauing effect, but some regions of interest exhibited
decreasing performance as a function of nonexperts where the maximum observer DSC (gray
dotted line) could be below expert IOV (black dotted line). Ax, axilla; IMN, internal mammary
nodes; Sclav, supraclavicular lymph nodes; A_LAD, left anterior descending artery; _L, left; _R,
right; GTV, gross tumor volume; DSC, dice similarity coefficient; IOV, interobserver variability; and
CTV, clinical target volume.
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4 Discussion

In this study, we have systematically investigated the difference between nonexperts and experts
in contouring ROIs for several disease sites using various evaluation metrics. We have probed the
inherent interobserver variability within nonexperts and experts and determined several ROIs
have better agreement when contoured by experts. Consensus segmentation experiments reveal
that most consensus expert ROI contours can be roughly approximated using nonexpert segmen-
tations, which cross expert interobserver variability performance thresholds. Our results provide
justification toward using large-scale nonexpert contours for gold-standard segmentation data in
the absence of multiple expert “ground truth” data availability, and glean insight into the behav-
ior of consensus contours across a large number of observer inputs. Although crowdsourcing is
common in medical image analysis,31 there have been few studies evaluating the use of crowd-
sourcing for contour quality. To our knowledge, this is the largest study characterizing segmen-
tation performance across multiple physician observers, and the first study to investigate
crowdsourced contour performance in the context of radiation oncology workflows.

Our interobserver variability experiments demonstrate that several ROIs across the various
cases have higher interobserver agreement for experts compared to those of nonexperts for both
volumetric and surface distance metrics. Generally, the interobserver variability did not vary
significantly among the OAR structures for most cases. Analogously, target volumes tended
to be among the ROIs that were significantly different between nonexpert and expert interob-
server variability. It is well known that tumor-related tissues are inherently more heterogeneous
than healthy tissues. As such, our results may be explained by the potential higher subjectivity of
target volume contours compared to those of OARs. A study by Cardenas et al.32 investigating
large-scale multiobserver segmentation in H&N cancer using magnetic resonance imaging sup-
ports our results, whereby target volumes demonstrated particularly low agreement between
observers compared to OARs. Nonetheless, it warrants highlighting that certain cases exhibited
a greater predilection for improved contour consistency in experts compared to those of non-
experts. This is most apparent in the H&N case, where the vast majority of ROIs showed higher
agreement for experts compared to those of nonexperts. These findings are congruent with the
previous literature indicating that H&N is a particularly challenging disease site for physician-
based contouring.9,19,33

Our initial investigations comparing STAPLE consensus segmentations using all nonexpert
observers against STAPLE consensus segmentations using all expert observers revealed that
nonexpert consensus could cross expert interobserver variability for most ROIs; generally, there
was strong agreement between results for volumetric and surface distance metrics. However, a
few key OAR and target volume outliers were unable to cross DSC and/or SDSC interobserver
variability in the sarcoma, H&N, and GI cases. Unlike the interobserver variability analysis,
where target volumes tended to have greater variability among nonexperts, this trend did not
necessarily translate when considering consensus segmentations of all the nonexpert observers.
Importantly, one particular ROI that had a large degree of difference between nonexpert and
expert STAPLE consensus contours was CTV1 of the H&N case. Upon visual investigation,
the difference between nonexpert and expert STAPLE segmentations was likely due to consid-
erable nonexpert uncertainty stemming from the inclusion of two individual subregions (GTVn
and GTVp) in addition to areas of microscopic tumor spread, thereby leading to a larger con-
sensus segmentation for the nonexperts. These differences became less apparent when asking
nonexperts to contour CTV2, as the incorporation of nonambiguous tissue (lymph node levels)
seemingly increased the conformity between observers. Of note, this trend of nonexperts gen-
erating larger consensus segmentations was consistent in other ROIs where the nonexpert
STAPLE underperformed, potentially indicating a tendency toward larger segmentations with
greater user uncertainty. Interestingly, further supplementary experiments (see Appendix B)
reveal that relative nonexpert performance was crucial to generation of a high-quality
STAPLE segmentation for particularly difficult ROIs such as CTV1. It is worth noting that
Cardenas et al. found minimal differences between GTV and CTV ROIs which is likely attrib-
uted to separate CTVs generated for primary and nodal tumors,32 as opposed to our study where
a single CTV was generated combining both primary and nodal volumes.
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Having confirmed that nonexpert consensus segmentations could approximate expert con-
sensus segmentations to a reasonable degree by crossing expert interobserver variability cutoffs,
we sought to determine how the dynamics of segmentation performance were affected by the
number of nonexperts used in the STAPLE algorithm. For most ROIs, there was a general trend
that on the order of 2 to 5 nonexperts were needed to cross expert interobserver variability. Our
results are congruent with previous literature on crowdsourcing labels for pathological patterns
in lung imaging, where a limited number of observers could be combined through consensus
methods to match reference repeatability.34 Consistent with trends observed in our interobserver
variability experiments, the ROIs that required the greatest number of nonexperts to cross expert
interobserver variability cutoffs were often target volumes, whereas the ROIs that required the
least number of nonexperts were OARs. The majority of ROIs exhibited a maximum DSC value,
i.e., performance saturation, at a certain optimal number of nonexperts used in the STAPLE
algorithm, which then plateaued and maintained this high performance up to the maximum num-
ber of observers used. However, a small number of ROIs exhibited nonsaturating performance
effects, where after maximum performance was achieved the addition of a greater number of
observers in the STAPLE algorithm decreased performance, often precipitously and at times
below the expert interobserver variability threshold. As before, these tended to be target volumes
where a large degree of heterogeneity between the nonexperts was expected but also included a
few OARs that would be considered particularly challenging because of heterogeneity in visual
interpretation, e.g., brachial plexus (breast case) and genitals (sarcoma case).

In the medical image segmentation space, several studies have been conducted on the use of
“noisy” labels for model training, with mixed results. Within radiation oncology, one study in
particular has shown that for at least OAR contours, deep learning may be robust to noisy
segmentations.35 A similar study investigating cardiac segmentation on ultrasound found that
the training of deep learning models with novice data was not significantly different from deep
learning models trained with expert data.36 Additionally, the authors show no statistical differ-
ence between the variability of experts vs. novices in several of the annotations of interest, results
which are echoed in a recent study investigating crowdsourcing for liver tumor segmentation
where the quality of annotations was not statistically significantly different in four distinct
groups.37 Contrary to the previous studies, Wesemeyer et al.38 demonstrated a trade-off between
quality and quantity for deep learning segmentation performance. As we illustrate in our study,
expert consistency may be better than nonexpert consistency for some radiotherapy-related
ROIs, particularly for H&N imaging. Therefore, there is still likely a need to generate
“expert-level” gold-standard contours in training radiotherapy-related deep learning models,
at least for select cases or structures. Our study demonstrates that the use of consensus contours
using nonexperts may be a reasonable approximation to gold-standard expert contours using a
relatively small number of observers and may exhibit particular utility in scenarios where auto-
segmentation models require large amounts of data but only a limited number of observers are
available to provide segmentations.

Our study has several limitations. First, we have only investigated one case per disease site
and primarily focused on a single imaging modality (computed tomography). Therefore, our
results may not necessarily generalize to arbitrary cases in different imaging modalities, particu-
larly for target volumes that can exhibit significant heterogeneity between cases and modalities.
Additionally, the use of further image fusion strategies could have optimized the contouring
process for certain ROIs, e.g., the use of MRI for brainstem. However, given that computed
tomography is the current gold standard for radiotherapy planning, we believe our results are
of significant interest to the radiation oncology community. There was no contouring protocol
provided to the participants for reference in this challenge, which may have reduced optimal
performance. To evaluate contours, we utilized geometric indices, which are not well correlated
with clinically meaningful endpoints; rather, a multidomain approach including dosimetric indi-
ces and clinical input has been shown to be the best method to evaluate autosegmentation.27 An
additional limitation of our study is that we have stratified physician expertise based on sub-
jective criteria. Herein, we have defined an expert as an individual who is recognized in their
field and/or contributed to consensus guideline generation. Although there may be additional
methodology to stratify expertise, we have chosen this method as it separates physicians based
on perceived familiarity with standardized guidelines. Nonetheless, despite this limitation, we
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show a difference between this stratification of experts and nonexperts. Moreover, nonexpert
performance (relative to expert consensus) was shown to be reasonably maintained between
disease sites (see Appendix A). Importantly, more studies are needed to determine objective
criteria for expertise. We fully acknowledge our stratification approach may misplace some indi-
viduals into “nonexpert” categories erroneously, even if they have significant familiarity with
guidelines, but plan to investigate alternative stratifications based on additional objective criteria
in future studies. Moreover, our current analysis only investigates observers who have at some
level completed formal training. We have not investigated novice observers, where observers
may have no formal education in medical anatomy or segmentation. Future studies should inves-
tigate novice observers as these labels would potentially be the most cost effective to obtain and
may also be able to approximate the current gold standard.

Importantly, our study provides a large high-quality curated dataset that can act as a reference
for future studies on interobserver contour variability and autosegmentation in radiation oncol-
ogy workflows. Moreover, we publicly distribute our raw imaging data and open-source our
analysis pipelines so the community can investigate these claims further. Finally, our results
highlight the differences in nonexpert and expert contours, which can be further leveraged
to create educational tools for trainee segmentation quality control.

5 Conclusions

In summary, using five distinct disease sites (breast, sarcoma, H&N, GYN, and GI), we have
systematically investigated differences in contour quality between nonexpert and expert radia-
tion oncologist observers in target volumes and OARs. Overall, there was a general trend toward
experts providing more consistent segmentations in terms of pairwise DSC and SDSC for a
variety of ROIs, particularly for the H&N case. Moreover, we showed that using the
STAPLE algorithm, consensus contours could be generated from nonexperts that approximate
gold-standard expert segmentations to a reasonable degree (crossing expert interobserver vari-
ability) for most ROIs; some target volumes were unable to be approximated readily. Finally, we
experimented with a variable number of nonexperts in generating consensus contours and dem-
onstrated for most ROIs 2 to 5 nonexperts is sufficient to cross expert interobserver variability,
though specific attention should be paid to some target volumes and complex OARs, which
exhibit decreased performance as more observers are added to the consensus segmentation.
Our study acts as a potential reference for the characterization of interobserver variability and
use of consensus contours in future artificial intelligence-related radiotherapy applications.
Future work will include the investigation of a greater number of disease sites, cases, imaging
modalities, and levels of expertise.

6 Appendix A: Nonexpert Case-Level Performance Correlation

In an effort to benchmark performance of individual nonexperts versus experts and determine if
nonexperts with relatively “good” performance in one disease site maintain performance in other
disease sites, we conducted case-level correlation experiments. Specifically, the breast and H&N
cases were investigated since they offered the largest number of overlapping nonexperts for use
in analyses.

For each case, DSC and SDSC evaluation metrics were calculated between each individual
nonexpert and the corresponding expert STAPLE consensus for a given ROI. The mean metric
value across all ROIs that were available for that nonexpert was then computed to yield the case-
level performance for that nonexpert. Case-level performance for nonexperts that participated in
both the breast and H&N cases were used for the analysis. In total, 27 nonexperts were used for
case-level performance analysis. Scatterplots were generated based on breast and H&N case-
level performance for each nonexpert; regression lines with 95% confidence intervals were plot-
ted on top of scatterplots using Seaborn v. 0.11.2. Pearson correlation coefficients (r) and cor-
responding p-values were calculated using Scipy v. 1.8.1 for each case.

Correlation plots for the breast and H&N case are shown in Fig. 7. Correlations of case-level
performance between nonexperts were reasonably positive for both DSC (r ¼ 0.63, p < 0.05)
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and SDSC (r ¼ 0.67, p < 0.05). Therefore, it can be concluded that nonexpert performance
(relative to expert consensus) is typically maintained between cases, i.e., nonexperts who are
“good” at contouring breast ROIs are likely “good” at contouring H&N ROIs. Since experts
are defined based on participation in consensus guidelines, we interpret this data to possibly
indicate nonexperts who are more likely to follow guidelines (and hence have DSC/SDSC values
closer to expert consensus) in one disease site are subsequently more likely to follow guidelines
in other disease sites as well. However, it should be noted these claims are likely an oversim-
plification that should be further investigated in future studies.

7 Appendix B: Nonexpert Stratification Experiments

In an effort to investigate whether nonexperts of varying skill level could yield similar results to
nonexperts in aggregate, we sought to stratify nonexperts into separate groups for use in
STAPLE consensus experiments. As in Appendix A, the breast and H&N cases were specifically
investigated since they offered the largest number of nonexperts for use in analysis.

DSC case-level performance for each nonexpert was defined as in Appendix A and used to
stratify nonexperts into three classes based on tertile cutoffs: low, medium, and high, corresponding
to the third, second, and first tertile by case-level DSC. Tertile bins for the breast case were defined
as [0.30288649, 0.56017763, 0.61924464, 0.96477275], whereas tertile bins for the H&N case
were defined as [0.28991392, 0.72256454, 0.77452889, 0.92635831]; 42, 41, and 41 nonexperts
were placed into the low, medium, and high groups for breast, whereas 22 nonexperts were each
placed into the low, medium, and high groups for H&N. For each ROI, STAPLE consensus masks
were then generated for each new nonexpert group in the same manner as outlined in the main
manuscript, i.e., a low nonexpert STAPLE, medium nonexpert STAPLE, and high nonexpert
STAPLE mask were generated. Each new nonexpert group ROI STAPLE was then compared
to the expert ROI STAPLE using DSC and SDSC. As in the main manuscript, the median expert
interobserver ROI value was considered as a theoretical threshold of clinical acceptability.

Comparisons of nonexpert class-based consensus segmentations versus expert consensus
segmentations are shown in Fig. 8. For all three nonexpert classes in the breast case, consensus
segmentations crossed the expert interobserver DSC values for all ROIs; with the exception of
one ROI (CTV_IMN for low nonexpert class did not cross threshold), the same trend held for
SDSC. For the low nonexpert class in the H&N case, consensus segmentation for 7/11 ROIs
(GTVp, CTV2, Glnd_Submand_R, Larynx, Musc_Constrict, Parotid_L, and Parotid_R) crossed
the expert interobserver DSC, whereas 5/11 ROIs (CTV2, Larynx, Musc_Constrict, Parotid_L,
and Parotid_R) crossed the expert interobserver SDSC. For the medium nonexpert class in the

Fig. 7 Correlation of H&N case-level performance versus breast case-level performance for non-
experts based on (a) DSC and (b) SDSC. Each dot corresponds to the case-level performance of a
nonexpert that contoured both cases. For each observer, case-level performance was determined
by calculating the mean across the metric relative to expert consensus for all available structures.
H&N, head and neck; DSC, dice similarity coefficient; SDSC, surface DSC.
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H&N case, consensus segmentation for 9/11 ROIs (GTVp, GTVn, CTV2, Glnd_Submand_L,
Glnd_Submand_R, Larynx, Musc_Constrict, and Parotid_L, Parotid_R) crossed the expert inter-
observer DSC and SDSC. For the high nonexpert class in the H&N case, consensus segmenta-
tions for all 11/11 ROIs crossed the expert interobserver DSC and SDSC. These results indicate
that relative nonexpert performance is mostly irrelevant for generating consensus segmentations
in certain disease sites (e.g., breast) but can be highly relevant for others (e.g., H&N).
Presumably, for the H&N case, stricter adherence to guidelines for the high nonexperts likely
allowed for a consensus segmentation closer to the consensus of experts.
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