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ABSTRACT. Purpose: To develop an artificial intelligence algorithm for the detection of breast
cancer by combining upstream data fusion (UDF), machine learning (ML), and auto-
mated registration, using digital breast tomosynthesis (DBT) and breast ultrasound
(US).

Approach: Our retrospective study included examinations from 875 women
obtained between April 2013 and January 2019. Included patients had a DBT mam-
mogram, breast US, and biopsy proven breast lesion. Images were annotated by a
breast imaging radiologist. An AI algorithm was developed based on ML for image
candidate detections and UDF for fused detections. After exclusions, images from
150 patients were evaluated. Ninety-five cases were used for training and validation
of ML. Fifty-five cases were included in the UDF test set. UDF performance was
evaluated with a free-response receiver operating characteristic (FROC) curve.

Results: Forty percent of cases evaluated with UDF (22/55) yielded true ML detec-
tions in all three images (craniocaudal DBT, mediolateral oblique DBT, and US). Of
these, 20/22 (90.9%) produced a UDF fused detection that contained and classified
the lesion correctly. FROC analysis for these cases showed 90% sensitivity at
0.3 false positives per case. In contrast, ML yielded an average of 8.0 false alarms
per case.

Conclusions: An AI algorithm combining UDF, ML, and automated registration was
developed and applied to test cases, showing that UDF can yield fused detections
and decrease false alarms when applied to breast cancer detection. Improvement of
ML detection is needed to realize the full benefit of UDF.
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1 Introduction
Breast cancer is the most common cancer worldwide, and a leading cause of cancer death for
women. In 2020 alone, more than 2.3 million women were diagnosed with breast cancer and
685,000 women died due to the disease globally.1–3 Early detection of breast cancer is known to
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dramatically decrease the morbidity and mortality of breast cancer, with mortality rates decreased
between 20% and 40%, depending on the age and frequency of screening mammography.4

Screening examinations have used two-dimensional full field digital mammography
(FFDM), which consists of two images of each breast, and have demonstrated sensitivity and
specificity for detection of breast cancer as high as 89% and 72%, respectively.5 The develop-
ment of digital breast tomosynthesis (DBT) has improved sensitivity and specificity to 90% and
79%, respectively.5 With DBT technology, multiple projections of each breast are obtained and
then reconstructed into 1 mm slices. A major limitation of mammography is overlap of normal
breast tissue, which obscures lesions. DBT addresses this issue by decreasing superimposition of
normal tissue, thereby improving lesion detection and increasing accuracy.6 Despite the well-
documented benefits of breast cancer screening and improved performance with the use of
DBT, there are limitations. Mammography, FFDM and DBT, has decreased sensitivity in patients
with dense breast tissue, as dense tissue can overlap and obscure lesions.7 Breast radiologists can
be overwhelmed by the high volume of studies that are a necessary consequence of widespread
screening programs, a problem made worse by DBT, with 200 to 400 images per study, compared
to only 4 images per FFDM study. The task of interpreting mammography is difficult, and there is
significant inter- and intra-reader variability.8

Breast ultrasound (US) can be used as a supplemental study to improve detection of breast
cancers in dense breast tissue. Unfortunately, US also detects many false-positive lesions.
Although it is well known that US detects additional cancers when paired with mammography,
low specificity is a challenge.9–11

Due to the significant challenge of interpretation of mammography and breast US, and the
ever-expanding volume of images, recent research has focused on the development of artificial
intelligence algorithms for breast cancer detection.12–14 The potential benefit of artificial intelli-
gence is the reduction of radiologist interpretation time without compromising performance.15,16

Upstream data fusion (UDF) is a unique concept that was developed to assist military oper-
ators in detection of military targets and analysis of images of potential targets.17,18 UDF can also
be used to analyze medical images, in combination with machine learning (ML) and automated
registration. ML is used to obtain candidate detections of lesions from DBT and US images with
intentionally low thresholds to keep detection rates high at the expense of false positives. The
false positives are reduced later by UDF processing. UDF performs data association of detections
originating from the same lesions to match lesions in the images and provide probabilities of
malignancy for fused detections.

Automated registration uses ML methods to construct deformation fields for the breast in
different positions to map corresponding locations between images. Then UDF can match
detected lesions with similar locations. But UDF does more than just match lesions with similar
locations. It also matches lesions of similar cancer-likeness determined by ML models from
lesion features. Location information and feature information are mathematically expressed
in terms of statistical likelihood functions so statistical inference can be used to produce fused
detection reports. By combining information across multiple images, the false alarms in the can-
didate detections from individual images are reduced. Fused reports are output for malignant
lesions, lesion locations, and association of data in images from the same lesions. Also statistical
confidence and uncertainty measures can be provided for the reports.

The purpose of our project was to develop an artificial intelligence algorithm by combining
UDF, ML, and automated registration for the detection of breast cancer using both DBT and US.

2 Materials and Methods

2.1 Study Design Overview
The UDF system17 was evaluated as part of a retrospective study. The objective of the study was
to apply UDF and ML to jointly process multiple images of the same lesion, including different
modalities (DBT and US) and different projections [craniocaudal (CC) and mediolateral oblique
(MLO)], to improve lesion detection, localization, and classification. This is in contrast to
traditional CAD techniques, which process images from a single modality or without regard to
viewing angle. Our study focused on the joint processing of the DBT CC view, DBT MLO view,
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and US images taken of the same lesion(s), thus, applying UDF to three image products
simultaneously.

2.2 Data

The primary dataset used for the project was a set of DBT and US data from Johns Hopkins
Medicine (JHM). A second dataset, which was used for part of the system, involved a publicly
available DBT data set from the Duke University Health System, which is available online at
The Cancer Imaging Archive (TCIA) site.19,20 Both the JHM and Duke University data sets were
approved by the respective institutional review boards with a waiver of informed consent; hence,
the use of the datasets for our study is compliant with the Health Insurance Portability and
Accountability Act.

First, we provide details on the selection criteria and curation of the JHM DBT and US data
for our study. Cases for the study were selected based on the following inclusion criteria.

(1) Images were obtained between April 2013 and January 2019.
(2) Candidate patient studies must contain a biopsy-proven breast lesion.
(3) Studies must contain DBT-CC, DBT-MLO, and US images for candidate lesions.
(4) DBT and US images must have been taken within 3 months of each other.
(5) Image data must be provided in Digital Imaging and Communications in Medicine

(DICOM) format.
(6) Details on the clinical diagnosis (i.e., clinical radiology report) must be available for each

modality.
(7) Data must be deidentified.

Subsequent analysis of data and processing steps resulted in additional constraints on the
data selection. Specifically, it was decided to include only patient studies containing mass
lesions, and then only studies with single masses. Other abnormality types, such as calcifications,
asymmetries, and architectural distortions, as well as studies with multiple lesions, were left for
future research. The selection of only one, or a subset, of abnormality types is common in breast
cancer ML research. For instance, the TCIA DBT dataset also excludes calcifications.19

The overall sequence of steps taken to collect and curate data for experimentation is shown
in Fig. 1. First, clinical data that met the desired requirements were deidentified and then trans-
ferred, in DICOM format, to a separate ML research facility. Next, after file storage and organi-
zation, an extensive data annotation effort was conducted in which one senior breast imaging
radiologist manually circled the lesion on a single image from each of the three image types (CC,
MLO, and US) for a given lesion. Image coordinate and size information for the annotations [i.e.,

Fig. 1 Data curation pipeline.
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regions-of-interest), along with lesion diagnosis (e.g., malignant versus benign), and other infor-
mation were captured in a tabular (i.e., spreadsheet) format for supporting ML processing.

Table 1 shows data counts for the studies. A total of 875 studies were collected for which
there existed a CC, MLO, and US image set with corresponding clinical diagnosis information.
Of these, 556 were annotated during the timeframe of the study, given available resources.
However, among these, only 150 were tabulated for experimentation as post-analysis revealed
problems that rendered the remaining cases unsuitable. Examples include problems with the
DICOM files, improper deidentification, missing data, undesired artifacts present in the images,
and cases in which there were questions regarding the annotated lesions, typically due to dense
tissue and cases in which there was less certainty about the location of the lesion in one of the
mammographic views (either CC or MLO). Although the resulting data counts may be relatively
small compared to those reported in other ML domains, we note that for mammography appli-
cations our “annotated” data counts are within the range of those reported by others using pub-
licly available DBT data sets.19

Most DBT data from the JHM cases were from Hologic, Inc. mammography systems,
though a few (<5) were from other vendors. The average size of DBT slices was
2457 × 1975 pixels and cubes typically involved 60 to 90 slices. B-mode US data were used,
either the radial or anti-radial view.

The second DBT dataset, from the TCIA repository, was used only for training a CNN dual-
view x-ray image registration algorithm that is used as part of the system. For this task, a subset of
the TCIA data, containing single masses that were biopsy proven, was used to augment the JHM
DBT data, thereby increasing the DBT data used to train the registration algorithm as discussed
in Sec. 2.5. Table 2 shows the number of TCIA cases that were used. The cases were based on
same selection criteria used for the JHM data, except for the requirement of having matched
US images and the requirements related to image collection date rate ranges. This resulted in
100 TCIA DBT cases used to augment the JHM DBT data.

Additional details on the usage of the data for training and testing various components of the
UDF system are discussed in Table 3. Details are also elaborated upon in the remainder of Sec. 2,
following an overview of the system, and in Sec. 3, experimental results are presented.

2.3 Upstream Data Fusion Methodology Overview
The data fusion part of UDF looks back and forth between the images from different modalities
and views to automate bringing together (fusing) the different types of relevant information for
accurate cancer detection. The objective is to remove false alarms, identify the true lesion (if
any), and assign an accurate classification as benign or malignant. The UDF process, as shown
in Fig. 2, involves five key steps: (1) statistical model development (done offline), (2) lesion
detection (also known as data conditioning), (3) cross-view/cross modality matching, (4) diag-
nosis, and (5) output performance analysis.

Table 1 Number of studies containing CC, MLO, and US image sets.

Data counts: JHM data Benign Malignant Total

Studies collected 456 419 875

Studies annotated 358 198 556

Studies tabulated 54 96 150

Table 2 Number of studies used from the TCIA dataset.

Data counts: TCIA data Benign Malignant Total

Studies with annotation 137 87 224

Studies tabulated 60 40 100
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Table 3 Details on data usage for UDF system.

Phase JHM TCIA

Database JHM (files not publicly available) TCIA20

Type of images DBT CC and MLO DBT CC and MLO
US

Number of image files used 150 CC and MLO volumes 62 CC and MLO volumes
150 US images

Image usage: data conditionera 95 CC and MLO volumes —
95 US images

Training 85 eacha (90% cross val.) —

Validation 10 eacha (10% cross val.) —

Testing — —

Image usage: CNN x-ray registrationb

Training 90 CC and MLO volumes 62 CC and MLO volumes

Validation 54 CC and MLO volumes —

Testing — —

Image usage: fusionc

Training — —

Validation — —

Testing 55 CC and MLO volumes —
55 US images

aData conditioner used only the JHM data. Training and validation involved a 10-fold stratified cross-validation,
where the exact data counts used in each fold were obtained by rounding off fractional values resulting from
the percentage. No separate test data were used. Test data were reserved for testing the registration and
fusion algorithms.

bCNN X-ray image registration used a mixture of JHM and TCIA data. The 152 pairs were chosen such that
there were equal counts for malignant and benign lesions (i.e., 76 pair each). The data were subjected to
various augmentations, as described in Sec. 2.5, to generate 2280 CC/MLO image pairs for training. Less
than the full amount of tabulated JHM and TCIA data were used as a result of balancing the training data
with benign versus malignant cases.

cFusion utilized CC, MLO, and US data for testing. The fusion process does not involve a training step.

Fig. 2 UDF system diagram for breast cancer detection/diagnosis.

Mullen et al.: Breast cancer detection with upstream data fusion, machine learning. . .

Journal of Medical Imaging S22409-5 Vol. 10(S2)



In step 1 (top left in this figure), offline training is done to build statistical feature models for
malignant, benign, or other classes of tissue. Steps 1 and 2 involve much of the same algorithmic
components. The basic process involves computing image processing features, such as texture
measures or transfer-learned convolutional neural network (CNN)-based features from image
data. Further, a classifier such as a support vector machine (SVM) or CNN is trained to distin-
guish the classes. However, in place of using the binary classification output, the process uses the
actual decision variable (e.g., distance from decision boundary) to form likelihood values (i.e., a
cancer-likeness score) for malignant versus benign lesions.

In step 2, the feature models generated from step 1 are used by data conditioners that process
new images from each modality (or view) for the purpose of detecting candidate lesions (i.e.,
abnormalities). Each candidate detection is assigned a likelihood value based on the statistical
models generated from training. It is the set of likelihood values combined with location infor-
mation (from each modality path) that are provided to the fusion process. Additional details on
the statistical feature model development and data conditioners are discussed in Sec. 2.4.

In step 3, registration processes help to map detections from corresponding tissue regions.
Registration can also be used as an additional means of filtering out detections from the lesion
detection step or for providing uncertainty likelihoods on the mappings of lesions between the
CC and MLO views. We have experimented with several registration techniques, ranging from
simple linear mappings, which also consider breast-geometry properties, such as distance-to-nipple,
to custom CNN-based techniques for registering the multi-view mammography images. A CNN
mammographic image registration technique is used in one part of the process for mapping lesion-
like detections between the CC and MLO x-ray images for the purpose of helping to filter out false
alarms. Additional details on the CNN registration implementation are discussed in Sec. 2.5.

The data fusion part of the process, in step 3, performs data association that associates data
from different image modalities (or views) that originate from the same anatomical objects and
computes the probability that the data are correctly associated. One of the goals of data fusion
methods in general is false alarm rejection to reduce the false alarms from individual sources of
candidate detections. In the classic text on data fusion,21 it is explained the multiple hypothesis
data fusion methods allow successful target detection in higher false alarm environments than
other methods.

Multiple hypothesis data fusion methods are applied here for breast cancer lesion targets
using DBT (CC and MLO) and US data sources. Data conditioners use ML to produce candidate
detection locations and produce likelihood scores for malignant and benign lesion types.
Engineered features such as co-occurrence features and features discovered from deep learning
can be used in an SVM that is trained to classify lesions as malignant or benign. Our approach
goes upstream from the SVM classification and uses the SVM decision variable, the distance to
the SVM hyperplane, as a reduced feature. The probability density function of the decision
variable conditioned on malignant or benign lesions is estimated as part of ML training as a
Gaussian mixture for each data conditioner for CC, MLO, and US. The probability density func-
tions are statistical likelihood functions. The data conditioners for each data source evaluate the
likelihood functions for CC, MLO, and US features to compute the likelihood scores for the
candidate detections.

UDF uses the data conditioner locations and likelihood scores from upstream SVM decision
variables to compute fused detections for lesion location and lesion type as malignant or benign.
UDF formulates multiple hypotheses for association of data conditioner detections originating
from the same lesions. The CC view is taken as the reference for location data. Registration is
performed by linear projection of MLO and US locations into the CC view. Then least squares
methods are used to compute estimated lesion location and a 95% error ellipse in the CC view.
Future work will integrate CNN-based registration and a nonlinear iterative location estimation
algorithm, such as a Gauss-Newton information filter into location estimation as done for other
applications in Ref. 17.

Then the methods of Blackman and Reid21,22 are used to form fused detections. The residual
fit errors and their uncertainties are used to compute a location hypothesis likelihood score. The
likelihood scores for malignant and benign lesions are combined to produce a feature likelihood
score. Since lesion location data and feature data are statistically independent, the likelihood
scores can be multiplied to produce a combined location and feature likelihood. UDF uses the
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methods of Blackman and Reid to compute the likelihoods for different hypotheses to find the
hypothesis with the maximum likelihood to provide fused detections.

In step 4, the fusion process considers the probabilities of correct association and the prob-
abilities of malignancy, and when both values are high, cancer detection is declared. The radi-
ologist is given not only a signal of a suspicious lesion detection but also an assessment of
the probability of the presence of malignancy. Additional details on the underlying theory of
the fusion process are discussed in Sec. 2.6.

In step 5, the output of the fusion process is provided as a set of graphical overlays on the
x-ray image data, along with quantitative values or probability of malignancy. An optional part of
step 5 (shown in red on the lower right side of this figure) is a post-processing analysis step that
involves comparing, the performance of a radiologist with the performance of the fusion system for
detection and diagnosis via free-response receiver operating characteristic (FROC) curve analysis.

2.4 Data Conditioner Implementation and Training Details
In Fig. 2, the lesion detection panel (left-most green panel) for step 2 illustrates how the indi-
vidual breast imaging modalities and views (e.g., DBT CC, DBT MLO, and US) are first
individually processed for supporting the data association and fusion process. For DBT data,
individual slices are convolved with a sliding window, for feature computation, as depicted.
The US data involved only single images. Sliding window sizes and other hyperparameter set-
tings were selected based on optimization experiments, discussed in Sec. 3.1. For DBT, the slid-
ing window size was set to 250 × 250 pixels and for US, 150 × 150 pixels. During training,
based on optimization analysis, only sliding window positions that overlap the ground truth
lesion locations by at least 65% are considered. (Experiments had shown that, given our data
counts, training on lesion locations resulted in better classification performance than training
over the entire breast region.) The sliding window positions were also staggered such that multi-
ple feature samplings could be computed for a given lesion area. This also resulted in increased
data counts for training. For DBT data, a fixed number of slices, set at 11 slices, centered across
the ground truth lesion locations are considered during training. During testing, every kth slice
across the entire cube is considered, given the high correlation between adjacent slices, and,
again, based on optimization experiments. Further, this minimizes computing and storage
requirements. Image processing was employed to mask the breast tissue area of images such
that convolution was only applied to tissue areas. For US images, the appearance of the lesions
in the images, combined with general lesion location constraints, based on the imaging process,
allowed for further bounding of the window location for feature computation.

At each window position, a set of texture features were computed, including co-occurrence
features, edge detection-based features, and local intensity values and ratios.23 Hence the result of
the sliding window operation for each image type was an N × P sized feature matrix (where N
was unique for CC, MLO, or US). During training, the ground truth lesion location was also
stored in the feature vector. Experiments were also conducted using CNNs for direct pixel-based
feature computation. However, given the limited data counts, it was found that engineering fea-
tures, such as co-occurrence, yielded comparable feature discrimination between benign versus
malignant lesions, and other breast tissue areas.

As shown in Fig. 2, feature sets from each modality and view were then subjected to SVMs.
As opposed to using the SVMs for binary classification decisions, a process was employed to
extract likelihoods of benignness and malignancy based on modeling the distances between the
actual support vectors from the SVM hyperplane using a Gaussian mixture model. The likeli-
hoods, versus binary decision outputs, serve as important information components for input to
the subsequent data association and fusion steps. A 10-folder stratified cross validation was used
for training the data conditioners. Data counts are shown in Table 3.

2.5 Automated X-Ray Image Registration Implementation and Training Details
An existing CNN-based mammographic image registration technique, described in Ref. 24, was
used for aiding in the process of matching detections between the DBT CC and MLO views,
which in turn supported false alarm reduction. The registration involves a deformation field-
based CNN technique for registering features between CC and MLO x-ray mammography
images. For our experiments, the network was trained using 152 pairs of DBT volumes, each
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containing a single lesion. The 152 DBT volumes involved a mixture of DBT data from the JHU
and TCIA data sets. Further, this set excluded DBT images that were designated as “test” images
from the original 150 JHM cases used in the overall study. There was an equal proportion of
malignant and benign lesions (i.e., 76 DBT pairs for each type). For each DBT volume, five
image slices were selected, which intersected the given lesion. Further, two additional augmen-
tations were created for each slice by applying up �12 deg rotations in addition to the original
orientation. Hence, this resulted in 2280 image pairs for training (i.e., 152 × 5 × 3). A separate set
of 54 images were used for validation during the training. The training and validation data counts
are also shown in Table 3.

Figure 3 illustrates the usage of the CNN-based registration. The left-most panels show a CC
and MLO mammogram pair. The green and red circles denote candidate detections (i.e., potential
lesions) on the images. The true lesion location is depicted by the white square, near the nipple.
There are five candidate detections in both the CC and MLO views. The middle panel shows a
deformation field that was generated by the CNN network. The deformation field provides a map-
ping between lesion-like tissue between the CC and MLO views. (The network is trained to match
areas that are likely lesions versus the tissue in general.) The solid green and solid purple circles on
the middle panel represent the lesion in the CC andMLO views, respectively. Hence, the red arrows
show that the network accurately mapped the CC lesion pixels to the MLO lesion pixels.

By applying registration to each CC detection and comparing the resulting mapping location
in the MLO view, a means for reducing false alarms was employed. Specifically, if the mapping
for a CC detection did not correspond to the general area of one of the MLO detections, then both
detections were rejected. For our dataset, in most cases, this resulted in some degree of false
alarm reduction, while preserving the lesions. For example, Fig. 4(b), there are only two can-
didate detections in each view and the lesion is preserved. We note that using this methodology,
in a few cases, the lesion may also incidentally be removed by the filtering. In future research, the

Fig. 3 Use of CNN-based CC to MLO registration for reducing candidate detections.

Fig. 4 Lesion detector hyperparameter optimization for (a) DBT CC and (b) DBT MLO data.
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combination of improved training, based on additional datasets, and the use of confidence mea-
sures from the registration, are among the areas that are envisioned for helping mitigate these
occurrences.

2.6 Details on Upstream Data Fusion Theory
As mentioned earlier, data association is a key part of the fusion process. Moreover, data asso-
ciation is conducted as part of a broader process called multiple hypothesis tracking (MHT).21,22

Data association takes object candidate detections from each modality (or view) and forms asso-
ciations of the candidate detections to provide object candidate associations. Depending on the
overall number of detections and the number of sensors or views, many different combinations of
associations may be formed, though some are filtered out due to certain constraints, such as not
meeting certain location criteria. For example, a candidate detection that is close to the nipple in
the CC view may be prevented from being associated with a candidate detection near the pectoral
muscle in the MLO view.

MHT is an iterative process that considers an initial set of object candidate associations as
well as various additional child and parent sets of associations that are considered in subsequent
iterations. The key algorithmic components of MHT are reported by Reid22 and are shown in
Reid’s Eqs. (1) and (2). The equations involve a form of a Bayes posterior probability compu-
tation. To aid in explaining the terms, we present an analogy using our subject domain, breast
imaging. Suppose a set of object candidate detections was detected from a DBT-CC view (e.g.,
three), another set was detected from a DBT-MLO view (e.g., two), and a set was detected in
a US image (e.g., two). Suppose that there is only one lesion (or abnormality). In simple terms,
the goal of MHT is to associate object candidate detections into an object candidate association
with a location and probability of malignancy of the lesion.

The MHT process starts with object candidate detections from the first image file, the CC
view in our analogy. Each of the initial CC detections constitutes a measurement. Further, it is
assumed that each detection is a unique object (abnormality) or it is a false alarm. When the next
modality or view (e.g., MLO) is processed, detections resulting from it constitute new measure-
ments (potentially on the same object, or abnormality, that was detected in the first image). This
new set of detections also constitutes the next iteration of the MHT process. Barring various other
conditions that could occur, it is at this point that the first set of associations can be formed. For
each object candidate association at this iteration (i.e., combination of CC and MLO detections),
the posterior probability is computed by Eqs. (1) and (2). We note that at this point, the actual
iterative logic in MHT can vary due to different additional hypothetical means of forming asso-
ciations such as the formation of multiple object associations (e.g., the association of sets of
measurements across iterations). For simplicity’s sake, here we assume that the next iteration
involves simply the set of new measurements from the US data. It is at this point that parent
object candidate associations from previous data (CC and MLO), denoted by Ωg in Eqs. (1)
and (2), can be formed. Furthermore, the association of Ωg with the US-based object candidate
detections are child object candidate associations, denoted by Ψh in Eqs. (1) and (2). For each
object candidate association at this iteration (i.e., combination of CC, MLO, and US detections),
the posterior probability is computed by Reid’s Eqs. (1) and (2).

The sequential process involves step-by-step evidence accrual in that through each iteration
k (where k ¼ 1 for CC, k ¼ 2 for MLO, and k ¼ 3 for US) probabilities for certain associations
are formed. Associations can be expanded or pruned and eventually the best hypotheses are
retained:

EQ-TARGET;temp:intralink-;e001;117;183PðΩk
i jZkÞ ¼ PðΨh;Ωk−1

g jZðkÞ; Zk−1Þ; (1)

EQ-TARGET;temp:intralink-;e002;117;146PðΨh;Ωk−1
g jZðkÞ; Zk−1Þ ¼ PðZðkÞjΨh;Ωk−1

g ; Zk−1ÞPðΨhjΩk−1
g ; Zk−1ÞPðΩk−1

g jZk−1Þ
PðZðkÞjZk−1Þ ; (2)

where Ωk
i is the multiple object association hypothesis ¼ fΨh;Ωk−1

g g; Ψh is the child
data association hypothesis; Ωk−1

g is the parent hypotheses through k − 1 scans;
ZðkÞ ¼ fz1ðkÞ; z2ðkÞ; : : : ; zmk

ðkÞg is the set of measurements on the current scan at time tk; and
Zk and Zk−1 are all measurements in scans through scan k and k − 1, respectively.
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In Reid’s equations, the reader will note that the right side of Eq. (1) is expanded in Eq. (2).
The left side of Eq. (2) is the probability of the data association hypotheses through the k’th
sequential scan where a scan is the set of measurements from one modality or view. Here scan
is not a medical imaging term but a term from data fusion methods. Scan refers to data from data
sources that satisfy the scan constraint for each association hypothesis of parents and children
that for each parent there is at most one child and for each child there is at most one parent.
The scan constraint greatly limits the number of hypotheses that need to be considered. Also
it allows the use of optimal assignment algorithms such as the Hungarian algorithms to find
the best association hypotheses.21

The data association hypothesis is the combination of the child hypothesis h for new mea-
surements with the parent hypothesis g for all previous measurements Zk−1 in scans through k − 1.
On the right side of Eq. (2), in the numerator, the first term represents the conditional likelihood
function for the new measurements for the data association hypothesis. This term is obtained by
multiplying the location likelihood and the feature likelihood terms as discussed in Sec. 2.3. The
second term is the probability of the child hypothesis given the parent hypothesis and data
through scan k − 1. This is determined as a binomial distribution from the probability of detection
(PD) of the ML detection algorithms. The third, final term is the probability of the parent multiple
object association hypothesis from the last iteration. The denominator term provides normali-
zation. The reader is referred to Refs. 21 and 22 for additional details on the MHT process.

3 Results
Results from applying the UDF system for lesion detection and classification using DBT CC,
DBT MLO, and US images are discussed in this section. Details on the performance of the data
conditioners and the CNN x-ray image registration are also provided.

3.1 Data Conditioner Performance (for Individual Views and Modalities)
As discussed in Sec. 2.4, the data conditioners (i.e., lesion detectors) for DBT and US were
subjected to optimization experiments for determining hyperparameter settings, such as feature
window sizes. Figure 4 shows the performance (average cross validation results) that was yielded
for different feature window sizes and different numbers of slices (through ground truth lesions)
processed by the DBT CC and MLO data conditioners. Similar optimization analysis was per-
formed for the US data conditioner. Feature window size widths of 250 and 150 pixels for DBT
and US, respectively, were selected in large part based on the optimization analysis. For DBT, the
data conditioners were configured such that feature windows were applied to 11 slices, centered
about the ground truth lesion locations during training. However, during test time, feature win-
dows were applied to slices spaced k ¼ 5 slices apart throughout the entire breast tissue. This
value was chosen based on similar performance analysis and also based on computing resource
limitations. A next step during the test time processing is to apply a hierarchical clustering to
combine neighboring detections which likely constitute the same tissue (e.g., lesion). Hence,
in this manner, tissue from across the entire breast is processed.

Table 4 shows the classification accuracies achieved by the data conditioners when using
a 10-fold, stratified cross validation, based on 95 lesions (50 malignant and 45 benign) [see

Table 4 Data conditioner cross validation performance—individual modalities/views.

CC accuracy (60%) MLO accuracy (61%) US accuracy (69%)

Classified as Classified as Classified as

B M B M B M

B 69.1 30.9 62.5 37.5 70.4 29.6

M 48.9 51.1 39.6 60.4 31.3 68.7

Note: B indicates benign and M indicates malignant.
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Table 3]. The DBT-based classification accuracy values are comparable to sensitivity values
reported by other basic lesion detection algorithms on DBT.19 While more advanced lesion detec-
tion capabilities may provide higher detection rates, the fusion of multiple views and modalities
also yields high detection rates, with lower false alarms, and improved lesion location estimation,
as demonstrated in Sec. 3.3. Hence, our system can work with a variety of available lesion detec-
tion systems and yield improvements when either multi-view or multiple modality images are
available.

3.2 CNN Registration Performance
As discussed in Secs. 2.3 and 2.5, the CNN registration was used to help filter out excessive false
alarm detections from the CC and MLO image data conditioners prior to the fusion process.
Referring to Fig. 5, the criteria for successful registration was as follows. First, the centroid
of all displaced pixels from the CC lesion ground truth region was computed. Next, a circular
region, adjusted slightly larger than the CC lesion ground truth, was centered at the centroid
location of the mapped CC pixels, which resulted from the registration. If the displaced circular
region intersected the corresponding ground truth for the MLO lesion, then the registration was
considered successful. This criterion was used to filter detections from the CC and MLO images
for passing to the fusion process. Using this convention on the test data, the CNN registration
demonstrated a 94% success rate at matching lesions between the CC and MLO views (for cases
where the lesion was detected in all modalities). Further, it achieved a 44% false alarm reduction
rate, which translated to reducing the number of false alarms, on average, from 7.09 to 3.95 per
image (for CC and MLO). In one test scenario, this was a decrease from 156 to 87 false alarms
across the test images. In the current system design, the CNN registration results in a small
percentage of false negatives for lesions. However, in future designs, the registration mapping
information, along with all detections, would be passed into the fusion process, where fusion
could then use the additional information to further aid in reducing false alarms.

3.3 Fusion Results
The UDF test set consisted of 55 cases (Table 3). The focus of the fusion results is to present
cases and overall statistics that show how fusion using UDF can reduce ML candidate detections
to useful fused detections. ML detections from CC, MLO, and US may provide an ambiguous
and complicated set of data with excessive false alarms (ML yields up to 5 detections per view,

Fig. 5 Illustration of (a) CC and (b) MLO registration. In (a), a yellow circle is shown over the
ground truth annotation for lesion in the CC view. In (b), the yellow circle, positioned at the centroid
of the displaced CC pixels is shown to intersect the MLO lesion ground truth.
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so there may be up to 15 detections per case, many of which are false positives or false alarms).
It is a goal of UDF to combine the ML data to provide a product with an improved false alarm rate
(FAR). Eight cases are presented here with overall statistics that illustrate the improvement that
UDF can produce and also show limitations in UDF performance. Further research is described
that can help to remove the limitations.

Case 1 is provided in Fig. 6. ML detections and the fused detection are shown with location
error ellipses according to the color combination scheme shown in this figure. For example, the
red ellipse is an ML detection for CC and the two blue ellipses are ML detection for MLO. The
pair of yellow lines corresponds to a long yellow ellipse for an ML detection for US that is due to
the fact that only clock face and nipple distance are used for the ML US detection location. The
white ellipse is the fused detection that combines CC, MLO, and US detections. The centers of
the ellipses are red for malignant detections and green for benign detections. The ground truth for
the lesion is indicated by an asterisk that is red for malignant and green for benign. The same
labeling is used for all the cases. For each figure, the image on the right displays the fused detec-
tion, and the image on the left shows the ML detections that were used in forming the fused
detection. Some later cases will have more than one fused detection. UDF is a multiple hypoth-
esis MHT method, and the fused detections that are shown are for the statistically best hypothesis
that uses the CC, MLO, and US image types.

Case 1 is a relatively straightforward case where there are CC, MLO, and US ML detections
that localize and classify the lesion correctly. There is only one ML false alarm for an MLO ML
detection. UDF easily provides a single fused detection that localizes and classifies the lesion
correctly.

For case 2 in Fig. 7, the situation is more complicated. There are a number of ML detections
of questionable usefulness, and UDF reduces the ML detections to a single fused detection that
localizes and classifies the lesion correctly. This shows the kind of behavior of multiple hypoth-
esis methods that has been observed in other types of applications, such as military tracking of
targets. In military applications, it has been observed that multiple hypothesis MHT methods
can operate successfully in false alarm environments that are an order of magnitude larger than
tolerated without multiple hypothesis methods.21

Fig. 6 UDF case 1: (a) data conditioner detections projected onto the CC view and (b) the fused
output. The color wheel at the bottom shows the color scheme for the ellipses and graphics in
(a) and (b). The data conditioner detections and fused detection are indicated by ellipses according
to the color combinations. Centers of detections have red x for malignant and green x for benign.
Ground truth lesion indicated by asterisk that is red for malignant and green for benign. The same
labeling is used for all cases.
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For cases 3 and 4 in Figs. 8 and 9, respectively, the situation is less complicated and a
single fused detection is produced that localizes and classifies the lesion correctly. For case 3,
ML detection false alarms would seem to provide an opportunity for a fused detection false
alarm made up of CC and MLO ML detection false alarms, but UDF correctly interprets the
evidence.

For case 5 in Fig. 10, the situation is again complicated. There are a number of ML detec-
tions of questionable usefulness. UDF produces an incorrect fused detection with an ellipse that
contains the lesion but is classified incorrectly. The CC ML detection in the fused detection was
classified incorrectly so this appears to be due to a limitation in ML classification. UDF also
reduces the ML detections to an incorrect fused detection that localizes the lesion just outside
the edge of the ellipse and classifies it correctly. This could be due to a limitation in registration.
Full integration of the CNN-based image registration approach described earlier and extension to
US data could help remove this limitation. The current registration is performed with a linear
transformation of MLO and US detections into CC as shown in the left-hand-side images for all
the cases. The MLO blue ellipses are always bigger than the CC red ellipses due to the observed
uncertainty in the transformation. The CNN-based registration with a nonlinear deformation
field would better account for different breast positions and effectively reduce the size of the
blue ellipses. This would be accomplished using a nonlinear iterative location estimation algo-
rithm, such as a Gauss–Newton information filter that we have used in other applications, such as
military tracking.17 With the improved uncertainty, there would be less opportunity for false
alarms.

Fig. 7 UDF case 2: (a) data conditioner detections projected onto the CC view and (b) the fused
output.

Fig. 8 UDF case 3: (a) data conditioner detections projected onto the CC view and (b) the fused
output.
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For case 6 in Fig. 11, the situation is also complicated. Again, there are a number of ML
detections of questionable usefulness. UDF reduces the ML detections to a fused detection that
localizes the lesion and classifies it correctly. UDF also shows a limitation by producing a fused
detection false alarm with an ellipse that is near the correct fused detection and classified malig-
nant. The same type of improvements as described for case 5 could help to remove the limitation.

Fig. 10 UDF case 5: (a) data conditioner detections projected onto the CC view and (b) the fused
output.

Fig. 11 UDF case 6: (a) data conditioner detections projected onto the CC view and (b) the fused
output.

Fig. 9 UDF case 4: (a) data conditioner detections projected onto the CC view and (b) the fused
output.
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It is worth noting that there would seem to be opportunities to form false fused detections using
CC and MLO ML detections, but UDF resists forming the fused detections.

For case 7 in Fig. 12, there is another complicated situation. Again, there are a number of
ML detections of questionable usefulness. UDF reduces the ML detections to a fused detection
that localizes the lesion and classifies it correctly. UDF also shows a limitation by producing two
fused detection false alarms that are classified benign. The same type of improvements as
described for case 5 could help to remove the limitation.

For case 8 in Fig. 13, there is another complicated situation. Again, there are a number of
ML detections of questionable usefulness. This time UDF does not reduce the ML detections to a
fused detection that localizes the lesion and classifies it correctly. UDF shows a limitation by
producing two fused detections that do not contain the lesion in the error ellipse where one is
classified malignant and the other benign. The lack of containment could be due to registration
limitations. Also several CC and MLO ML detections that are classified incorrectly as malignant
contribute to the fused detection that is malignant, and this is a limitation of ML classification.

One way to evaluate detection approaches is to use the FROC curve. In the data fusion
community, multiple hypothesis methods using Reid’s equations described in Sec. 2.5 take
as input from each source of data the parameters for probability of detection (PD) and FAR per
unit volume of sensor space.21,22 But PD and FAR are the same as sensitivity and average false
positives per unit volume from a point on an FROC curve. There are extensive sets of fusion
metrics implemented in a number of tools to evaluate data fusion approaches.21 FROC analysis is
often used to evaluate the detection systems that feed into data fusion but not for data fusion
itself. However, it seems that evaluation of UDF for a radiological application should include
FROC analysis.

Fig. 12 UDF case 7: (a) data conditioner detections projected onto the CC view and (b) the fused
output.

Fig. 13 UDF case 8: (a) data conditioner detections projected onto the CC view and (b) the fused
output.
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The FROC concept is extended here to evaluate UDF. For radiology, the FROC curve can be
based on proximity of a detection to a lesion. For example, this was done in the development of
the baseline for the DBTex effort for breast imaging.19,25 A true positive was defined as a detec-
tion that satisfies a proximity condition to a lesion ground truth. Then an FROC curve was
defined as the plot of true positive fraction (sensitivity) versus average false positives per
DBT volume. Attempting to extend this approach to UDF, it seems natural to base it on a prox-
imity condition that the UDF detection contains the lesion within the 95% error ellipse computed
by UDF. But this would not evaluate a benefit of UDF to perform joint classification of a lesion
by combining classification information in ML detections over CC, MLO, and US views.
Consequently, a better way to define a true positive is a fused detection that contains the lesion
in the 95% error ellipse and classifies the lesion correctly as malignant or benign. The false
positives then can be defined as fused detections that do not contain the lesion or contain the
lesion and misclassify the lesion.

The benefits of UDF are the ability to improve ML detection information by false alarm
rejection, joint classification using ML decision variables, and providing 95% error ellipses for
fused detections. But to evaluate these benefits, the ML detections must contain true detection
amid the false alarms, or no amount of false alarm rejection will produce a correct detection with
improved classification and an error ellipse. As a result, the cases that are used to perform the
UDF FROC analysis are limited to those that have ML true detections in the midst of false
alarms. Now some general comments about UDF performance can be made in the following.

• Of the 55 tabulated studies that were not used for training and validation for ML models,
there are 22 cases with true ML detections for CC, MLO, and US views with an average of
8.0 false alarms over all three views.

• For these 22 cases, UDF sensitivity is 90.9% (20/22) and the average number of false pos-
itives per case is 1.1. This is for a true positive that contains the lesion and classifies it
correctly as malignant or benign.

• This shows performance for false alarm rejection, joint classification, and containment by
95% error ellipses.

The two cases out of the 22 above that did not produce correct fused detections are displayed
in Fig. 10 for case 5 and Fig. 13 for case 8. For case 5, it is explained above that UDF produces
incorrect fused detections due to limitations in ML classification and limitations in registration.
These limitations can be remedied using more sophisticated ML algorithms and using CNN-
based registration. For case 8, it is explained above that UDF also produces incorrect fused detec-
tions due to limitations in ML classification and limitations in registration. It should be noted that
it is not necessary to have true ML detections in all three views to have a correct fused detection,
but that will provide the most consistent benefit.

The above sensitivity and average false positives per case would produce one point on an
FROC curve. But there is an issue in producing other points on the curve. One of the ways that
UDF has been implemented in other applications is to produce fused detections from the best
hypothesis for the association of detections across the different data sources, and that is the
approach used here. There is no threshold for a fused detection that can be varied to produce
an FROC curve. Instead there is one best hypothesis. Another way that UDF has been imple-
mented is to release fused detections according to a threshold on the probability of correct asso-
ciation (POCA) that is computed by UDF. In future implementations if a POCA threshold is
used, then an FROC curve can be generated. In the meantime, there is another way to produce
an FROC curve using the threshold on the probability of malignancy computed by UDF for joint
classification. Another definition can be used that a fused detection is a true positive if the lesion
is contained in the 95% error ellipse and is classified correctly as malignant. Then the following
FROC curve is produced by varying the threshold for lesion classification (see Fig. 14).

The DBTex challenge is described in Ref. 25 where participants achieved >90% mean sen-
sitivity at 1, 2, 3, and 4 FPs per volume. The authors state that they believe that one of the areas
that should be focused on for future work is incorporating detection information from all avail-
able views (CC/MLO), mimicking the way radiologists analyze the images. In fact, that is one of
the applications for which our UDF approach is designed. It is difficult to compare UDF
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performance directly with DBTex performance because UDF uses the type of ML approaches in
DBTex as inputs to try and improveML false alarm rejection. A direct comparison could be made
if the ML algorithms of DBTex were used as input to UDF on the DBTex dataset. In the absence
of performing that analysis, the approach described above to determine the ability of UDF to
reject false alarms, perform joint classification, and produce 95% location error ellipses has
been used.

The focus of the ML work for the UDFML approach has been on the ML classification used
by UDF to fuse data that are not only consistent in location parameters but also in classification
decision variables. Improvements are now needed in ML detection to produce a higher percent-
age of true detections for UDF to realize its full potential. More sophisticated ML detection
methods can be used. Also improvements can be made by lowering ML detection thresholds
to improve the ML PD while still maintaining an overall acceptable UDF FAR as in other appli-
cations. This will lead to many more hypotheses in the UDF multiple hypothesis approach and a
possibly excessive computational burden. But the use of multi-dimensional assignment methods
based on Lagrangian relaxation has solved the computational problem in other applications.26

In addition, with improvements in nonlinear registration and location estimation mentioned pre-
viously, UDF performance is expected to improve. Also the PD can be improved by grouping
similar fused detections for dim targets in other applications, and those grouping methods can be
extended for this application.

4 Discussion
In this project, an artificial intelligence algorithm using UDF was developed to detect breast
cancer. Multiple views of each lesion were used, combining DBT mammography CC and
MLO views as well as US. The UDF algorithm has been applied to a set of test cases, with
promising results. When ML made correct detections in all three views, UDF was able to create
a correct fused detection in 90.9% of the cases. The UDF algorithm was able to process multiple
separate detections from the CC and MLO mammographic views and breast US, integrating or
“fusing” them to create one or two much smaller regions of interest. In many cases, the final
fused region of interest contained the actual breast lesion, and the algorithm also correctly
categorized the lesion as benign or malignant.

For the cases in the test set, ML processing of the images showed a maximum of five detec-
tions per image and most of the images had five detections. This would yield up to 15 detections
per case (5 each for CC, MLO, and US images). After UDF processing, the number of detections
was reduced to one or two fused detections, substantially reducing the number of false alarms for
each case.

Fig. 14 FROC curve based on proximity and correct classification as malignant.
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UDF has been used successfully in military target detection and characterization.17,18,27

Based on its success in other fields, fusing and interpreting two or more “views” of the same
target, it is thought that UDF could be very useful for breast cancer detection. Breast imagers
routinely obtain more than one view of potential target lesions, as standard mammograms contain
both CC and MLO views. With tomosynthesis, there may be multiple slices through a lesion in
both the CC and MLO views, adding to the views of the target lesion. US images contribute
additional views and additional information about the same target lesion. UDF seeks to leverage
the information from all views for detection and characterization of lesions. Previously described
breast imaging AI algorithms have focused on detection and classification of lesions in a single
view (CC or MLO views, single DBT slices, or US only).12 The results of other AI algorithms
have been promising for breast cancer detection, characterization, and triage of cases based of
probability of malignancy. The fusion techniques described here could contribute to existing AI
algorithms. This project is a continuation of previously described work on UDF, presented at
IWBI 2020 and 2022,28–30 as well as ongoing work on image registration.24

The main limitation of this work is the small number of cases evaluated. This study included
only patients with single mass lesions. Other lesion types, such as calcifications, asymmetries,
and architectural distortions, as well as studies with multiple lesions, were excluded. The over-
all performance of the UDF algorithm for cancer detection was hampered by ML detection
limitations.

Future research would include processing a larger number of cases to assess the overall
performance of the UDF algorithm for evaluation of combined mammography and US images.
Most breast imaging patients undergo bilateral screening mammography, including CC and
MLO views of each breast, with or without tomosynthesis. A focus on registration of lesions
and fusion of detection and characterization information from the two standard mammographic
views may provide a substantial improvement in performance over current efforts aimed at evalu-
ation of one mammographic view at a time. In this study, UDF performed well if ML was able to
correctly detect lesions in each view; therefore, future research should be directed toward
improvement of ML detection, so that the UDF algorithm can reach its full potential.

5 Conclusion
An AI algorithm has been developed for detection and characterization of breast lesions, lever-
aging a combination of DBT mammography and US. ML, image registration, and UDF have
been combined to yield promising results on a group of test cases.
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