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ABSTRACT. Purpose: Distributed learning is widely used to comply with data-sharing regula-
tions and access diverse datasets for training machine learning (ML) models. The
traveling model (TM) is a distributed learning approach that sequentially trains with
data from one center at a time, which is especially advantageous when dealing
with limited local datasets. However, a critical concern emerges when centers utilize
different scanners for data acquisition, which could potentially lead models to exploit
these differences as shortcuts. Although data harmonization can mitigate this issue,
current methods typically rely on large or paired datasets, which can be impractical
to obtain in distributed setups.

Approach: We introduced HarmonyTM, a data harmonization method tailored for
the TM. HarmonyTM effectively mitigates bias in the model’s feature representation
while retaining crucial disease-related information, all without requiring extensive
datasets. Specifically, we employed adversarial training to “unlearn” bias from the
features used in the model for classifying Parkinson’s disease (PD). We evaluated
HarmonyTM using multi-center three-dimensional (3D) neuroimaging datasets from
83 centers using 23 different scanners.

Results: Our results show that HarmonyTM improved PD classification accuracy
from 72% to 76% and reduced (unwanted) scanner classification accuracy from
53% to 30% in the TM setup.

Conclusion: HarmonyTM is a method tailored for harmonizing 3D neuroimaging
data within the TM approach, aiming to minimize shortcut learning in distributed set-
ups. This prevents the disease classifier from leveraging scanner-specific details to
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classify patients with or without PD—a key aspect for deploying ML models for
clinical applications.
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1 Introduction
Distributed learning has become a promising alternative to centralized learning for training
machine learning (ML) models in medical image analysis, addressing many patient privacy
regulations and overcoming administrative barriers.1 It offers a practical solution for accessing
large and diverse datasets by enabling ML model training in distributed environments. Despite its
success, distributed learning does not address the inherent challenge of image acquisition biases
across multiple centers,1 which is especially important when no imaging protocol harmonization
is used.

Image acquisition biases can, for example, be caused by differences in imaging acquisition
protocols and/or scanner types across multiple centers, potentially leading the ML model to learn
patterns unrelated to the main task (i.e., spurious correlations).2 Several previous studies have
explored the effects of image acquisition biases. For instance, Refs. 3 and 4 demonstrated that
combining data acquired with different pulse sequences or scanners in multi-center studies can
lead to biases in brain volumes when conducting brain morphology analysis for cross-sectional or
longitudinal studies. In addition, variations in cortical thickness measurements were observed
due to distinct imaging acquisition protocols, magnetic field strength, and pulse sequence
parameters.5–7 Moreover, Glocker et al.8 found that simple intensity-based harmonization tech-
niques cannot eliminate all of a scanner’s encoded effects. Similar findings were also reported by
Ref. 9, demonstrating that ML models can accurately identify the site where brain scans were
acquired, even after intensity harmonization. Recently, Souza et al.2 showed that scanner types
can be classified from the internal feature representations of a model trained for Parkinson’s
disease (PD) classification in a centralized approach. Acquisition bias has also been reported
for other data modalities when working with multi-center datasets such as molecular data10 and
magnetic resonance imaging (MRI)-derived features.11,12 All of these studies reinforce that ML
models can identify and possibly exploit image acquisition biases, such as scanner type, as poten-
tial shortcuts for the disease classification task, practically diminishing their clinical utility.13

Shortcuts can emerge in ML models for various reasons, as described in more detail by
Geirhos et al.13 First, models may disproportionately focus on making good predictions for the
majority group, leading to potential misclassifications in minority group(s). Second, ML models
often operate with minimal effort, meaning that once a model identifies a feature to perform its
task, it may rely exclusively on that feature, even if it represents a data artifact. Third, a model
might learn features unrelated to the intended task, such as classifying scanner types instead of
disease groups. Last, a model may combine multiple features to make a decision. For example,
during a disease classification task, the model might incorrectly associate scanner type with dis-
ease status, even though the scanner used to acquire the data should not influence the diagnosis.

Hence, recent ML research has aimed to develop methods to harmonize data across different
centers to reduce imaging biases and improve ML models’ reliability, generalizability, usability,
and validity.14 Data harmonization is the process of transforming data from different sources into
a common format or reference frame to enable meaningful comparisons or integration. Most data
harmonization methods in ML that employ MRI volumetric data utilize generative adversarial
networks (GANs).15–20 However, many of these methods have significant limitations, requiring
paired data (e.g., data from the same individual using every scanner or image modality to be
harmonized across), and large quantities of data from each site. These factors can hinder the
implementation of GANs in distributed learning environments, especially in scenarios involving
numerous centers, where each center contributes only a few data points for training.
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Distributed learning is commonly implemented following the federated learning (FL) para-
digm. In FL, all centers train a copy of a model initialized by a server in parallel. After each
training round, the server aggregates the parameters from the models trained at each center,
updates the global model, and sends it back to the centers for further training. This process
is repeated until the aggregated model meets predefined convergence criteria.21 Managing centers
with limited datasets presents significant challenges in FL setup, including the risk of the local
models overfitting and the difficulty of defining an aggregation function that does not margin-
alize centers with fewer datasets.22 Although data harmonization methods have been proposed
specifically for the FL,23–25 this has been limited to the scenario where centers contribute large
amounts of data for training.

In contrast to FL, the traveling model (TM) visits one center at a time in a sequential
process.22,26 Therefore, the model is initialized at a server or the first center, followed by training
with the data available in the first center. Subsequently, the updated model is transferred to the
next center, and training continues with locally available data. This process is repeated until the
final center is reached, completing one training cycle. Multiple cycles can be conducted to
enhance the model’s overall performance.22 Despite being less explored than FL, previous
research has found that the TM approach to distributed learning is especially effective when
centers are only able to provide a few datasets for training.22,26 Instances in which healthcare
facilities possess limited data are commonly found in scenarios involving rare diseases with low
prevalence,27 small or rural hospitals admitting a reduced number of patients, and hospitals in
low- or middle-income countries due to a lack of sufficient imaging equipment, skilled clinicians,
and radiologists.28 The effectiveness of TM arises from the iterative training of a single model,
which alleviates the FL challenge of the local model’s overfitting to some extent.

Recently, the TM method has been successfully applied to classify PD using three-dimen-
sional (3D) MRI data acquired across 83 centers worldwide.26 Although the TM demonstrated
state-of-the-art performance on this task [achieving an area under the receiver operating char-
acteristic curve (AUROC) of 83%, comparable with the centralized approach of 80%], it did not
address or investigate the inherent challenge of image acquisition biases. In this specific example,
attempting to directly apply existing data harmonization methods designed for FL to the TM
approach becomes impractical as 51.8% (43 out of 83) of the centers in this PD dataset contribute
less than 10 data points, with half of them (21 out of 43) contributing less than five data points for
training. Unfortunately, restricted data access is a common issue in medical image analysis,
which significantly affects the effectiveness of data harmonization methods, especially when
insufficient data are available for training. Thus, the current state-of-the-art techniques in this
domain may severely counterbalance the advantageous capability of the TM to empower centers
to contribute smaller amounts of data effectively in a distributed learning scenario.

An alternative to GAN-based and FL-specific data harmonization approaches is to remove
domain-specific information (e.g., scanner or acquisition protocol) from the model’s learned
feature representations while trying to retain as much essential disease-related information as
possible. For example, Dinsdale et al.29 introduced a data harmonization technique for central-
ized learning trained on neuroimaging data following this idea. Their work employed an adver-
sarial training setup, with domain-specific information being “unlearned” from the features used
by the model for the main task (e.g., brain age prediction). In their setup, the adversarial network
comprises an encoder for extracting features from input data, a classification head for the main
task, and a classification head for the domain task (i.e., scanner). Despite the effectiveness of their
work, certain restrictions, such as ensuring that batches include representation from every scan-
ner and oversampling the smallest dataset, must be adapted for a distributed environment where
batches are composed of data from a single center. Adapting this method to distributed learning is
challenging because centers do not share information, which limits the unlearning step, particu-
larly in the FL setup, where training occurs in parallel. To address this challenge, Dinsdale et al.23

proposed an adaptation that tracks site information to generate features on the central server.
Although sharing these features with each site enables the unlearning procedure to be performed
effectively, it contradicts the principle of distributed learning, which aims to avoid data sharing in
any way. The TM training approach not only allows centers with limited local data to participate
but also eliminates the need to share information or features during the unlearning step. Thus,
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investigating the adversarial training setup is theoretically viable for the TM approach, although
this has not yet been experimentally verified.

Therefore, this work introduces HarmonyTM, which adapts and extends the harmonization
framework proposed by Ref. 29 to the TM approach, which is subsequently tested for PD clas-
sification. Overall, we aim to learn a feature representation that minimizes the effect of image
acquisition biases (i.e., spurious correlations) while retaining high performance for the main task
and enabling centers to contribute very small sample sizes. Our major contributions include:
(1) the development of the first data harmonization method for the TM approach and (2) the
evaluation of HarmonyTM in reducing the impact of scanner differences while successfully
distinguishing between patients with PD and healthy participants.

2 Material and Methods
In this work, we evaluate HarmonyTM using the most extensive multi-center database for
PD classification published to date.

2.1 Dataset
All analyses performed in this work utilize the unique multi-center PD database, first presented in
Ref. 26, which includes 1817 T1-weighted MRI scans acquired in 83 centers worldwide.30–42

This database stands out for its diversity—it features a wide range of participant demographics,
varying numbers of brain scans per center, multiple scanner vendors (e.g., Siemens, GE, and
Phillips), and 23 different scanner types. The pre-processing of the database included skull-strip-
ping using HD-BET,43 resampling to an isotropic resolution of 1 mm using linear interpolation,
bias field correction using the advanced normalization tools (ANTs) non-parametric non-uniform
intensity normalization technique (version 2.3.1), affine registration to the PD25-T1-MPRAGE-
1mm brain atlas44 using ANTs, and cropping to 160 × 192 × 160 to reduce irrelevant back-
ground. Table 1 summarizes the centers’ contributions, population demographics, and scanner
types.

2.2 Travelling Model
In this work, we implemented the PD TM originally presented in Ref. 26 as the basis for all
experiments. In essence, this approach involves defining an initial traveling sequence that deter-
mines the order in which the model is transferred between centers. Following this, the first center
initializes and trains the model with the locally available data before passing it on to the next
center. This training process continues until the model has visited every center, completing one
cycle. Subsequently, a new traveling sequence is defined to introduce cycle-to-cycle variability,
effectively simulating the batch shuffling process commonly used in centralized approaches.
A batch size of five is employed when a center has five or more locally available datasets.
In cases where fewer than five datasets are available, the batch size is adjusted accordingly.
This variation was needed because 21 of the 83 centers in the distributed learning network had
fewer than five datasets available for local training. In addition, computational limitations restrict
the maximum batch size to five at any given time. The Adam optimizer began with an initial
learning rate of 0.0001 and employed exponential decay throughout each cycle as described in
Ref. 26. Moreover, the entire training process is iterated for 30 cycles, with only one epoch of
training occurring at each center to improve the model’s performance. Although the training was
conducted on a single computer equipped with an NVIDIA GeForce RTX 3090 GPU, it strictly
adheres to the TM concept by retrieving data from one center per epoch. The entire training
process takes ∼1.5 h to complete. Details of the deep learning architectures used in this work
are described in Sec. 2.3.

2.3 Harmonization Strategy
The deep learning architecture used in this work is based on the state-of-the-art simple fully
convolutional network (SFCN),45 which achieved high performance for PD classification using
multi-center T1-weighted MRI scans in centralized and TM approaches.26,46 The model’s
encoder comprises seven blocks: The initial six blocks mirror the structure of the original
SFCN model. These include five blocks featuring a 3D convolutional layer with 3 × 3 × 3 kernel
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Table 1 Centers’ contributions and demographics.

Centers

PD Healthy participants

Total Scanner typeSize
Male
(%)

Age mean
(std) Size

Male
(%)

Age mean
(std)

ADNI_1 — — — 6 50 67.16 (1.83) 6 Siemens Prima Fit

ADNI_2 — — — 22 36 66.05 (4.11) 22 Siemens Prisma and GE Signa Hdxt

ADNI_3 — — — 2 0 64.15 (3.46) 2 GE Discovery 750

ADNI_4 — — — 5 40 70 (2.01) 5 Philips Ingenia

ADNI_5 — — — 3 66 72.06 (1.20) 3 GE Signa Hdxt

ADNI_6 — — — 4 50 70.75 (1.82) 4 GE Discovery 750

ADNI_8 — — — 6 50 63.58 (3.60) 6 Siemens Prima Fit

ADNI_10 — — — 2 0 60.7 (3.81) 2 Siemens Biograph mMR

ADNI_11 — — — 12 25 66.19 (5.34) 12 Siemens Verio

ADNI_12 — — — 12 41 67.59 (5.43) 12 Siemens Skyra and GE Signa Hdxt

ADNI_13 — — — 2 0 72.55 (2.33) 2 Philips Achieva

ADNI_15 — — — 6 50 67.92 (3.55) 6 Siemens Prisma and GE Discovery
750

ADNI_16 — — — 9 66 66.63 (4.76) 9 GE Discovery 750 and GE Signa UHD

ADNI_19 — — — 2 0 69 (2.12) 2 Siemens Prima Fit

ADNI_20 — — — 8 87 67.95 (4.01) 8 GE Discovery 750 and GE Signa Hdxt

ADNI_21 — — — 2 50 68.7 (7.77) 2 GE Discovery 750 and Philips
Achieva

ADNI_23 — — — 4 50 70.4 (3.32) 4 Siemens Prisma Fit

ADNI_24 — — — 6 33 68.18 (2.13) 6 Siemens Skyra

ADNI_26 — — — 5 0 70.24 (2.37) 5 Siemens Skyra and Siemens Prisma

ADNI_27 — — — 4 0 67.40 (2.57) 4 Siemens Prisma

ADNI_28 — — — 7 28 66.94 (5.01) 7 Siemens Prisma Fit

ADNI_33 — — — 2 0 73.2 (1.97) 2 Siemens Prisma Fit

ADNI_34 — — — 7 14 61.84 (5.05) 7 Siemens Trio Tim

ADNI_37 — — — 6 33 68.88 (2.33) 6 GE Signa Hdxt

ADNI_38 — — — 8 25 69.98 (5.02) 8 GE Discovery 750 and Siemens
Prisma

ADNI_39 — — — 2 50 70.15 (4.45) 2 GE Signa Premier

ADNI_40 — — — 5 40 68.42 (6.46) 5 GE Discovery 750 and Philips
Achieva

ADNI_41 — — — 5 60 69.24 (3.14) 5 Philips Achieva

ADNI_42 — — — 3 33 68.13 (4.79) 3 Siemens Trio Tim

ADNI_43 — — — 9 44 68.8 (3.51) 9 Siemens Verio, Siemens Skyra, and
Siemens Trio Tim

ADNI_44 — — — 9 33 68.78 (4.03) 9 Siemens Trio Tim
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Table 1 (Continued).

Centers

PD Healthy participants

Total Scanner typeSize
Male
(%)

Age mean
(std) Size

Male
(%)

Age mean
(std)

ADNI_47 — — — 12 33 69.13 (2.63) 12 GE Discovery 750

ADNI_49 — — — 10 20 66.11 (5.21) 10 GE Discovery 750

ADNI_50 — — — 8 25 68.83 (2.53) 8 Philips Achieva dStream

ADNI_51 — — — 2 0 66.25 (11.80) 2 Philips Ingenia

ADNI_52 — — — 7 71 67.78 (2.01) 7 GE Discovery 750

ADNI_54 — — — 2 50 68.65 (1.06) 2 Siemens Skyra

ADNI_55 — — — 12 25 67.67 (3.69) 12 Siemens Skyra and Siemens Verio

ADNI_58 — — — 22 27 67.67 (3.75) 22 Siemens Prisma Fit

ADNI_59 — — — 3 0 69.53 (1.20) 3 Siemens Prisma Fit and Philips
Achieva

ADNI_60 — — — 8 37 67.6 (5.82) 8 GE Discovery 750 and Philips Ingenia

ADNI_61 — — — 2 0 72.6 (2.54) 2 Siemens Trio Tim and Philips Ingenia

BIOCOG 45 55 71.1 (4.48) 49 57 71.47 (4.85) 94 Siemens Sonata

C-BIG 66 54 65 (8.43) 10 10 62.4 (11.88) 76 Siemens Prisma Fit

HAMBURG 74 70 63.62 (8.95) 39 61 62.30 (11.71) 113 Siemens Skyra

HMC 3 33 71.93 (5.81) — — — 3 GE Discovery 750

Japan 30 43 67.56 (6.80) 15 46 63.33 (5.24) 45 Siemens Verio

JGH 2 100 71.4 (11.87) — — — 2 Siemens Trio Tim

MUC 10 70 65.66 (7.71) — — — 10 Siemens Trio Tim and Siemens
Prisma Fit

Neurocon 26 61 68.76 (10.75) 16 25 67.62 (11.88) 42 Siemens Avanto

OASIS — — — 27 62 66.33 (7.17) 27 Siemens Trio Tim and Siemens
Biograph mMR

CALGARY 79 67 71.31 (6.41) 42 47 69.8 (6.87) 121 GE Discovery 750

PLS 41 63 61.81 (5.75) 21 47 62.85 (6.36) 62 Siemens Trio Tim

PPMI_10 16 56 63.21 (7.93) 7 57 63.42 (16.70) 23 GE Discovery 750 and GE Signa Hdxt

PPMI_12 19 52 66.42 (9.14) 10 50 58.6 (13.87) 29 Philips Achieva

PPMI_13 22 77 58.31 (9.16) 5 40 66 (4.74) 27 Siemens Trio Tim

PPMI_14 2 100 65.5 (9.19) — — — 2 Siemens Trio Tim

PPMI_15 16 68 62.43 (13.44) 10 50 60.3 (12.12) 26 GE Optima MR450 and GE Signa
Hdxt

PPMI_16 19 63 58.21 (9.49) 8 50 61.37 (9.05) 27 GE Signa Hdxt and Philips
Gyroscan NT

PPMI_17 11 72 59.18 (12.48) 9 66 64 (13.32) 20 GE Signa Hdxt

PPMI_18 13 53 66.3 (7.27) 4 100 62 (10.23) 17 Siemens Trio Tim

PPMI_19 22 68 59.45 (10.30) 12 66 52.75 (13.92) 34 Siemens Trio Tim and Siemens
Espree
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filters, batch normalization, 2 × 2 × 2 max pooling, and ReLU activation, whereas one block
incorporates a 3D convolutional layer with 1 × 1 × 1 kernel filters, batch normalization, and
ReLU activation. The last block is tailored for our specific task and includes a 3D average pool-
ing layer, a dropout layer with a 0.2 rate, and a flattening layer with 768 features (neurons). The
classification head utilizes the encoder output and consists of a single dense layer using a sigmoid
activation function for the binary output, distinguishing between patients with PD and healthy
participants. Meanwhile, the domain head is a single layer employing a softmax activation
function for the multiclass output, categorizing 23 different scanner types.

Before removing domain-specific details, it is necessary to pre-train the network compo-
nents with the TM approach. Therefore, the encoder and disease classification head are initially
trained until convergence. Following this, the encoder is frozen, and the scanner classification
head is trained until convergence. Finally, utilizing these pre-trained models, the scanner

Table 1 (Continued).

Centers

PD Healthy participants

Total Scanner typeSize
Male
(%)

Age mean
(std) Size

Male
(%)

Age mean
(std)

PPMI_20 27 74 60.77 (10.27) 13 46 58.76 (10.29) 63 GE Genesis Signa, GE Signa Excite,
Siemens Espree, and Siemens
Symphony

PPMI_21 14 78 57.92 (7.94) — — — 14 Philips Gyroscan NT and Philips
Intera

PPMI_22 18 77 62.61 (7.93) 12 83 61.91 (12.41) 30 Philips Achieva and GE Signa Hdxt

PPMI_23 12 25 62 (8.71) 12 75 64 (8.89) 24 Siemens Trio Tim and Siemens
Espree

PPMI_25 19 73 59.31 (9.36) 9 77 56.55 (12.81) 28 Siemens Trio Tim

PPMI_26 14 57 62.14 (9.34) 1 100 63 (0.00) 15 GE Genesis Signa, GE Signa Hdxt,
and Siemens Espree

PPMI_27 21 57 61.38 (9.03) 11 72 56.45 (10.80) 32 Siemens Trio Tim and GE Signa Hdxt

PPMI_28 20 65 61.29 (10.44) 5 80 58.2 (10.91) 25 Siemens Trio Tim

PPMI_29 11 36 66 (10.17) 6 100 67.83 (10.45) 17 Siemens Trio Tim, Siemens Espree,
and Siemens Symphony

PPMI_30 3 66 62 (5.56) 2 100 71.5 (13.43) 5 Siemens Verio

PPMI_51 18 61 63.27 (7.75) 7 71 58.85 (6.91) 25 Siemens Trio Tim

PPMI_52 23 65 64.22 (9.54) 11 36 64.09 (6.65) 34 Siemens Trio Tim

PPMI_53 5 40 53.4 (13.64) 7 42 49.85 (14.12) 12 Siemens Verio

PPMI_55 3 100 61 (13.22) 1 100 67 (0.00) 4 Siemens Verio

PPMI_59 6 83 60 (12.71) — — — 6 Philips Intera

RUH 6 50 71.05 (1.90) — — — 6 Siemens Skyra

SALD — — — 78 100 61.65 (8.03) 78 Siemens Trio

SBK 3 100 73.5 (3.97) — — — 3 Siemens Prisma

Taowu 17 47 64.52 (4.19) 20 60 64.75 (5.58) 37 Siemens Trio

UKBB 48 58 70.02 (5.91) 197 60 66.2 (7.76) 245 Siemens Skyra

UOA 33 63 67.7 (8.02) — — — 33 Siemens Prisma
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harmonization procedure is implemented in three steps as follows. It is important to highlight that
these steps are performed for each batch, such that the three training steps occur at each center
before transferring the model to the next center (see Fig. 1).

1. Optimize the encoder and disease classification head for the PD classification task.
2. Optimize the scanner classification head for identifying scanners from the feature repre-

sentation of the frozen encoder that is trained in step 1.
3. Optimize the encoder by employing an adversarial confusion loss to eliminate scanner-

specific information. This loss guides the scanner classification head output toward
chance-level performance. In essence, chance-level means that the model would make
predictions purely by random guessing, eliminating any shortcuts related to scanners that
might be exploited for disease classification.

The scanner harmonization process involves the application of four distinct losses. In the
first step, a PD classification loss [Eq. (1)] is utilized to minimize the binary cross entropy. This
consists of adjusting the model’s parameters to diminish the difference between its predictions
and the ground truth labels (PD versus HP). In the second step, a scanner classification loss
[Eq. (2)] is employed with a similar objective as in step 1. However, categorical cross-entropy
is minimized in this instance, given that the prediction involves identifying scanner types and
only the domain head is optimized in this step. An adversarial confusion loss [Eq. (3)] is com-
puted in the third step, introducing a counteractive objective to step 2. Step 2 strives for the model
to recognize scanner types precisely, whereas step 3 aims to counteract this ability by removing
information related to scanner types from the feature representations, where N represents the
batch size, which varies depending on the amount of data available at each center. In the end,
the total loss [Eq. (4)] is computed as the sum of the three losses described. This cumulative loss
is subsequently used to optimize the encoder. Compared with the implementation proposed in
Ref. 29, two important adaptations were made. (1) Introducing N to manage varying batch sizes
during training. In our case, N accounts for the variation in batch size due to differing amounts of
data across centers. (2) Eliminating the requirement for oversampling, which was used in the
original method29 to ensure that every scanner type was represented in each batch. Their cen-
tralized approach allowed for control over such a batch composition, ensuring the representation
of every scanner type and oversampling underrepresented types to achieve balance. However,
this is not feasible in the TM approach, where each center only has access to its own data.
The harmonization process was iterated through 30 cycles, taking ∼2.5 h to complete. The
code is available in a GitHub repository available at: https://github.com/RaissaSouza/scanner-
harmonization:

EQ-TARGET;temp:intralink-;e001;114;142Lpdðy; ŷÞ ¼ −
1

N

XN

n¼1

yn × logðy − ŷÞ; (1)

EQ-TARGET;temp:intralink-;e002;114;87Lscðy; ŷÞ ¼ −
1

N

XN

i¼1

XM

j¼1

yi;j × logðŷi;jÞ; (2)

Fig. 1 HarmonyTM steps to remove scanner-specific information from the feature representation
of the PD classification model.
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EQ-TARGET;temp:intralink-;e003;117;724LconfðŷÞ ¼ −
XN

n¼1

1

N × 23
logðŷnÞ; (3)

EQ-TARGET;temp:intralink-;e004;117;688Ltotal ¼ LpdþLscþLconf: (4)

2.4 Baseline
As a baseline for comparison to our TM approach, we trained an identical deep learning archi-
tecture as outlined in Sec. 2.3 in a centralized fashion. Here, both the model and the entire data-
base are accessible at a single center, where training takes place. We utilize a batch size of five
with shuffling and an initial learning rate of 0.001 to keep the results comparable as much as
possible. Unlike the TM approach, where each batch only includes data from the same center, in
the centralized approach, batches may comprise data from various centers. The two adaptations
made for the TM approach—incorporating N and eliminating oversampling—were maintained
in the centralized approach.

2.5 Task Evaluation
To quantitatively evaluate the performance of the PD classification, we employed the following
key metrics: the AUROC, accuracy, sensitivity, specificity, precision, and F1-score. AUROC
measures the model’s ability to distinguish between patients with PD and HP across all possible
logit thresholds. In contrast, classification accuracy measures the overall correctness of the model
by calculating the ratio of correctly predicted instances to the total instances for a fixed threshold
of 0.5. Sensitivity measures the proportion of patients with PD correctly identified by the model,
whereas specificity measures the proportion of healthy participants correctly identified by the
model. Precision assesses how many predicted positives are actually true positives. Finally, the
F1-score, which is the harmonic mean of precision and sensitivity, provides a balanced measure
that accounts for both false positives and false negatives. In all cases, a higher score indicates
a better predictive performance.

The accuracy, sensitivity, specificity, precision, and F1-score metrics were also employed to
assess the scanner information within the trained model’s feature representation. As the scanner
classification is a multi-class problem, the weighted average accounting for class size was
employed for each metric. In addition, confusion matrices were employed to visually investigate
the degree of information encoded for each scanner type.

2.6 Feature Representation Evaluation
We utilized an unsupervised ML approach to evaluate how the proposed harmonization
procedure affects the encoding of information related to scanner type and disease status
(PD versus HP) within the model. This technique employs principal component analysis
(PCA) to investigate the underlying patterns within the features of the last encoder’s layer,
as proposed in Ref. 47. Following this step, similar to Ref. 47, we generated two-dimensional
scatter plots for the first two dominant PCA modes, considering both the scanner type and the
presence of disease. Finally, logistic regression was employed to measure the degree to which
scanner types and main task classes (PD versus HP) can be linearly separated within each
PCA mode.

3 Results
The results of this work show that the PD classification performance of the TM not only remains
stable but also improves after removing scanner-specific information from the feature represen-
tation (see Table 2). As expected, the scanner classification performance drops across all metrics
after harmonization. Moreover, it can be observed that the TM approach is less prone to encoding
scanner information (53% accuracy) before harmonization when compared with the centralized
approach (65% accuracy). Nevertheless, in both cases, the harmonization method reduces scan-
ner classification abilities to 30% accuracy and sensitivity, 96% specificity, 12% precision, and
16% F1-score. Figure 2 supports these findings as illustrated by the confusion matrices of the
centralized and TM approaches before and after harmonization. The matrices display the counts
of predictions for each pair of actual and predicted classes, where each row represents the actual
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scanner types, and each column represents the predicted scanner types. In Fig. 2(b), it is evident
that after scanner harmonization, the majority of datasets are mistakenly classified as Siemens
Skyra and Siemens Trio Tim. Together, these two scanners constitute the largest portion (37.5%)
of the test set (Fig. S1 in the Supplementary Material shows the proportion of each scanner type
in the test set). Furthermore, our results demonstrate that the TM approach leads to the greatest
improvements in PD classification after scanner harmonization, achieving 76% accuracy, 82%
AUROC, 83% sensitivity, and 75% F1-score compared with the centralized approach. None of
the models showed improvements in specificity and precision after harmonization, although their
performance remained comparable.

Figures 3 and 4 display the distributions of the first two modes of PCA applied to the feature
representations of the models, with color-coded by scanner type in Fig. 3 and color-coded by
disease class in Fig. 4. In Fig. 3, it can be seen that before scanner harmonization, the distribution
of scanner types within the feature representation is more distinct and less overlapping compared
with the corresponding results after harmonization. In contrast, Fig. 4 shows that the distributions
of patients with PD and healthy participants are more similar before harmonization but become
more distinguishable after harmonization. Logistic regression analysis reveals that, before
scanner harmonization, PCA mode 1 encodes information for disease classification, achieving
accuracies of 58% and 53% for the centralized and TM approaches, respectively. After harmo-
nization, these percentages increase to 71% and 75%, respectively. Moreover, logistic regression
analysis revealed that some information is encoded through PCA modes 1 and 2 for scanner
classification, yielding accuracies of 38% and 35% before harmonization, which subsequently
decreases to 28% after harmonization. The complete logistic regression analysis results are pro-
vided in Tables S1 and S2 in the Supplementary Material.

4 Discussion
In this work, we introduced HarmonyTM, the first data harmonization method specifically
designed and evaluated for the TM approach. The results showed that HarmonyTM is effective
in creating a feature representation that reduces image acquisition biases (i.e., spurious corre-
lations) and enhances disease-related information, achieving the highest classification perfor-
mance for PD after scanner harmonization. We specifically focused this first feasibility
analysis on scanners because of the well-known bias effects.9 Although our study demonstrated
the effectiveness of HarmonyTM in harmonizing imaging data from different scanners using
T1-weighted MRI scans, the method can be readily adapted to address other potential spurious

Table 2 Parkinson’s disease and scanner classification performances before and after scanner
harmonization.

Training approach
Scanner

harmonization Accuracy AUROC Sensitivity Specificity Precision F1-score

PD classification performance

Centralized Before 0.75 0.79 0.69 0.80 0.74 0.71

After 0.74 0.81 0.75 0.73 0.70 0.73

TM Before 0.72 0.78 0.67 0.75 0.70 0.68

After 0.76 0.82 0.83 0.69 0.69 0.75

Scanner classification performance

Centralized Before 0.65 N/A 0.69 0.98 0.63 0.62

After 0.30 0.30 0.96 0.12 0.16

TM Before 0.54 0.54 0.98 0.43 0.46

After 0.30 0.30 0.96 0.12 0.16
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correlations and different imaging modalities. However, further experimental validation is
needed to confirm its broader applicability.

It is crucial to highlight that the TM approach itself was found less prone to learning spurious
correlations than the centralized approach even before data harmonization. This resistance may
be attributed to the fact that each training data batch originates from a single center in the TM
setup. By avoiding the inclusion of data from multiple centers in a single batch, the likelihood of
the model learning image acquisition biases associated with different factors (e.g., scanner types)
across centers is reduced. Conversely, the TM approach’s use of single-center batches may
explain why it achieved less balanced metrics compared with the centralized approach after har-
monization. The centralized approach, which includes data from multiple centers in each batch,
increases the likelihood of training in batches where both classes are represented. This contrasts
with the TM approach, where training batches from centers such as OASIS, SALD, and ADNI
consist only of healthy participants, and centers such as UOA, RUH, and some from PPMI
include only PD cases.

Our results indicate that before scanner harmonization, the difference in the distribution of
patients with PD and healthy participants within the feature representation of the last encoder’s
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Fig. 2 Confusion matrices of the scanner predictions for the centralized and TM approaches.
Panel (a) illustrates classification before harmonization, whereas panel (b) presents them after
harmonization.
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layer was poorly noticeable in the centralized as well as TM approach. Conversely, the distri-
butions of scanner types exhibited more noticeable differences, allowing for some degree of
classification, with a higher level of accuracy of the logistic regression model from the two
PCA modes computed from the model trained using the centralized approach compared with
the model trained using the TM approach. These observations are consistent with previous
research,2 which demonstrated that the feature representation of a PD classifier trained with the
centralized approach can be used directly for classifying scanner types, achieving even better
performance in scanner type classification compared with PD classification. Following scanner
harmonization, a shift occurred: the distinctions between patients with PD and healthy partic-
ipants became more pronounced, whereas the differences in scanner-type distributions became
less prominent. This pattern aligns with the results reported by Dinsdale et al.,29 who initially
introduced this method for the centralized training approach. Although their research implies that
removing image acquisition biases could lead to a loss of disease-related information when the
entire dataset is used for harmonization, we chose to apply harmonization to the full training
dataset. As a result, we did not impose restrictions based on data availability, which could sub-
stantially reduce center participation in real-life scenarios. Despite these concerns, we found that
HarmonyTM benefits from using the full dataset for harmonization. Rather than negatively
impacting performance, this approach led to improved disease classification outcomes.

It is essential to highlight some of the limitations of this work. First, we utilized a single
established PD classifier model, which was trained using a realistic multi-site database. However,
only one specific but widely used image modality (T1-weighted MRI) was investigated in this
work for harmonization. Therefore, the good performance of HarmonyTM in other scenarios
involving different deep learning architectures, other medical imaging modalities, and additional
medical imaging tasks has yet to be demonstrated. It is crucial to recognize that biases must be
first identified in the data, as it is impossible to unlearn unknown biases. It is noteworthy,
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Fig. 3 2D scatter plots of the first two PCA modes, considering the scanner type. Panel (a) illus-
trates the scatterplots before harmonization, whereas panel (b) presents the scatterplots after
harmonization.
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however, that our work utilized the largest PD multi-center database, encompassing various
scanner types and small datasets from many centers, compared with the datasets used in many
other multi-center analyses, potentially enhancing the generalizability of results. Moreover, our
investigation was limited to a single neuroimaging modality—T1-weighted MRI data. Although
HarmonyTM can be applied to any two-dimensional (2D) or 3D data, the results may vary
depending on the degree of spurious correlations present in the specific image modality.
Furthermore, although we used a computer equipped with an NVIDIA GeForce RTX 3090
GPU, we believe that any center with comparable resources should be capable of training
HarmonyTM. Last, it is important to note that we used only one training epoch at each center
per cycle to minimize the risk of overfitting. However, we did not assess the performance at each
center to ensure that overfitting did not occur. Nevertheless, additional strategies, such as regu-
larization and the use of an external validation set, could be implemented to further analyze and
prevent overfitting. Future work could address several limitations identified in this study. These
include exploring HarmonyTM’s effectiveness across different deep learning architectures,
medical imaging modalities, and diagnostic tasks to assess its generalizability. In addition, fur-
ther investigation into strategies for mitigating overfitting risks and determining the minimal
computational resources required would enhance its viability for under-resourced centers.

(a)

(b)

Fig. 4 2D scatter plots of the first two PCA modes, considering the presence of disease. Panel
(a) illustrates the scatterplots before harmonization, whereas panel (b) presents the scatterplots
after harmonization.
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5 Conclusion
This work introduced HarmonyTM, a method specifically designed for harmonizing 3D MRI
data in the context of the TM approach. HarmonyTM tackles the issue of image acquisition
biases across different centers, a common challenge in systems that learn from data distributed
across multiple locations. To the best of our knowledge, this is the first work implementing a data
harmonization method for the TM approach. Our findings demonstrate the effectiveness of
HarmonyTM in generating features with reduced influence from image acquisition biases, such
as scanner types, while not only maintaining but also improving performance in classifying PD.
In addition, our results emphasize that the TM approach has inherent resistance to learning image
acquisition biases. This aspect is crucial for developing clinically useful deep learning models
with broad applicability.
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