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ABSTRACT. Purpose: In brain diffusion magnetic resonance imaging (dMRI), the volumetric and
bundle analyses of whole-brain tissue microstructure and connectivity can be
severely impeded by an incomplete field of view (FOV). We aim to develop a method
for imputing the missing slices directly from existing dMRI scans with an incomplete
FOV. We hypothesize that the imputed image with a complete FOV can improve
whole-brain tractography for corrupted data with an incomplete FOV. Therefore,
our approach provides a desirable alternative to discarding the valuable brain
dMRI data, enabling subsequent tractography analyses that would otherwise be
challenging or unattainable with corrupted data.

Approach: We propose a framework based on a deep generative model that esti-
mates the absent brain regions in dMRI scans with an incomplete FOV. The model is
capable of learning both the diffusion characteristics in diffusion-weighted images
(DWIs) and the anatomical features evident in the corresponding structural images
for efficiently imputing missing slices of DWIs in the incomplete part of the FOV.

Results: For evaluating the imputed slices, on the Wisconsin Registry for
Alzheimer’s Prevention (WRAP) dataset, the proposed framework achieved
PSNRb0 ¼ 22.397, SSIMb0 ¼ 0.905, PSNRb1300 ¼ 22.479, and SSIMb1300 ¼ 0.893;
on the National Alzheimer’s Coordinating Center (NACC) dataset, it achieved
PSNRb0 ¼ 21.304, SSIMb0 ¼ 0.892, PSNRb1300 ¼ 21.599, and SSIMb1300 ¼ 0.877.
The proposed framework improved the tractography accuracy, as demonstrated
by an increased average Dice score for 72 tracts (p < 0.001) on both the WRAP
and NACC datasets.

Conclusions: Results suggest that the proposed framework achieved sufficient
imputation performance in brain dMRI data with an incomplete FOV for improving
whole-brain tractography, thereby repairing the corrupted data. Our approach
achieved more accurate whole-brain tractography results with an extended and
complete FOV and reduced the uncertainty when analyzing bundles associated with
Alzheimer’s disease.
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1 Introduction
Diffusion magnetic resonance imaging (dMRI) offers a non-invasive, in vivo approach for meas-
uring the diffusion of water molecules in biological tissues and has become a well-established
technique for studying human white matter microstructure and connectivity.1–4 The movement of
water molecules is often restricted by biological structures such as cell membranes and axonal
fibers, resulting in a preferred direction of movement that reflects the properties of tissues.
A standard dMRI scan is designed to acquire multiple volumes under varying magnetic fields
(i.e., by applying diffusion-encoding magnetic gradient pulse from a number of non‐collinear
directions), such that each volume selectively captures the propensity of water diffusivity in
a particular direction, thereby yielding diffusion-weighted images (DWIs). The effect of the
gradient pulse, both in terms of time and strength, is characterized by a parameter known as
the b-value. In addition, the orientation of the gradient is commonly specified as a unit-length
vector known as the b-vector, and the high diffusivity of water molecules along the gradient
orientation yields high signal attenuation. Reference volumes with no diffusion signal attenu-
ation, i.e., with a b-value equal to 0 s∕mm2 and a b-vector equal to (0, 0, 0), are also required
to be acquired during a dMRI scan and are often referred to as b0 images. To quantify the proper-
ties of water diffusion in brain tissues, voxel-wise scalar metrics such as mean diffusivity and
fractional anisotropy are derived from an assumed diffusion tensor (ellipsoidal) model.5 In addi-
tion, to study whole-brain physical connections, fiber tractography methods delineate the white
matter fiber pathways connecting regions of the brain.6,7 In the last decade, dMRI and its related
diffusion measures have become the method of choice to study brain tissue properties and
changes associated with Alzheimer’s disease, stroke, schizophrenia, and aging.6,8–11

Despite the unique clinical capabilities and potential, the whole-brain volumetric and trac-
tography analyses brought by dMRI can be severely impeded by an incomplete field of view
(FOV), commonly caused by patient misalignment, suboptimal scan plan selection, or necessity
in protocol design. A major limitation of dMRI is the extended acquisition time compared with
traditional structural MRI due to the acquisition of volumes with varying diffusion-encoding
gradient directions. Typically, protocols with more than 31 directions are recommended for
longitudinal studies of disease progression or treatment effects.12 The long acquisition time fur-
ther amplifies clinical constraints and imaging artifacts in dMRI such as inter-volume motion and
eddy-current-induced artifacts.13–15 As a result, the FOV may be incomplete for whole-brain
scans in suboptimal dMRI acquisition. This then leads to corrupt data with a sequence of brain
slices missing in the incomplete part of the FOV, which is one of the most common issues iden-
tified during quality assurance of dMRI data.16 In a recent study of dMRI datasets, we found 103
cases with incomplete FOVs out of a total of 1057 cases that failed quality assurance of dMRI
preprocessing. The estimated thickness for the missing regions ranged from 1 to 32 mm (Fig. 1).
The loss of information from the missing slices not only prevents analyses in those missing
regions but may also affect dMRI-derived analyses of acquired regions (Fig. 2) as the global
patterns based on the whole brain are impacted. Furthermore, corrupted data with missing slices
introduce bias and inaccuracies for whole-brain analyses, posing significant challenges for longi-
tudinal studies in diagnosing and monitoring neurological developments, including Alzheimer’s
disease.17,18

As reacquiring the data is not a feasible solution, imputing the missing slices directly from
existing scans with an incomplete FOV provides a desirable alternative to discarding the affected
but valuable data or re-engineering all downstream methods to accommodate the effects of miss-
ing data. Many works have been dedicated to alleviating the impact of missing dMRI data.
RESTORE19 is among the pioneering efforts that introduced an iteratively reweighted least-
squares regression for robust estimation of the diffusion tensor model by outlier rejection.
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Recently, TW-BAG20 is an inpainting neural network method for repairing the diffusion tensors
in cropped regions. For the diffusion kurtosis model,21 which further quantifies the non-
Gaussianity of water diffusion in the brain, REKINDLE22 was proposed as a robust estimation
procedure to address the increased sensitivity to artifacts and model complexity. However,
designing specific methods for each of the numerous and rapidly evolving diffusion and micro-
structural models would be challenging and inefficient. As an alternative, researchers have also
put efforts into repairing the raw DWI signals directly. FSL’s “eddy”23 and SHORE-based
method24 were developed to detect signal dropout and to impute the affected measurements
across acquired DWI volumes. However, these methods focus on the imputation of dropout slices
based on reference slice signals computed from multiple volumes and cannot be applied to the
FOVextension task in which no signals are available in the incomplete part of the FOV. A reliable
imputation of raw DWI signals for a contiguous sequence of regions in the incomplete part of
the FOV remains an unresolved task.

To propose a first solution for this task, we turn to the recent rapid advancements in deep
learning, which have shown great potential in image synthesis tasks for dMRI, such as distortion
correction,25 denoising,26–28 and registration.29,30 Directly generating a sequence of dMRI slices
in the incomplete part of the FOV, similar to the in-painting task in computer vision, can be
challenging, and how to maintain and improve the consistency between the synthesized and
observed regions remains an open question.31,32 Moreover, in medical image synthesis, it is
of greater significance for the synthesized regions to conform to the subject’s authentic

(a) (b) (c)

Fig. 2 Missing regions resulting from an incomplete FOV not only render analyses of those areas
impossible but can also impact the tractography performed in the acquired regions [as shown in
panel (b)], e.g., yielding missing streamlines of corticospinal tract (CST) compared with the refer-
ence [as shown in panel (a)]. Furthermore, whole-brain measurements derived from corrupted
data can lead to incorrect interpretations in longitudinal studies [as shown in panel (c)]: the meas-
urement from corrupted data (represented by the red dot for the “year3” session) might suggest
that the average length of the CST for this subject continues to decrease. This, however, may
contradict when correct measurements are considered (represented by green dots).

(a) (b)

Fig. 1 Visualization (a) and histogram (b) of 103 real cases of dMRI scans with an incomplete FOV
that failed quality assurance. In panel (a), horizontal red lines and background gray areas indicate
where the reduced FOV ends and its corresponding missing regions, respectively, with the esti-
mated position of a brain mask. The total cutoff distance from the reduced FOV to the top of the
brain is estimated using a corresponding and registered T1w image.
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anatomical structures rather than being merely visually realistic. This restrictive requirement of
anatomical alignment makes it difficult to naively adapt in-painting models, in which the outputs
are often diverse.33,34 However, advantageously, high-quality T1-weighted images are commonly
acquired as a default alongside a dMRI scan and can be utilized as an anatomical reference.
Existing works have shown promising results for integrating the additional anatomical informa-
tion from T1-weighted images into image synthesis methods for dMRI, such as correcting dif-
fusion distortion by synthesized b0 image,25 synthesizing high angular resolution dMRI data,35

and tractography estimation.36 Inspired by these findings, in this work, we propose a deep gen-
erative model framework that imputes the missing brain regions of a DWI in the incomplete part
of the FOV with extra information from the corresponding T1-weighted image. The proposed
model integrates both the diffusion information within the DWI and the structural information of
T1-weighted images for accurate imputation of missing slices. A combination of 2.5-dimensional
neural networks is proposed for efficient graphics processing unit (GPU) usage and reduced
application time. Cross-plane prediction corrections are further applied to improve the spatial
consistency.

We first train and evaluate our methods on one dMRI dataset with 343 subjects from the
same site. To assess generalizability and robustness, we subsequently perform an evaluation on
another dMRI dataset with 50 subjects from another site. We reported the missing DWI slice
imputation performance using the peak signal-to-noise ratio (PSNR) and the structural similarity
index measure (SSIM). We demonstrate that our approach can improve tractography accuracy for
both imputed and acquired brain regions to reduce uncertainty when analyzing bundles associ-
ated with Alzheimer’s disease.

The primary contributions of this paper are as follows: (1) we propose a framework that
imputes DWI conditioned on T1-weighted (T1w) images using a deep generative model. We
investigate the possibility of synthesizing multi-volume DWI in the incomplete parts of the
FOV, as an advancement of existing work that only synthesizes b0 images based on T1w images.
The deep generative model fills the gap that traditional imputation methods fail to address, spe-
cifically in imputing DWI slices in the incomplete parts of the FOV. (2) We demonstrate that the
imputation achieved by our work significantly increases the accuracy of whole-brain tractogra-
phy, thereby repairing corrupted DWI data and making it available for conducting downstream
tract analysis tasks.

2 Methods

2.1 Problem Setting
Given a diffusion-weighted image x ∈ R4 that may have an incomplete FOV, we want to learn
a mapping from observed image x to output image y ∈ R4, G∶x → y, such that y will have a
complete whole-brain FOV with imputed slices if necessary. To tackle the mapping of the DWI
with V volumes, we map each volume xv ∈ R3 ðv ¼ 1;2; 3; : : : ; VÞ separately to its correspond-
ing output volume yv ∈ R3 ðv ¼ 1;2; 3; : : : ; VÞ. Then, the output image y is obtained by com-
bining each output volume yv with the corresponding b-value and b-vector in the gradient table.
Directly predicting yv from xv can be difficult, given that there are infinite possible gradient
directions, each requiring unique feature learning and altogether making the representation
learning from xv complex. We utilize an available T1w image with a complete FOV xT1 ∈ R3

as an extra input, aiming to provide additional information on anatomical structures within xT1.
Furthermore, given the input pair fxT1; xvg, the same xT1 shared across all DWI volumes could
benefit the optimization of G because it allows the model to leverage a consistent structural
reference xT1 while learning to predict various missing slices in the DWI, focusing on their
unique and inherent contrast and directional characteristics within xv. Following the ideas
described above, Fig. 3 illustrates the comprehensive processing pipeline for the proposed frame-
work of imputing DWI volumes.

2.2 Datasets and Data Preprocessing
In this study, we initially selected the Wisconsin Registry for Alzheimer’s Prevention (WRAP)37

dataset as the primary source for training and evaluating our methodologies. The rationale behind
this choice is twofold. First, the WRAP dataset contains one of the most extensively corrupted
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dMRI data in terms of the significant missing regions of the brain close to 30 mm due to an
incomplete FOV. Second, WRAP was collected from a single site, making it an ideal starting
point for training and evaluating models without the concerns of variations across multiple sites.
Our first cohort on WRAP comprised 343 subjects, each possessing T1w image and single-shell
dMRI scans with a b-value of 1300 s∕mm2, the most frequent b-value acquired in WRAP. These
subjects were split into three distinct groups: 245 subjects for the training set, 49 for the val-
idation set, and 49 for the testing set. Next, to evaluate the robustness and generalizability of the
proposed method, we extended our analysis to include the National Alzheimer’s Coordinating
Center (NACC)38 dataset, which has a large number of dMRI scans sharing the same b-value of
1300 s∕mm2. Our second cohort comprised 49 testing subjects from the same site within NACC,
each possessing T1w image and single-shell dMRI scans with a b-value of 1300 s∕mm2. Table 1
presents the diagnosis information about the cohorts included in our study.

All DWIs were first preprocessed using the PreQual39 pipeline for correction of susceptibil-
ity-induced and eddy-current-induced artifacts, slice-wise imputation of mid-brain slices, inter-
volume motion, and denoising. Quality assurance checks were performed on PreQual prepro-
cessing reports and output images to ensure valid inputs and successful preprocessing of the data.
Next, intensity normalization was performed for each DWI separately, with the maximum value
set to the 99.9th percentile intensity and the minimum value set to 0. All volumes of one DWI
shared the same normalization parameters. The corresponding T1w image was normalized with
a maximum value of its 99.9th percentile intensity and a minimum value of 0. Then, the T1w
image was registered to the DWI by applying an affine transformation computed between the
T1w image and the average b0 image of the DWI using FSL’s epi reg.40 Then, both the T1w
image and all DWI volumes were resampled to 1 × 1 × 1 mm resolution and padded or cropped
to 256 × 256 × 256 voxels.

2.3 Model
The proposed neural networks for DWI imputation are presented in Fig. 4. For tackling the large
GPU memory required by learning the 3D mapping G∶fxT1; xvg → yv, we propose a 2.5D

Table 1 Subjects’ diagnosis on training, validation, and testing sessions for WRAP and NACC
datasets. The names of diagnosis follow the original subject’s demographic files.

WRAP NACC

Alzheimer’s
dementia

Mild cognitive
impairment

No cognitive
impairment Dementia Normal

Train 2 2 241 N/A N/A

Val 0 1 48 N/A N/A

Test 0 1 48 13 36

Fig. 3 Pipeline of the proposed FOV extension framework for imputing missing slices in the incom-
plete part of the FOV begins with PreQual preprocessing and intensity normalization for the DWI in
its original space. This is followed by processing the DWI to a normalized space, including resam-
pling and registration with its corresponding T1 image. Subsequently, the proposed 2.5D pix2pix
networks are employed to impute the missing slices in the normalized space, utilizing both the DWI
(incomplete FOV) and the corresponding T1 (complete FOV). Finally, the imputed regions are
resampled back to their original space and added to the original DWI. Sagittal views of a b0 volume
with an incomplete FOV at each pipeline stage are visualized.

Gao et al.: Field-of-view extension for brain diffusion MRI via deep generative models

Journal of Medical Imaging 044008-5 Jul∕Aug 2024 • Vol. 11(4)



framework to decompose G into two separate generators, Gsagittal and Gcoronal, and learn them
independently through small patches of 3D volume in sagittal and coronal views, respectively.
Each small patch contains a sequence of neighboring slices of the target slice (n for each side)
and is then used to predict a single slice in the sagittal and coronal views. The predictions from
the sagittal and coronal views are later merged by voxel averaging to obtain the final output
volume. We trained separate models to handle the distribution difference between DWI volumes
obtained with a b-value equal to 0 or 1300 s∕mm2, resulting in four generators in total:
Gb0_sagittal, Gb0_coronal, Gb1300_sagittal, and Gb1300_coronal. The axial view was not included in the
model because the axial slices of DWI in the incomplete FOV regions are not available and,
therefore, provide no information about the diffusion features for training. We use pix2pix41

as our generator G for its stable conditional image translation and L1 loss for preserving the

Fig. 4 Whole DWI imputation task is divided into four sub-tasks: imputing b0 volumes’ sagittal
slices, imputing b0 volumes’ coronal slices, imputing b1300 volumes’ sagittal slices, and imputing
b1300 volumes’ coronal slices. The proposed 2.5D networks contain four sub-networks that share
the same pix2pix network architecture, and each subnetwork is designed to process a specific sub-
task for b0 or b1300 images with their sagittal or coronal slices. During training, random regions are
cut off from either top or bottom of brain to obtain training DWI data with an incomplete FOV, and
the subnetworks are optimized to make the imputation of the cutoff regions using Eq. (3). In the
testing or application case, for each DWI volume with an incomplete FOV, its corresponding sag-
ittal and coronal subnetworks each output an imputed volume by combining every imputed sagittal
or coronal slice, respectively. These two imputed volumes are then merged into one volume to
improve 3D consistency. The imputation regions of the final merged volume are sampled back
to the original subject space and are added to the original DWI volume.
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underlying context of the image,42 which is critical for medical image synthesis tasks. The final
objective for every G is

EQ-TARGET;temp:intralink-;e001;117;712LGANðG;DÞ ¼ Eyv ½log DðyvÞ� þExv ½logð1 −DðGðxT1; xvÞÞ�; (1)

EQ-TARGET;temp:intralink-;e002;117;676LL1ðGÞ ¼ Exv;yv ½kyv − GðxT1; xvÞk1�; (2)

EQ-TARGET;temp:intralink-;e003;117;657G� ¼ arg minG maxD LGANðG;DÞþ λLL1ðGÞ; (3)

where D is a discriminator to distinguish if the output of generator G looks real.
During training, first, a DWI volume and its corresponding T1w image (registered as in data

preprocessing) are randomly selected. The DWI volume is randomly cut off by 0 to 50 mm in the
normalized space, which covers the maximum missing distance, as previously shown in Fig. 1,
and for model generalizability, from either the top or bottom of the brain. The cutoff DWI is then
paired with its T1w image as input. The non-cutoff DWI volume is used as the ground truth for
the prediction. Then, small patches of the sagittal and coronal views are created: DWI and T1w
patches are concatenated along the plane direction. For example, if sagittal DWI and T1w patches
are both ð2nþ 1Þ × 256 × 256, their concatenation will be ðð2nþ 1Þþ ð2nþ 1ÞÞ × 256 × 256.
Finally, the corresponding Gsagittal and Gcoronal are optimized by stochastic gradient descent using
Eq. (3), where the expectation of xv and yv is approximated by mini-batches of image slices.
In our design, we train the model to predict the whole regions of the brain (both cutoff and non-
cutoff regions) instead of cutoff regions only. We reason that this can encourage the model to
learn global representations of the image and thus enhance the model’s robustness and general-
izability for various sizes of incomplete FOVs, including the case in which the input image
already has a complete FOV. We adopt the state-of-the-art PyTorch implementations (https://
github.com/junyanz/pytorch-CycleGAN-and-pix2pix) for training every generator. As suggested
in pix2pix, we choose the deterministic G for efficient model training. We used “resnet_9blocks”
as the network architecture for G to encourage the model to explore features within both T1w
images and DWIs. We set n ¼ 7 as the minimum requirement for maintaining 3D consistency.
The best model was selected by the imputation performance on the imputed regions only using
the validation set.

For testing and application, the model follows the same process to obtain the predicted vol-
ume. For the final framework output, we use only the slices in the missing regions of the pre-
dicted volume. The imputed regions are sampled back to the original subject space and then
combined with the originally acquired regions with an incomplete FOV. A mask m that covers
the acquired regions (ifm ¼ 1: acquired regions, else: missing regions) can be generated from the
testing data with any brain-masking methods (“median_otsu” as a simple example), and the final
output is therefore m⊙xv þð1 −mÞ⊙ỹv. For all images of the testing subjects, we first cropped
them by 30 mm to obtain testing images with an incomplete FOV. We then used the original full
FOV images as our ground truth reference images.

The model is implemented using Python 3.11.5 and PyTorch 2.3.0, along with CUDA 11.8.
All experiments were run on an Nvidia Quadro RTX 5000 with 16 GB of GPU memory. The
batch size is set to 24, and four parallel PyTorch data loading workers are used.

2.4 Analysis
First, we qualitatively and quantitatively evaluate the imputation errors on the WRAP dataset. We
report mean squared error (MSE), PSNR, and SSIM for the imputed regions compared with the
ground truth reference. The SSIM window is set to 7 for every dimension. Brain masks computed
by spatially localized atlas network tiles for intracranial measurements43 are applied to ensure
that the metrics are computed for brain areas only. In addition, we study the imputation perfor-
mance with respect to the missing slice distance and concerning different directions of the
diffusion-encoding gradient pulse.

Next, to test our hypothesis that an imputed image with a complete FOV, generated by our
approach, can improve whole-brain tractography for corrupted data with an incomplete FOV, we
conduct paired t-tests for 72 tracts and specifically investigate 12 of them that are commonly
associated with Alzheimer’s disease (AD). We present Bland–Altman plots for studying the
agreement of bundle shape measurements between the reference and our approach.
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Then, to test our hypothesis that T1w images can be helpful for multi-volume dMRI impu-
tation, we conduct an ablation study. This study also serves as a baseline for the proposed model
by training a model with the same neural network architecture and settings but without the input
of T1w images.

Finally, to evaluate the generalizability of our methods, we report the imputation errors using
PSNR and SSIM on an additional NACC dataset. We also conduct the same tractography and
bundle analysis on the NACC dataset.

3 Results

3.1 Imputation of Missing Slices
In general, the proposed method is capable of imputing visually similar slices for both the top and
bottom of the brain, with similar global contrast and anatomical patterns compared with the
ground truth reference. The major differences observed were at the boundaries between the white
matter and the gray matter (Fig. 5). The imputation errors increase when the imputed slice is
located toward the edges of the brain, i.e., distant from its nearest acquired regions (Figs. 6 and
7). MSE, PSNR, and SSIM for the imputed slices of the testing subjects are recorded in Table 2.
In addition, we studied how the imputation performance can vary in relation to the directions of
the diffusion-encoding gradient pulse. The apparent diffusion coefficient (ADC) was computed
for 40 directions within the testing subjects. The proposed method showed no obvious bias
toward specific directions as evidenced by the similar PSNR of ADC observed across all direc-
tions (Fig. 8).

3.2 Bundle Analyses
We are interested in how our approach can help repair the bundles and increase the tractography
accuracy within both the acquired and imputed regions. To evaluate this, we ran Tractseg44 on
images with an incomplete FOV, their imputed image generated by our approach, and their
ground truth reference images with a complete FOV. In particular, we studied a group of
12 tracts, including Rostrum (CC_1), Genu (CC_2), Isthmus (CC_6), and Splenium (CC_7) of
the corpus callosum (CC) as well as left and right cingulum (CG), fornix (FX), Inferior occipito-
frontal fascicle (IFO), and superior longitudinal fascicle I (SLF_I). These tracts are commonly
associated with Alzheimer’s disease (AD)45–59 and were examined to explore the potential
clinical benefits of the proposed framework.

(a) (b)

Fig. 5 Imputation for both the top (a) and bottom (a) of the brain. Red and blue indicate that the
imputed intensity is larger or smaller than the ground truth, respectively. The imputation achieved
similar global contrast and anatomical patterns compared with the ground truth reference. A closer
examination of local areas, as indicated by the difference image, reveals large imputation errors
at the boundaries between the white matter and the gray matter and at the edges of the brain.
In addition, the proposed framework tends to make blurry imputation, thereby losing the high-
frequency information that details the brain structure.
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(a) (b)

Fig. 6 Axial slice imputations for b0 images (a) and b1300 images (b). The color lookup tables are
adjusted with different intensity ranges for a better display of diffusion-weighted volumes. Each
column represents the distance to the nearest acquired slice in millimeters (mm). Red and blue
indicate that the imputed intensity is larger or smaller than the ground truth reference, respectively.
Consistent with Fig. 5, the proposed framework performs imputations that globally align with
the ground truth reference, albeit with a blurrier appearance. In addition, increasing imputation
errors are observed as the distance of the imputed slices increases, for both b0 and b1300
images.

Fig. 7 Imputation performance with respect to the distance from the top or bottom of the brain,
assuming a complete brain. The larger the distance is, the closer it is to the acquired region. Both
PSNR and SSIM metrics for b0 and b1300 images show an ascending trend, indicating an improv-
ing imputation accuracy when approaching the nearest acquired region, and a higher error margin
in slices adjacent to the top or bottom of the brain. At a 30 mm distance, which is approximately the
closest missing slice to the acquired brain region, the imputation accuracy markedly improves, as
evidenced by the rising tail of each plotted line.

Table 2 Average MSE, PSNR, and SSIM (3D) for imputation regions of testing data on theWRAP
and NACC datasets.

WRAP NACC

b0 images b1300 images b0 images b1300 images

Baseline (no T1w) MSE 45.421 ± 25.106 15.843 ± 3.741 31.552 ± 17.117 8.528 ± 2.071

PSNR 16.679 ± 0.976 6.458 ± 1.769 16.764 ± 1.358 7.185 ± 1.606

SSIM 0.691 ± 0.066 0.255 ± 0.079 0.727 ± 0.051 0.279 ± 0.071

Proposed model MSE 12.483 ± 8.041 0.418 ± 0.192 11.007 ± 5.566 0.320 ± 0.141

PSNR 22.397 ± 1.573 22.479 ± 1.560 21.304 ± 1.456 21.599 ± 1.299

SSIM 0.905 ± 0.047 0.893 ± 0.042 0.892 ± 0.040 0.877 ± 0.021

Our method achieved a slightly superior performance on b0 images than b1300 images, as indicated by the
SSIM metrics. The ablation of the T1w image inputs significantly decreases the imputation performance, as
demonstrated by all three metrics.
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As shown in Fig. 9, the tracts produced in the imputed regions outside of the previously
incomplete FOV are visually very similar to their ground truth reference. However, they lack
some streamlines around the edge of the brain. In addition, in the acquired regions of the original
DWI, our method improves the accuracy and completeness of tracts that are substantially affected
by an incomplete FOV. This improvement is particularly evident in tracts that were previously
undetected or only partially produced due to the incomplete FOV.

Quantitatively, the Dice similarity coefficient (Dice score) was computed for all 72 tracts
generated by Tractseg. For an accurate comparison, we analyze the tracts derived from images
with an incomplete FOV alongside those from their corresponding imputed images. Both are
matched against the same tract segmentation obtained from the ground truth image with a com-
plete FOV. Subsequently, we calculate two Dice scores: one comparing the reference tracts with
those from the incomplete FOV images, and another comparing the reference tracts with those
from the imputed images. For ease of reference, we label these scores as “Dice for Incomplete

Fig. 8 Imputation performance (PSNR) with respect to 40 directions of diffusion-encoding gradient
pulse evaluated by ADC. The average PSNR of ADC is 16.991� 1.221. No obvious visual bias is
observed in any direction. p-Value > 0.05 for the Kruskal–Wallis test (p ¼ 0.999), which fails to
reject the null hypothesis that the medians of each direction’s measurements are the same.

(a) (b)

Fig. 9 Tractography results of example tracts for images with an incomplete FOV alongside their
imputed counterparts and the ground truth references. The tracts produced through imputed
images closely resemble the ground truth reference tracts within the acquired regions but lack
some streamlines near the brain’s edge in the imputed regions. Our approach notably enhances
the accuracy and completeness of tracts that are significantly compromised with an incomplete
FOV. As shown in panel (a), corticospinal tract (CST) is completely not detected for images with an
incomplete FOV, but with imputation, CST is produced successfully. In panel (b), the image with
an incomplete FOV yields a partial Parieto-occipital pontine (POPT) only, yet the imputed image
rectifies and completes the tract’s overall shape and structure within the acquired regions.
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FOV” and “Dice for Imputation,” respectively. Our approach significantly improved (p < 0.001)
the quality of all 72 tracts on average in the acquired regions while achieving reasonable Dice
scores in imputed regions (Table 3). Likewise, the enhancement of the 12 tracts commonly asso-
ciated with AD in acquired regions was statistically significant (p < 0.001), as shown in Table 4.
In addition, we analyzed two distinct groups of tracts. One group contains 50 cutoff tracts with
ground truth tracts that can be cut off by an incomplete FOV, up to 30 mm from the top of the
brain. The other group includes 22 no-cutoff tracts with ground truth tracts that are situated far
from the top of the brain and, therefore, are not cut off by an incomplete FOV. For both groups,
our approach significantly improved the tractography accuracy (Table 5). For a detailed exami-
nation, a comprehensive Dice score comparison of all 72 tracts is presented in Fig. 10. Our
approach brought improvements to nearly every tract, particularly for projection pathways
heavily impacted by the absence of the top parts of the brain, such as the corticospinal tract
(CST). Finally, Bland–Altman plots for examining the bundle shape measurements are presented
in Fig. 11. Our approach demonstrates a much more consistent agreement with the reference
compared with measurements obtained from images with an incomplete FOV.

Table 3 Average Dice score for 72 tracts produced from an image with an incomplete FOV and
with its imputation.

WRAP NACC

Incomplete FOV With imputation Incomplete FOV With imputation

Acquired regions 0.909 ± 0.026 0.933 ± 0.021 0.884 ± 0.036 0.921 ± 0.022

Imputed regions N/A 0.646 ± 0.180 N/A 0.643 ± 0.173

The improvement of imputation over the incomplete FOV is statistically significant (p < 0.001) from paired t -test
on all tracts’ results (p ¼ 2.52 × 10−20 for WRAP and p ¼ 1.25 × 10−24 for NACC).

Table 4 Average Dice score for 12 tracts that are commonly associated with AD, produced from
an image with an incomplete FOV and with its imputation.

WRAP NACC

Incomplete FOV With imputation Incomplete FOV With imputation

Acquired regions 0.891 ± 0.040 0.920 ± 0.037 0.858 ± 0.059 0.907 ± 0.040

Imputed regions N/A 0.615 ± 0.281 N/A 0.596 ± 0.256

The improvement of imputation over the incomplete FOV is statistically significant (p < 0.001) from paired t -test
on AD tracts’ results (p ¼ 0.0006 for WRAP, p ¼ 0.00005 for NACC).

Table 5 Average Dice score for cutoff tracts with ground truth tracts that are cut off by an incom-
plete FOV and no-cutoff tracts with ground truth tracts that are not cut off by an incomplete FOV in
the acquired regions.

WRAP NACC

Incomplete FOV With imputation Incomplete FOV With imputation

Cutoff tracts 0.910 ± 0.024 0.939 ± 0.010 0.887 ± 0.029 0.926 ± 0.012

No-cutoff tracts 0.905 ± 0.032 0.918 ± 0.0294 0.879 ± 0.048 0.909 ± 0.034

Our approach can improve the tractography accuracy regardless of whether the ground truth tracts are cut off
by an incomplete FOV or not. The improvement is statistically significant (p < 0.001) for both cutoff tracts
(p ¼ 8.41 × 10−17 for WRAP, p ¼ 6.26 × 10−18 for NACC) and for no-cutoff tracts (p ¼ 5.76 × 10−12 for
WRAP, p ¼ 2.06 × 10−8 for NACC).
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4 Discussion
In the task of imputing missing DWI slices, our framework exhibited a marginally better per-
formance on b0 images compared with b1300 images. This can be attributed to the similarity in
patterns between b0 images and T1-weighted images, which makes their joint distribution sim-
pler for the model to learn. This contrasts with b1300 images that require the model to understand
additional conditional distributions across various gradient directions. A notable observation was
that most imputation errors occurred at the boundary between the white matter and the gray
matter. This is likely because our method tends to predict average intensities over the entire

Fig. 10 In both the WRAP and NACC datasets, the proposed framework enhances tractography
accuracy through FOV extension (with imputation), as evidenced by the overall higher Dice scores
compared with those with an incomplete FOV. Tracts commonly associated with AD have their
names in red. Tracts that are not cutoff by an incomplete FOV have green shading in their boxplots.
Paired t -tests were conducted for each tract, and the statistical significance is denoted by
“*” (p < 0.05), “**” (p < 0.01), and “N.S.” (not significant).
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image, which compromises its ability to synthesize sharp intensity contrasts in these areas. In
addition, our method faces greater challenges in imputing slices at the brain’s edges. This is
evident from the dramatic decrease in PSNR and SSIM when the imputed slice is near the top
or bottom of the brain. These imputation challenges therefore affect the tractography results,
particularly the difficulties encountered in producing tracts in the same areas.

The comparison of the baseline model with the ablation of T1w image inputs (Table 2)
confirms our hypothesis that T1w images are useful for multi-volume DWI imputation. In addi-
tion, we noticed that the performance decreases are much larger for the b1300 images than the

Fig. 11 Bland–Altman plots of the agreement for bundle average length compared with reference.
The best 10% measurements with the smallest errors are denoted in green, and the worst 10%
measurements with the largest errors are denoted in red. Tracts commonly associated with
Alzheimer’s disease (AD) that can be impacted by an incomplete FOV (up to 30 mm from the top
of the brain), specifically CC_1, CC_2, CC_6, CC_7, CG, FX, IFO, and SLF_I, are examined. Our
approach effectively reduces the significant variations in measurements caused by incomplete
FOVs. In the “Reference versus with Imputation” figures, the measurement distribution is tightly
clustered and oriented toward the middle dashed line, indicating coherent and consistent agree-
ment with the reference. By contrast, the “Reference versus Incomplete FOV” figures show that
the measurements span a large range on the y -axis, suggesting substantial errors and variations.
By providing consistent measurements of bundles associated with AD, our method can reduce
the uncertainty in AD studies that may contain corrupted data due to an incomplete FOV.
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b0 images. This finding supports our motivation that the anatomical information contained in
T1w images provides a useful reference for imputing DWI across various directions of water
diffusion. It further strengthens the contribution of the proposed framework, which learns to
integrate features from both T1w images and multi-volume dMRI scans.

It is noteworthy that our approach enhances both the cutoff and no-cutoff tracts. This
improvement likely stems from the critical role of whole-brain information in tractography
methods. Our findings reinforce the idea that imputing the brain scans in the incomplete part
of the FOV can enhance whole-brain tractography and bundle analyses. Consequently, this
method holds promise for reducing uncertainty in clinical practice by effectively repairing
corrupted data.

5 Conclusion
Completing the missing dMRI data is a crucial task forconducting valuable but time-consuming
dMRI scans. In this work, we introduced the first method to solve the FOV extension task for
DWI. Our framework successfully imputed missing slices in corrupted DWI with an incomplete
FOV, leveraging information from both diffusion-weighted and T1-weighted images. We evalu-
ated the imputation performance qualitatively and quantitatively on both b0 and b1300 DWI
volumes on the WRAP and NACC datasets. The results demonstrated that our model not only
effectively imputed the missing DWI slices but also improved subsequent tractography tasks.
Most notably, the enhanced accuracy and completeness of tractography and bundle analyses,
facilitated by our approach in both imputed and observed regions, underscore the substantial
potential in effectively repairing corrupted dMRI data. Future research may focus on advancing
the generative model to learn features conditioned on the diffusion signal attenuation ratio S∕S0.

6 Appendix

6.1 Training Graphs
The training graphs for the b0 model and b1300 model are presented in Fig. 12.
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Fig. 12 Training graphs for b0 model (a)–(d) and b1300 model (e)–(h). During training, the losses
of the discriminator and generator balance each other, demonstrating stable training for their min–
max game. The L1 loss of the generator shows a clear decreasing trend and eventually converges.
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Code and Data Availability
Code can be shared upon request. The data were used under agreement for this study and are
therefore not publicly available. More information about the datasets can be found at NACC
(https://www.naccdata.org/) and WRAP (https://wrap.wisc.edu/).
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