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Abstract. Cancer is the second leading cause of death in US after cardiovascular disease. Image-based com-
puter-aided diagnosis can assist physicians to efficiently diagnose cancers in early stages. Existing computer-
aided algorithms use hand-crafted features such as wavelet coefficients, co-occurrence matrix features, and
recently, histogram of shearlet coefficients for classification of cancerous tissues and cells in images. These
hand-crafted features often lack generalizability since every cancerous tissue and cell has a specific texture,
structure, and shape. An alternative approach is to use convolutional neural networks (CNNs) to learn the most
appropriate feature abstractions directly from the data and handle the limitations of hand-crafted features.
A framework for breast cancer detection and prostate Gleason grading using CNN trained on images along
with the magnitude and phase of shearlet coefficients is presented. Particularly, we apply shearlet transform
on images and extract the magnitude and phase of shearlet coefficients. Then we feed shearlet features
along with the original images to our CNN consisting of multiple layers of convolution, max pooling, and
fully connected layers. Our experiments show that using the magnitude and phase of shearlet coefficients as
extra information to the network can improve the accuracy of detection and generalize better compared to
the state-of-the-art methods that rely on hand-crafted features. This study expands the application of deep
neural networks into the field of medical image analysis, which is a difficult domain considering the limited
medical data available for such analysis. © 2016 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.3

.4.044501]
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1 Introduction
It is estimated that about 1,685,210 new cases of cancer will
occur in US during 2016.1 Prostate and breast cancers are the
second most dominant causes of death among cancers in
males and females, respectively.1 Cancer cells can transfer to
other tissues and develop new tumors. Hence, it is vital to diag-
nose and grade cancer in early stages and provide necessary
treatment. Histological analysis of tissue slides stained using
hematoxylin and eosin (H&E) is the main approach for cancer
detection and grading. This process involves a pathologist
examining large areas of benign tissue to finally detect the
areas of malignancy. Therefore, cancer detection is very time-
consuming and challenging. The Gleason grading system is
the main approach for prostate grading,2 which classifies the
prostate cancer as grades 1 to 5 with increasing malignancy
as the grade increases. The Gleason score is calculated using
the sum of the two most dominant Gleason grades inside a tissue
and ranges from 2 to 10. Patients with a combined score between
2 and 4 mostly survive while patients with a score of 8 to 10
have a higher mortality rate.2 Automating the cancer diagnosis
and the grading process can reduce the time needed by pathol-
ogists and remove the inter- and intraobserver variations.3

Automated medical image classification is an important
research area which utilizes different feature detection and rep-
resentation techniques. These features can be classified into

two main categories: hand-crafted and learned features. Hand-
crafted features are based on the pathologists’ approaches for
cancer diagnosis and grading. Pathologists scan tissue slides
and try to find symptoms of tumor progress including irregularly
shaped nuclei and lack of differentiation. Therefore, most of
automated histological analysis methods first segment the cell
nuclei, then extract features from cell nuclei and use them
for classification.4–6 For example, Boucheron et al.4 performed
image segmentation on histopathology images of breast and
used the extracted features for breast cancer detection. Farjam
et al.5 segmented the prostate glands and extracted structural fea-
tures from them and used them in a tree-structured algorithm for
automatic Gleason grading of prostate. Stotzka et al.6 used fea-
tures extracted from cell nuclei along with neural networks for
automatic grading of the prostate. Some other techniques that
used hand-crafted features are based on texture, color, and mor-
phological features.7–12 Jafari-Khouzani and Soltanian-Zadeh7

extracted energy and entropy from multiwavelets coefficients
and used them for the task of automatic Gleason grading of pros-
tate. They used the k-nearest neighbor algorithm to classify
images. Tabesh et al.8 extracted color, texture, and morphomet-
ric features from microscopic images of prostate and combined
them and used them for prostate cancer diagnosis and Gleason
grading. In an earlier study,9 we extracted features from multi-
decomposition levels of shearlet filters and used the histogram
of shearlet coefficients (HSCs) for the task of classification of
benign and malignant breast slides using support vector machine
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(SVM) and achieved 75% classification accuracy. We also used
HSC for prostate cancer detection of histological images10 and
magnetic resonance (MR) images11 and achieved 100% and
97% classification accuracy, respectively. In a recent study,12

we extracted multiple features from the histological images of
prostate cancer and used the multiple kernel learning (MKL)
algorithm for fusing the features. Then we used SVM equipped
with MKL for the classification of prostate slides with different
Gleason grades.

Most of the methods mentioned above merge different hand-
crafted features to represent the texture of histopathology
images. These methods usually include some preprocessing
(e.g., segmentation) and the final classification result depends
on the accuracy of the previous steps. In addition, these hand-
crafted features are designed for a specific type of problem.
It is time-consuming to design a new set of features and they
are not easily applicable on different datasets. Furthermore,
some of these hand-crafted features have inherent limitations
that make them less efficient for complex tasks. A good example
would be the wavelet transform, which has been widely used for
different applications including cancer diagnosis and grading.5–8

Wavelets do not have directional sensitivity, which makes them
unsuitable for detecting directional features. That was the
motive for using shearlets instead of wavelets in our previous
studies9–12 and in this paper as well. On the other hand, recent
feature learning methods have gained a lot of attention due to the
success of deep neural networks methods in computer vision
applications. The advances in computational power and the
availability of large training databases also played an important
role in the development of deep neural networks.13 Deep learn-
ing (DL) is a subset of machine learning models that represents
high-level abstractions extracted directly from images using
nonlinear transformations.13,14 The main advantage of DL meth-
ods is their ability to form hierarchical representations of data by
deriving higher level features from lower level features using
nonlinear processing units.13 Therefore, despite hand-crafted
features, learned features do not need any preprocessing and
can easily be transferred to different applications since they are
data-driven.15 These methods often outperform traditional
approaches that use hand-crafted features.16–19 Cruz-Roa et al.15

proposed a three-layer convolutional neural network (CNN)
method for invasive ductal carcinoma detection in histopathol-
ogy images of breast cancer and compared their method with
hand-crafted features. They reported 6% improvement in the
classification accuracy when using their CNN. Liao et al.16 pro-
posed a stacked-independent subspace analysis DL framework
for prostate T2 MR image segmentation. They reported 3%
improvement in segmentation accuracy when using their DL
framework. Couture et al.17 proposed a sparse coding-based
hierarchical feature learning method for breast cancer detection
in histopathology images. They were able to increase the clas-
sification accuracy by 6% using their proposed feature learning
method. Cireşan et al.18 presented a DL method based on max
pooling for mitosis detection in histology images of breast
cancer. They won the International Conference on Pattern
Recognition 2012 competition. Li et al.19 used shearlet trans-
form and deep neural networks for image quality assessment.
They extracted features using the sum of subband shearlet coef-
ficients and used stacked autoencoders as their main neural net-
work building blocks. They used a softmax classifier to assess
the quality of images in their dataset. In this paper, we propose a
shearlet-based deep neural network method for breast cancer

detection and Gleason grading of prostate. To the best of our
knowledge, this is the first time that shearlet transform and
DL are employed together for medical image classification.

Our main contribution in this paper is threefold. First, we
propose using the phase of shearlet coefficients as a primary fea-
ture for general purpose microscopic medical image classifica-
tion. This is the first study that utilizes the phase of shearlets for
such applications. Shearlet transform20 is a directional multi-
scale representation system with affine properties which can
detect anisotropic features at different orientations and scales.
Most of the signal’s information is carried by the phase21 and
the phase features are invariant to noise and image contrast.22

However, since the phase information is nontrivial, it is difficult
to design and hand-craft phase features that work as a general
approach. This motivated us to further improve our proposed
method as follows. Second, we add the magnitude of shearlet
coefficients and the RGB images to the phase features. The mag-
nitude of shearlet coefficients is a direct representative of the
singularities in the image and the higher the magnitude, the
higher the possibility of an edge occurring in that location.23

The reason to include the RGB images is in the nature of
this problem. Since these images are H&E stained, the color
information is very important for breast cancer detection and
Gleason grading. As cancer happens and the grade increases,
the cell nuclei (stained blue) become larger and the cytoplasm
area (stained pink) shrinks. Therefore, we need to consider color
information as one of our primary features as well. Third, we
propose a deep neural network as an evolution process to
explore the aforementioned features (phase and magnitude of
shearlet coefficients and RGB images) and use them for cancer
detection and Gleason grading. Our CNN consists of multiple
layers of convolutions followed by max pooling along with fully
connected and dropout layers. In summary, our contributions are
listed below:

• Utilize phase of shearlet coefficients as a primary feature
for microscopic medical image classification.

• Empower magnitude of shearlet coefficients and RGB
images to support the phase features.

• Employ deep neural networks to explore the shearlet-
based image representations and RGB images and learn
features for image classification.

The proposed framework for microscopic medical image
classification is presented in Fig. 1. The remainder of this
paper is organized as follows. The proposed framework consist-
ing of shearlet transform and CNN is presented in Sec. 2. In
Sec. 3, the experimental setup and results along with the analysis
of the proposed framework are presented in detail. Finally in
Sec. 4, discussions and conclusions are presented.

2 Methodology
Prostate Gleason grading and breast cancer detection are mainly
based on texture features and characteristics of cancerous tissues
as shown in Fig. 2. It is noticeable that as the Gleason grade
increases [Fig. 2(b)], the texture becomes more detailed and
the epithelial cell nuclei grow in a random manner and spread
across the tissue. Therefore, we need an accurate and robust tex-
ture analysis technique. For this purpose, we propose to extract
our primary features from microscopic images using magnitude
and phase of shearlet coefficients and evolve these features
using DL techniques to make them more discriminative. In
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the following subsections, we will describe both shearlet trans-
form and DL in detail.

2.1 Shearlet Transform

Our proposed medical image analysis frameworks are based on
features extracted from the shearlet transform.20,24 Shearlet is a
multiscale expansion of traditional wavelet transform that is
efficiently developed to detect one- and two-dimensional (2-D)
directional features in images. Despite its predecessors, e.g.,
curvelet25 where the direction is defined using rotation, shearlet
defines the direction using shearing matrices, which makes
the discrete implementation of shearlets easier and also makes
the shearlet rotation-invariant.

The continuous shearlet transform20 is defined as the map-
ping for fϵR2

EQ-TARGET;temp:intralink-;e001;63;131SHΨfða; s; tÞ ≤ f;Ψa;s;t >; a > 0; sεR; tεR2; (1)

where the shearlets are defined as the following:

EQ-TARGET;temp:intralink-;e002;63;88Ψa;s;tðxÞ ¼ j detMa;sj−1
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. Ma;s is the multiplication of an anisotropic

dilation matrix (Aa) and a shearing matrix ( Bs), which makes
the shearlets well localized. By incorporating the translation,
scale, and shear parameters, shearlet is able to detect directional
singularities and geometrical features of multidimensional data.

A recent implementation of shearlets called “fast finite
shearlet transform” (FFST)24 uses fast Fourier transform for
discrete implementation of shearlets in the frequency domain
and consequently produces complex shearlet coefficients. Since
we wanted to extract the phase of shearlet coefficients, we
utilized this implementation of shearlets in this paper. The
phase along with the magnitude of shearlet coefficients is then
fed to a deep neural network for automatic Gleason grading and
breast cancers diagnosis.

Shearlet has some interesting mathematical properties.26,27

Shearlets are well localized; they are compactly supported in
the frequency domain. They have parabolic scaling and each
element of shearlets is supported on a pair of trapezoids. They
have high directional sensitivity. Shearlets are spatially localized

Fig. 2 Prostate tissue samples with different Gleason grade: (a) grade 2 and (b) grade 5.

Fig. 1 Block diagram of our proposed framework consisting of the training and test phases.
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and optimally sparse. To summarize, shearlets form a tight frame
of well-localized waveforms at different scales and directions
and are optimally sparse for representing edges in the images.
These properties make the shearlet a well-suited tool for
detecting singularities in different cancerous tissues in micro-
scopic images.

2.2 Features Extracted from Shearlet Transform

The success of a classification framework highly depends on
the choice of the feature representation method. In this paper,
we are interested in microscopic image classification, especially
in prostate Gleason grading and breast cancer diagnosis. Taking
another look at Fig. 2 highlights the changes that a tissue cell

goes through when the Gleason grade increases. As the Gleason
grade increases, epithelial cells randomly duplicate, disturbing
the normal structure of glands.4 The higher grade cells are
described by irregular morphology in nuclei, larger nuclei, and
less cytoplasm than lower grades as shown in Fig. 2. A similar
process happens to breast tissue when cancer develops. To re-
present these textural and morphological properties of the can-
cerous tissues, we apply the shearlet transform on microscopic
images and extract magnitude and phase of complex shearlet
coefficients and use them as our primary features. To better illus-
trate the effectiveness of the shearlet transform for microscopic
image classification, we show benign and malignant breast tis-
sue images along with their corresponding magnitude and phase
of shearlet coefficients from a single subband in Fig. 3. One can

Fig. 3 Sample images of breast tissue and their corresponding magnitude and phase of shearlet coef-
ficients from a single subband: (a) original benign, (b) original malignant, (c) magnitude of shearlets for
benign, (d) magnitude of shearlets for malignant, (e) phase of shearlets for benign, and (f) phase of shear-
lets for malignant.
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observe how the statistics of shearlet coefficients change as the
tissue transforms from benign to malignant. This effect is more
obvious in the magnitude of shearlet coefficients compared to
the phase of shearlet coefficients. This is because the magnitude
of shearlet coefficients is a direct representative of the singular-
ities in the image and the higher the magnitude, the higher the
possibility of an edge occurring in that location.23 One way to
represent statistical properties of shearlet coefficients is to
extract histograms from the magnitude of shearlet coefficients.
We previously used HSCs for breast cancer detection9 and pros-
tate cancer detection11 and Gleason grading.10,12 Figure 4 shows
the histogram of magnitude of shearlet coefficients for two
cases. Figure 4(a) shows the HSCs for a pair of benign and
malignant images, where they were correctly classified. The
shape and peaks of histograms are different for benign and
malignant images. Figure 4(b) shows a failed case where the
images were incorrectly classified using the HSC method.
The shape and the peaks of the histograms are very similar. One
possible reason is that the histogram does not include any infor-
mation on the local structure of the images.

The importance of phase in image processing and computer
vision has been investigated in previous studies.28–22 It was veri-
fied that most of the signal’s information is carried by the
phase21 and in some cases only the phase is enough to recon-
struct a signal.28 Also, the phase features are invariant to noise
and image contrast.22 However, since the phase information is
nontrivial, it is difficult to design and hand-craft phase features
that work as a general approach. For example, the histogram of
phase features does not sufficiently represent the changes in the
texture of an image since, despite magnitude, the phase does not
directly relate to strong edges. This motivated us to add the
phase information to the magnitude and learn features instead
of hand-crafting them in this paper. We extract the magnitude
and phase of shearlet coefficients as follows.

Assume we denote a complex shearlet coefficient by
cða; s; tÞ ¼ xþ iy, where x and y are the real and imaginary
parts of a complex shearlet coefficient and a, s, and t are the scale,
shear, and translation parameters of the shearlet transform, respec-
tively. We use the following equations to extract the magnitude
[magða; s; tÞ] and the phase [phaseða; s; tÞ] of the coefficients
EQ-TARGET;temp:intralink-;e003;63;119

magða; s; tÞ ¼ jcða; s; tÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

q

phaseða; s; tÞ ¼ ∡½cða; s; tÞ� ¼ tan−1
�y
x

�
: (3)

After we extracted the above features from each subband of
the shearlets, then we feed them to our deep neural network as
explained in Sec. 2.3.

2.3 Convolutional Neural Networks and Feature
Learning

Our primary features are magnitude and phase of shearlet coef-
ficients along with RGB data. As we previously explained,
hand-crafting the features is not a suitable method for complex
tasks (e.g., medical image analysis, where important clinical fea-
tures are used to represent objects such as cell nuclei). There-
fore, in the following, we propose our automatic feature learning
method based on deep neural networks.

Traditional machine learning methods have limited abilities
to analyze natural data that are represented in their raw form.
This is due to the fact that shallow classifiers need appropriate
feature extraction and representation techniques, which are sen-
sitive to the discriminative attributes of the input while invariant
to unimportant features (selectivity–invariance dilemma).29 On
the other hand, DL methods29–32 consist of multiple processing
layers to learn representations directly from raw data with multi-
ple levels of abstraction.29 For an image, the lower levels of
abstraction might correspond to the edges in the image, while
higher abstraction layers correspond to the objects in the image.

CNNs30 are feed-forward networks consisting of consecutive
pairs of convolutional and pooling layers along with fully
connected layers. They are especially designed for inputs rep-
resented as 2-D data (e.g., images). The input data first go
through pairs of convolution and pooling layers. Convolution
layers apply 2-D convolution on their inputs using rectangular
filters, which are applied in different positions of the input. The
convolution layer sums the responses from previous layer, adds
a bias term, and drives the result through a nonlinear activation
function. This process is repeated with different weights to cre-
ate multiple feature maps. The output of the convolutional layer
then usually passes through a pooling layer, which is a down-
sampling technique and results in translation-invariant features.
After a few pairs of convolution and pooling layers, one or more
fully connected layers combine the outputs into a feature vector.
The final layer is a fully connected layer with one neuron per
class (two for breast cancer diagnosis and four for Gleason grad-
ing), which are activated by a softmax classifier. Throughout the
whole process, the weights are optimized by minimizing the
misclassification error using stochastic gradient descent method.

Fig. 4 HSCs for (a) correctly classified benign and malignant pair, and (b) incorrectly classified pair.

Journal of Medical Imaging 044501-5 Oct–Dec 2016 • Vol. 3(4)

Rezaeilouyeh, Mollahosseini, and Mahoor: Microscopic medical image classification framework via deep learning. . .



The building blocks of our proposed deep neural network are
presented in Fig. 5. Figure 6 shows the architecture of our CNN.
The description of each layer in our CNN is presented in the
following:

1. Convolutional layer (conv): This layer applies a 2-D con-
volution on the input feature maps using 64 Gaussian

filters of size 5 × 5 initialized with a standard deviation
of 0.0001 and bias of zero. It steps 2 pixels between
each filter application. The output then goes through a
nonlinear rectified linear unit (ReLU) function, which
is defined as fðzÞ ¼ maxðz; 0Þ. This nonlinear activa-
tion function is important since it lets the network learn
abstracts using a small number of nodes. Otherwise,

Fig. 5 Block diagram of our deep neural network. The inputs are RGB images, magnitude of shearlet
coefficients from decomposition levels 1 to 5 (Mag1 to Mag5), and phase of shearlet coefficients from
decomposition levels 1 to 5 (Phase1 to Phase5). Then they go through separate CNNs and the results
are concatenated using a fully connected layer, which sends the final evolved features to softmax for
classification.

Fig. 6 Architecture of our CNN. The input is a 120 × 120 patch and can be either RGB or magnitude or
phase of shearlet coefficients. Then three layers of convolution and pooling are applied on the input back
to back to extract abstracts from the input. Finally, a fully connected layer combines the outputs of
convolution filters and sends out a single feature vector with the size of 64.
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if a linear function was used, the entire network would
be equivalent to a single-layer neural network.

2. Max-pooling layer: The purpose of the pooling layer is
to combine similar features into one; therefore, it is
a feature dimension reduction technique. It calculates
the maximum of a local patch of units inside a 3 × 3

region of input feature map and steps 2 pixels between
pooling regions. This makes the learned features
invariant to shifts and distortions.

3. Local response normalization (LRN): Performs nor-
malization on local input regions by dividing each
input by ½1þ α

n ð
P

ix
2
i Þ�β, where xi is the i 0th input,

n ¼ 3 is the size of local region, α ¼ 5 × 10−5, and
β ¼ 0.75.

4. Fully connected layer: Also known as inner product
this is one of the top layers of a CNN architecture. It
connects all the neurons in the previous layer to all the
neurons it has. It does not have any spatial informa-
tion. It takes the output of pooling layers as input
and combines them into a feature vector, similar to
a multilayer perceptron network.

5. Dropout: Dropout regularization33 randomly disables
portion of neurons in the training set. This prevents
the overfitting of learning results to the structure of the
network. In this paper, we chose the dropout threshold
to be 0.7.

6. Classification layer: The final layer of CNN is a fully
connected layer with one neuron per class (two for
breast cancer diagnosis and four for Gleason grading),
which is activated by the softmax classifier. Given the
training labels, it gives the accuracy of the classification.

3 Experiments and Results
In this section, first we describe our data preprocessing in detail.
Then we explain our feature extraction using shearlets transform
and CNN structure and parameters. Finally, we present our
results and compare them with the state-of-the-art methods
based on hand-crafted features.

3.1 Datasets and Data Preparation

We used two microscopic medical imaging datasets for our
experiments. The first set was the University of California,
Santa Barbara Biosegmentation Benchmark dataset.34 This data-
set contained 58 H&E-stained histopathology images of breast
tissue. Out of 58 total images, there were 26 malignant images
and 32 benign images. The second dataset was the prostate
Gleason grading dataset used by Jafari-Khouzani and Soltanian-
Zadeh.7 This dataset contained 100 H&E images of prostate
tissue samples. The images were of grades 2 to 5 and the mag-
nification was 100 with different sizes. All of the images were
captured in equal conditions of light. This dataset contained 21,
20, 32, and 27 images of grades 2, 3, 4, and 5, respectively.
Each image had a single grade. The images were graded by
expert pathologists who provided the ground truth data.

Since our CNN experiments needed a large amount of data,
we augmented both datasets. For this purpose, we performed
mirroring, patches, rotation, and scaling of the images. For

mirroring, we used three mirroring scenarios (horizontal, verti-
cal, and horizontal and vertical). For rotation, we rotated each
image 10 times with a rotation randomly chosen between 10 deg
and 90 deg. For scaling, we resized each image by a factor of 2.
For extracting patches out of images, we extracted them from
top left, top right, bottom left, bottom right, and center of the
image, each half the size of the original image. We also com-
bined the above operations to further augment the datasets.
Overall, we were able to augment each original image to 104
images. Therefore, we had 6032 augmented breast tissue images
and 10,400 augmented prostate tissue images. Throughout this
whole process, since we had different size images, we resized
the images to 128 × 128 pixels for normalization purposes.
Figure 7 shows all 104 augmented images of a sample breast
tissue image.

3.2 Experimental Setup

We had two types of primary features. One was the RGB
images, which were extracted as explained in Sec. 3.1. The
other primary features were shearlet features, which were
extracted as explained next.

3.2.1 Shearlet feature extraction

To apply shearlet transform on images, we utilized the FFST
MATLAB® toolbox provided by Häuser and Steidl.24 We
chose five scales (decomposition levels) for shearlet. The first
decomposition level was a low-pass filtered version of input.
We chose eight directions for the second and third levels and
16 directions for the fourth and fifth levels which led to 8, 8,
16, and 16 subbands, respectively. Therefore, overall we had
1þ 8þ 8þ 16þ 16 ¼ 49 subbands of shearlets. All these sub-
bands were of the same size as the input image (150 × 150). We
followed the procedure explained in Sec. 3.1 to extract the
magnitude [magða; s; tÞ] and phase [phaseða; s; tÞ] of shearlet
coefficients from each subband and fed them to our CNN
framework.

3.2.2 Convolutional neural networks framework and
feature evolution

As we explained in Sec. 2.3, our CNN consisted of
three layers of convolution and max-pooling. For convolutional
layers, we initialized 64 Gaussian filters of size 5 × 5 with a
standard deviation of 0.0001 and bias of zero. The step between
each filter application was 2 pixels. We used an ReLU function
as the activation function. For max-pooling layer, we applied it
on local patch of units inside a 3 × 3 region of input feature map
with a 2 pixels step between pooling regions. We used an LRN
layer to normalize local input regions. We used fully connected
layers for concatenating the outputs of CNNs.

We used the stochastic gradient descent algorithm with the
momentum of 0.9 and the weight decay of 0.05 in all experi-
ments. We used mini-batches of 32 samples due to the large
size of the network and the memory limitations. All models
were initialized with the learning rate of 0.001. These hyper-
parameters were empirically found based on the performance
of validation set over onefold of Gleason grading. The same
hyperparameters were used for the breast cancer experiment.

We also used dropout layers to prevent the overfitting of the
results to the structure of the CNN. The dropout threshold value
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of 0.7 was found to be the best based on the classification accu-
racy on validation set.

Our primary input features were RGB, magnitude, and phase
of shearlet coefficients. Figure 5 shows the overall structure of
our deep neural network. Mag1 to Mag5 were the magnitude of
shearlet coefficients from decomposition levels 1 to 5, respec-
tively. Phases 1 to 5 were the phase of shearlet coefficients from
decomposition level 1 to 5, respectively. We fed each one of our
inputs (RGB, Mag1 to Mag5, and phases 1 to 5) to a separate
CNN. The reason for separating RGB from shearlet data was
because they were of a different nature and, therefore, needed
separate processing. We separated the magnitude and phase of
shearlets for the same reason. We also processed shearlet coef-
ficients from different decomposition levels independently
because different decomposition levels represent features from
different scales.

Figure 8 visualizes the shearlet feature evolution as they go
through each convolutional layer. Figures 8(a) and 8(b) show the
first convolution layer output features for the first and third
decomposition level shearlet coefficients, respectively. The third
decomposition level shearlet coefficients represent more details
in the images with more directional sensitivity. Figures 8(c) and
8(d) show the same shearlet coefficients out of the second con-
volution. After the second convolution, the features become
more distinguishable.

3.3 Results

We evaluated our proposed microscopic image classification
framework for two tasks: breast cancer diagnosis and prostate
Gleason grading. Although both tasks contain similar input data
(H&E images), they are different in nature. One is to distinguish

cancerous from noncancer cells, while the other (i.e., Gleason
grading) is to evaluate how advanced the cancer is. Also,
they belong to different human tissues, therefore, the physiologi-
cal and textural information are different. We evaluated our
method against these different tasks to show the generality
and applicability of our method.

For each classification task, RGB images and extracted
shearlet features from input images were fed to our CNN frame-
work with the parameters explained in Sec. 3.2.2. For cross val-
idation, we used a fivefold cross-validation technique. We
divided our original datasets (nonaugmented) into five sets
and used four sets for training and one for testing. We repeated
this five times and reported the average classification accuracy.
We used the augmentation process during the training. The final
network is evaluated on the original images only. Therefore, all
images pertaining to a given case are either in the training or test
set (not in both). We had three different scenarios for CNN
experiments. In the first scenario, we used only RGB data as
input. In the second scenario, we combined RGB and magnitude
of shearlets and used them as input. Lastly, we combined RGB,
magnitude, and phase of shearlets and used them as input to
CNN. This helped us understand the contribution of each feature
set separately and when combined together. We were able to
significantly increase the classification accuracy (by 13% for
breast cancer diagnosis and 8% for Gleason grading) by com-
bining RGB and magnitude of shearlets. We further improved
the results by including phase information as well. To evaluate
the performance of our deep neural network, we compared the
results with the state-of-the-art methods based on hand-crafted
features using SVM. For SVM, we tried different kernels (linear,
polynomial, and RBF) with different parameters (polynomial
order of 1, 2, and 3 for polynomial kernel and sigma values

Fig. 7 Augmented images of a sample breast tissue image from our dataset.
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between 1 and 10,000 for Gaussian radial basis function kernel)
and chose the best kernel and parameters for each experiment.
Our experiments showed that CNN outperforms the hand-
crafted feature extraction methods.

Table 1 shows the classification results for breast cancer
diagnosis using our deep neural network method and state-of-
the-art methods. In addition to the classification accuracy, we
have also reported the sensitivity, specificity, F-1 score, and area
under the curve (AUC) as performance metrics. Table 1 shows the

average values of the each metric along with the standard devia-
tion values over fivefolds. It is obvious from the table that by
including the magnitude and phase of shearlet coefficients we
achieved higher performance metrics. Table 1 also shows the breast
cancer classification results using hand-crafted features. These
results show the superiority of our proposed method over hand-
crafted feature extraction methods for breast cancer detection.

Table 2 shows the classification results for automatic
Gleason grading using our deep neural network method and

Fig. 8 Feature evolution: (a) first convolutional layer output features for magnitude of shearlet coeffi-
cients from first decomposition level, (b) first convolutional layer output features for magnitude of shearlet
coefficients from third decomposition level, (c) second convolutional layer output features for magnitude
of shearlet coefficients from first decomposition level, and (d) third (last) convolutional layer output fea-
tures for magnitude of shearlet coefficients from third decomposition level.

Table 1 Classification results for breast cancer detection (mean� std).

Method Sensitivity Specificity F -1 Score AUC Accuracy

RGB 0.91� 0.08 0.59� 0.09 0.76� 0.05 0.68� 0.02 0.71� 0.02

RGB + magnitude of shearlets 1 0.62� 0.10 0.84� 0.03 0.78� 0.01 0.84� 0.01

RGB + magnitude + phase of shearlets 1 0.72� 0.10 0.89� 0.03 0.82� 0.01 0.86� 0.03

Boucheron et al.4 — — — — 0.74

Rezaeilouyeh et al.9 0.93� 0.09 0.60� 0.10 0.79� 0.06 0.74� 0.02 0.74� 0.09

Note: Bold values indicate the best results.
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state-of-the-art hand-crafted feature extraction methods. Similar
to breast cancer diagnosis, by including the magnitude and
phase of shearlet coefficients we improved the classification
accuracy. Table 2 also shows the Gleason grading classification
results using hand-crafted features. For Jafari-Khouzani and
Soltanian-Zadeh,7 we extracted the energy and entropy of multi-
wavelets and used them as features in the SVM classifier. For the
wavelet packet35 and co-occurrence matrix36 features, we used
MATLAB®.37 We used the MATLAB’s® image processing and
wavelet toolbox for this purpose. These results show the advan-
tage of our proposed method over state-of-the-art hand-crafted
feature extraction methods for Gleason grading.

The receiver operating characteristic (ROC) curve for breast
cancer diagnosis is shown in Fig. 9. In this figure, we compare
hand-crafted feature extraction method9 with the best results
from our deep CNN method. An ROC curve depicts the true
positive rate against the false positive rate for different thresh-
olds. It can be observed from Fig. 9 and based on their AUC
values that our CNN method outperforms the best hand-crafted
feature extraction method.9

We also report the confusion matrix (%) for the automatic
Gleason grading experiments in Tables 3 and 4. Table 3 shows
the confusion matrix for Gleason grading using the best hand-
crafted feature extraction method,7 while Table 4 shows the con-
fusion matrix using our best CNN-based method. A confusion
matrix is a table that is used to visualize the performance of
a classifier using true and predicted labels. Since we have
four classes in Gleason grading (grades 1 to 4), our confusion
matrix is 4 × 4. It is noticeable that using our proposed method
the misclassified cases only belong to Gleason grade 5. This is in
accordance with the pathologists diagnosis since distinguishing
grade 5 from grade 4 is the most difficult task in Gleason
grading.8 Our CNN method is 15% better than hand-crafted

Table 2 Classification results for Gleason grading (mean� std).

Method Sensitivity Specificity F -1 Score AUC Accuracy

RGB 0.80� 0.02 0.91� 0.01 0.71� 0.01 0.72� 0.02 0.76� 0.06

RGB + magnitude of shearlets 0.84� 0.01 0.91� 0.02 0.81� 0.03 0.79� 0.02 0.84� 0.04

RGB + magnitude + phase of shearlets 0.89� 0.01 0.94� 0.01 0.85� 0.02 0.84� 0.01 0.88� 0.05

Jafari-Khouzani and Soltanian-Zadeh7 0.82� 0.01 0.91� 0.02 0.73� 0.02 0.78� 0.02 0.83� 0.09

Rezaeilouyeh et al.10 0.78� 0.03 0.91� 0.01 0.69� 0.03 0.74� 0.01 0.78� 0.11

Wavelet packet35 0.82� 0.02 0.92� 0.01 0.73� 0.01 0.74� 0.02 0.78� 0.07

Co-occurrence matrix36 0.81� 0.01 0.92� 0.01 0.72� 0.02 0.73� 0.02 0.77� 0.09

Note: Bold values indicate the best results.

Fig. 9 ROC curves for breast cancer diagnosis experiment using
the best hand-crafted feature extraction method9 and our best deep
neural network results.

Table 3 Confusion matrix (%) for Gleason grading experiment using
the best hand-crafted feature extraction method7.

True label

Grade 2 Grade 3 Grade 4 Grade 5

Grade 2 100 0 0 0

Grade 3 0 100 0 0

Grade 4 0 3 97 0

Grade 5 0 33 26 41

Predicted label

Table 4 Confusion matrix (%) for Gleason grading experiment using
our deep neural network.

True label

Grade 2 Grade 3 Grade 4 Grade 5

Grade 2 100 0 0 0

Grade 3 0 100 0 0

Grade 4 0 0 100 0

Grade 5 7 0 37 56

Predicted label
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features in distinguishing between grades 4 and 5 (41% versus
56%). In addition, using hand-crafted feature extraction meth-
ods,7 there are some misclassifications between grades 4 and 3
in addition to grades 4 and 5, which proves the advantage of
our method.

4 Discussions and Conclusions
Early diagnosis of cancer and grading its severity are very
important tasks that can save a patients’ life. Automating this
process can help pathologists to have a faster and more reliable
diagnosis. Most of the automatic cancer diagnosis and grading
techniques use hand-crafted features that need to be fine-tuned
for different tasks.

In this paper, we proposed a framework for automatic breast
cancer detection and prostate Gleason grading. First, we
extracted the magnitude and phase of complex shearlet coeffi-
cients from the histological images. Shearlet transform is a mul-
tiscale directional system that has proven itself suitable for
texture analysis of microscopic images in our previous studies.
Then we combined the shearlet features with imagery data and
used them to train CNNs. This feature learning process further
enhanced the features and made them more discriminative. Then
we used softmax classifier to distinguish different microscopic
images. We were able to achieve high-classification accuracy on
both breast cancer and Gleason grading datasets using our pro-
posed method. We also compared our method against state-of-
the-art methods that use hand-crafted features. We were able to
outperform those methods in both cases.

One of the main advantages of our method is that it does not
make any assumptions beforehand about the visual features of
cancerous tissues. We consider shearlet transform as a general
mathematical tool and extract features without any hand-craft-
ing. Our deep neural network takes care of the feature learning
task. Future work includes exploring the possibility of using
deeper architectures for CNN and also expanding the applica-
tions of our method to different medical image analysis tasks.
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