Sabine Müller, Iva Farag, Joachim Weickert, Yvonne Braun, André Lollert, Jonas Dobberstein, Andreas Hötker, Norbert Graf
Journal of Medical Imaging, Vol. 6, Issue 03, 034001, (July 2019) https://doi.org/10.1117/1.JMI.6.3.034001
TOPICS: Tumors, Image segmentation, Magnetic resonance imaging, Tissues, Medical imaging, Image processing algorithms and systems, Data acquisition, Expectation maximization algorithms, Diagnostics, Kidney
Wilms’ tumor is one of the most frequent malignant solid tumors in childhood. Accurate segmentation of tumor tissue is a key step during therapy and treatment planning. Since it is difficult to obtain a comprehensive set of tumor data of children, there is no benchmark so far allowing evaluation of the quality of human or computer-based segmentations. The contributions in our paper are threefold: (i) we present the first heterogeneous Wilms’ tumor benchmark data set. It contains multisequence MRI data sets before and after chemotherapy, along with ground truth annotation, approximated based on the consensus of five human experts. (ii) We analyze human expert annotations and interrater variability, finding that the current clinical practice of determining tumor volume is inaccurate and that manual annotations after chemotherapy may differ substantially. (iii) We evaluate six computer-based segmentation methods, ranging from classical approaches to recent deep-learning techniques. We show that the best ones offer a quality comparable to human expert annotations.