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Abstract

Purpose: Retinopathy screening via digital imaging is promising for early detection and timely
treatment, and tracking retinopathic abnormality over time can help to reveal the risk of disease
progression. We developed an innovative physician-oriented artificial intelligence-facilitating
diagnosis aid system for retinal diseases for screening multiple retinopathies and monitoring
the regions of potential abnormality over time.

Approach: Our dataset contains 4908 fundus images from 304 eyes with image-level annota-
tions, including diabetic retinopathy, age-related macular degeneration, cellophane maculopathy,
pathological myopia, and healthy control (HC). The screening model utilized a VGG-based
feature extractor and multiple-binary convolutional neural network-based classifiers. Images in
time series were aligned via affine transforms estimated through speeded-up robust features.
Heatmaps of retinopathy were generated from the feature extractor using gradient-weighted
class activation mapping++, and individual candidate retinopathy sites were identified from
the heatmaps using clustering algorithm. Nested cross-validation with a train-to-test split of
80% to 20% was used to evaluate the performance of the screening model.

Results: Our screening model achieved 99% accuracy, 93% sensitivity, and 97% specificity in
discriminating between patients with retinopathy and HCs. For discriminating between types of
retinopathy, our model achieved an averaged performance of 80% accuracy, 78% sensitivity,
94% specificity, 79% F1-score, and Cohen’s kappa coefficient of 0.70. Moreover, visualization
results were also shown to provide reasonable candidate sites of retinopathy.

Conclusions: Our results demonstrated the capability of the proposed model for extracting diag-
nostic information of the abnormality and lesion locations, which allows clinicians to focus on
patient-centered treatment and untangles the pathological plausibility hidden in deep learning
models.
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1 Introduction

Retinopathy is an important cause of visual impairment, which is generally irreversible in its later
stages. The resulting presentation of drusen, cellophane, exudate, hemorrhage, or chorioretinal
scarring can have a profound effect on the vision of its victims, in which the most common
causes may be diabetic retinopathy (DR),1 age-related macular degeneration (AMD),2 cello-
phane maculopathy (CM),3 and pathological myopia (PM).4 The asymptomatic nature of
retinopathy in the initial stages means that regular screening via digital imaging is promising
for early detection and timely treatment.5

Color fundus imaging is a non-invasive cost-effective tool for ophthalmological
examinations.6 A number of models based on convolutional neural networks (CNNs) have been
developed to facilitate the classification of retinopathies based on color fundus images.7–12

One recent CNN-based study reported that salient regions obtained from gradient-weighted
class activation mapping (Grad-CAM++)13 closely matched the regions identified by
ophthalmologists.14 Retinopathic changes over time can be used to monitor disease progression
and evaluate therapeutic outcomes.15 Clinical ophthalmologists rely heavily on digital imaging
for diagnostics; however, manual tracking can be arduous and time-consuming. Clinicians
require user-friendly computer-aided diagnostic tools to automate the process of identifying
regions with retinopathic abnormalities, and to monitor changes in those areas over time in order
to facilitate decision-making and thereby alleviate their workload.

In the current study, we developed an artificial intelligent (AI) diagnostics platform for screen-
ing multiple retinopathies and monitoring regions of potential abnormality over time. A schematic
illustration of the proposed system, referred to as the physician-oriented AI-facilitating diagnosis
aid system for retinal diseases (PADAr), is shown in Fig. 1. We employed machine learning tech-
niques based on fundus images from 304 eyes affected by AMD, DR, CM, or PM, as well as
healthy controls (HCs). It is worth noting that all training data had previously been labeled by
a retina specialist (Dr. P.K. Lin). The proposed framework performs two fundamental operations:
screening and monitoring. The screening model applies a shared-weight feature extractor to fundus
images and then uses multiple-binary CNN-based classifiers to formulate outcome predictions. A
corresponding heatmap was obtained from the last convolutional layer of the trained feature extrac-
tor using Grad-CAM++13 to highlight regions of potential abnormality, and thereby, differentiate
HCs from cases requiring attention. In the second stage (i.e., monitoring model in Fig. 1 blue box),
the heatmaps are registered over time using affine transforms estimated using a speeded-up robust
features (SURF) descriptor15–17 based on the corresponding fundus image. We applied lesion-site
estimation on each transformed heatmap to visualize change in retinopathic abnormalities over
time. This study proposed a novel hybrid machine learning architecture by combining CNN,
SURF descriptors, and clustering to automate the process of visualizing potential lesions over
time. Our findings suggest that this type of algorithm could facilitate early diagnosis and the
tracking of disease progression, contingent on the development of larger, more diverse datasets.

2 Materials and Methods

2.1 Data Acquisition and Preparation

This study was approved by the Ethics Committee of the Institutional Review Board of Taipei
Veterans General Hospital, Taiwan (2018-08-003CC accepted November 26, 2018). Participants
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provided written informed consent allowing the retrospective collection of their retinal images.
Participants were included if they were diagnosed with a major retinopathy in either eye, such as
AMD, DR, CM, and PM. A total of 200 participants were selected for inclusion by a retina
specialist from the Department of Ophthalmology of Taipei Veterans General Hospital in
Taiwan. Sampling covered the period from 2002 to 2019.

Color fundus images of multiple fields were captured using multiple cameras equipped with
lenses covering a field-of-view of 35 deg to 55 deg. The multiple fields were indicated using the
seven fields designated in the general early treatment of diabetic retinopathy study (ETDRS)
protocol: optic disc centered field (F1); macular centered field (F2); and all peripheral fields
(F3, F4, F5, F6, and F7). Images lacking anatomical landmarks (e.g., optic disc, vessels, and
macula) were removed. The images were cropped to 2201 × 2201 pixels. For visualization,
all images were resized to 512 × 512 pixels. The 304 eyes (N ¼ 4908) included in the study
were labeled as follows: HC (25 eyes, N ¼ 367), AMD (120 eyes, N ¼ 2029), DR (77 eyes,
N ¼ 1681), CM (51 eyes, N ¼ 436), and PM (31 eyes, N ¼ 395). The dataset was divided into
two subsets using an 80 to 20 split; that is, 80% of images were used as training validation data
(N ¼ 4082) and 20% were used as test data (N ¼ 826). Participants who underwent more than
two examinations (N ¼ 160) were selected to assess abnormalities over time.

2.2 Screening Model

The present study proposed two models. The screening model (Fig. 2) based on multi-class
classification employs a shared-weight feature extractor using VGG1618 as a backbone, a
sub-network with multi-binary CNN-based classifiers for generating soft-target information, and
a final fully connected (FC) layer for integrating the soft-target information to predict the
class and generate the corresponding heatmap. The diseases representations (14 × 14 × 512)
obtained from the last convolutional layer of a shared-weight feature extractor with global
average pooling. We then removed the fully connected part of the VGG16 and employed multi-
ple binary classifiers, including a main-classifier and the six sub-classifiers, providing soft-target
information to the final FC layer. Each classifier contains three FC layers with the rectified
linear unit function as activation, three dropout layers with a dropout rate of 0.2, and one softmax
layer.

The main-classifier is used to discriminate between cases of retinopathy and HCs and six
binary classifiers are used to differentiate cases between each pair of four types of retinopathy
(AMD, DR, CM, and PM). The final FC layer integrates soft-target information obtained from

Fig. 1 Overview of the PADA system.
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all of the classifiers to predict the outcomes. We incorporated Grad-CAM++ to obtain the
corresponding heatmap from the class of interest (i.e., retinopathy). Essentially, Grad-CAM++
generates the heatmap by a weighted combination of latent feature channels from the last
convolutional layer. The weights for feature channels reflect their respective importance in
prediction of a given class, which is estimated from the gradient of guided back-propagation.
Grad-CAM++ is shown to achieve better localization compared to Grad-CAM19 by providing
improved formulations for estimating the channel weights. Majority voting is used to determine
the final prediction outcome for each patient.

Prior to model training, all input images were augmented by horizontal flipping, rotation
½−36 deg;þ36 deg�, and translation of width and height ½−10%;þ10%� to resolve the prob-
lems of overfitting, small sample size, and an imbalance in available data for model training.20,21

The images (5000 in each class) were then resized to 224 × 224 pixels via bilinear interpolation
for model training.

Training was implemented in three steps. We first replaced the last three fully connected layer
of VGG16 with one binary main-classifier, utilized ImageNet22 pretrained weights to train the
feature extractor from scratch and fine-tuned the network using our dataset to classify between
cases of retinopathy and HCs. We then trained six binary sub-classifiers with the estimated
weights of the feature extractor. Finally, we trained the final FC layer using soft-target infor-
mation obtained from the trained classifiers including one binary main-classifier and six binary
sub-classifiers. We used the binary cross-entropy loss function for training each binary classifier
and utilized the categorical cross-entropy for training final screening model. For the hyper-
parameters of all networks, we employed the Adam optimizer23 with an initial learning rate
of 1 × 10−5, a final learning rate of 1 × 10−8, and batch size of 32. The learning rate decayed
by a factor of ten over ten epochs showing no improvement in validation loss.

We performed 5 × 5-fold nested cross-validation (CV)24 to evaluate the performance of the
feature extractor. No significant difference was observed among the folds from the feature extrac-
tor; therefore, we applied holdout CV for evaluating six binary sub-classifiers and the final FC
layer. Model performance was measured in terms of accuracy, precision, sensitivity, specificity,
F1-score, the area under curve (AUC) of receiver operating characteristic curve,25 and Cohen’s
kappa coefficient.26 For each performance metric, macro-average was also calculated by the
arithmetic mean of all individual classes. A retina specialist (P.K. Lin) also visually examined
the candidate sites in the testing data for validating the efficacy of the proposed model.

2.3 Visualizing Abnormalities Over Time

The second model proposed in this work was used to monitor and visualize candidate lesion sites
based on results from the aforementioned screening model at various time points for each patient.

Fig. 2 Architecture of proposed CNN-based screening model.
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Time-series image registration was adopted to align images acquired from multiple time points
from a single participant. For each image, control points were automatically extracted using
SURF algorithm, and the time-series images and their corresponding heatmaps were registered
to the reference image. Subsequently, a clustering algorithm was used to identify candidate sites
based on their relevance to identified abnormalities.

2.3.1 Time-series image registration

The schema of the proposed time-series image registration method is shown in Fig. 3, including
image selection, control point extraction, and control point matching. For each image,
we first detected the location of the optic disc ðXdisc; YdiscÞ using pixel-wise distance regression
based optic disc detection approach.27 The region of interest (ROI) was defined as
ðXic � 0.3 × Imagewidth; Y ic � 0.25 × ImageheightÞ, where ic refers to the image center. Images
with the disc located within the ROI were selected as macula-center fundus images. For each

Fig. 3 Illustration of proposed time-series image registration. The mosaic image indicates regis-
tration performance by combining reference and target images.
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patient, the macula-center image with the shortest distance between disc location and the center
of ROI was then selected as a reference for registration.

Second, a green channel image extracted from each macula-center image was enhanced using
the contrast limited adaptive histogram equalization filtering algorithm,28 whereupon the inten-
sity was normalized to [0, 1] and resampled to 512 × 512 pixels. The field-of-view binary mask
was derived using Otsu’s thresholding,29 followed by an erosion operator with 5 mm around the
edge of the mask. Control points were extracted using the SURF algorithm.15–17

Third, the correspondence between control points SX in the reference image ðXÞ and control
points SY in every macular-centered image ðYÞ was estimated using the efficient approximate
nearest neighbor search,30 which computes the pairwise Euclidean distance between SX and SY .
The affine transformation matrix of each SX and SY pair was then estimated from the predicted
correspondence and applied to the corresponding macular-center image using the robust
m-estimator sample consensus algorithm.31 Finally, each candidate lesion site in the reference
image was aligned to specific candidates in each of the transformed macular-center images
(acquired at different time points) by calculating the shortest distance between the reference
and the target candidates.

2.3.2 Identifying candidate lesion sites

An adaptive clustering algorithm was used to locate potential regions of abnormality
(i.e., candidate lesion sites) on the heatmap derived from the screening model. The pipeline
of our algorithm is shown in Fig. 4. The heatmap was first up-sampled to 512 × 512 pixels via
bilinear interpolation. To visualize the abnormalities, we followed the standard procedure
of Grad-CAM++13 and up-sampled the heatmaps to match the display image resolution
(512 × 512 pixels) via bilinear interpolation. The intensity of the resulting heatmaps was then
normalized to ½0;1�, followed by thresholding using the following Eq. (1):

EQ-TARGET;temp:intralink-;e001;116;423Threshold ¼ EðHÞ þ σ; (1)

where EðHÞ and σ refer to the mean and standard deviation of heatmap H intensity, respectively.
We then determined the optimal number of clusters (K) with maximum silhouette coefficient.32,33

Finally, we utilized a Gaussian mixture model34 to group pixels into clusters, each of which
represented one candidate lesion site.

Fig. 4 Pipeline of adaptive clustering algorithm. GMM: Gaussian mixture model.
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3 Results

3.1 Screening Performance

In terms of screening, the proposed multi-binary-classifier model achieved macro-average accu-
racy of 0.80, precision of 0.81, sensitivity of 0.78, specificity of 0.94, F1 score of 0.79 (Table 1),
AUC of 0.94, and Cohen’s kappa coefficient of 0.70. These results were obtained from
uncleaned images captured during funduscopic examinations. A confusion matrix is presented
in Fig. 5(a). As shown in Table 1 and Fig. 5(b), the removal of poor-quality images improved
average accuracy by 5.4% and precision as follows: AMD (4%), DR (5%), CM (8%), and
PM (10%).

The performance of the main classifier was assessed using repeated nested CV with an outer
five-fold CV and an inner five-fold CV. The main-classifier for discriminating between patients
and HCs achieved high mean-macro-average accuracy of 0.99� 0.003 (precision, 0.99� 0.005;
recall, 0.93� 0.017; F1 score, 0.96� 0.012; and Cohen’s kappa coefficient, 0.91� 0.023).

3.2 Candidate Regions of Disease

The proposed model provides diagnostic information from heatmaps pertaining to the retina for
use in identifying candidate locations of disease. Figures 6(a) and 6(b) show images showing

Table 1 Performance of our proposed model. Numbers in parentheses indicate results based on
recalculations following the removal of poor-quality images. AMD: age-related macular degener-
ation; DR: diabetic retinopathy; CM: cellophane maculopathy; PM: pathological myopia; and
HC: healthy control.

Precision Sensitivity Specificity F1-score AUC Cohen’s Kappa

AMD 0.79 (0.83) 0.78 (0.86) 0.87 (0.90) 0.79 (0.85) 0.89 —

DR 0.78 (0.86) 0.84 (0.89) 0.85 (0.90) 0.81 (0.87) 0.92 —

CM 0.68 (0.73) 0.45 (0.52) 0.98 (0.98) 0.55 (0.61) 0.90 —

PM 0.79 (0.89) 0.82 (0.85) 0.98 (0.99) 0.81 (0.87) 0.98 —

HC 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 —

Macro average 0.81 (0.86) 0.78 (0.85) 0.94 (0.96) 0.79 (0.85) 0.939 0.701 (0.785)

Fig. 5 Confusion matrix of the screening model (a) before and (b) after removal of poor-quality
images. AMD: age-related macular degeneration; DR: diabetic retinopathy; CM: cellophane
maculopathy; PM: pathological myopia; and HC: health control.
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Fig. 6 Heatmaps of five retinopathy images generated from screening model: (a) dry-type AMD;
(b) wet-type AMD; (c) DR; (d) CM; (e) PM; and (f) both AMD and DR. The original fundus images
and corresponding heatmaps are respectively presented in the first and third columns. The second
column displays the original images overlaid with their corresponding heatmaps. The fourth
column displays the original images overlaid with their corresponding heatmap and candidate
lesion-sites (in red), highlighting potential regions of abnormality. AMD: age-related macular
degeneration; DR: diabetic retinopathy; CM: cellophane maculopathy; and PM: pathological
myopia.
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examples of regional retinopathy in the AMD, including drusen and edema. Figure 6(c) illus-
trates instances of hemorrhage and exudate in a case of DR. The heatmap of CM in Fig. 6(d)
focuses on the optic disc extending to the macula. The heatmap of PM in Fig. 6(e) focuses on
the crescent near the disc and macular degeneration. Figure 6(f) highlights drusen and exudate.
Note that most of the heatmaps highlighted the optic disk.

Figure 7 shows two examples of prediction error, in which an image of the AMD was mis-
classified as DR [Fig. 7(a)] and an image of the DR was misclassified as AMD [Fig. 7(b)].
Regardless, the heatmaps provided reasonable candidate sites of retinopathy, including sites
around the macula and optic disc (third column in the panel).

3.3 Visualizing Candidate Regions of Abnormality Over Time

Figure 8 shows two cases illustrating changes in retinopathy along time. In Fig. 8(a), the pro-
posed system highlighted candidate retinopathic abnormalities in the AMD (e.g., drusen), in
which the condition remained stable in subsequent yearly follow-up examinations. In Fig. 8(b),
the system highlighted the progress of exudate and hemorrhage in the DR in monthly follow-up
examinations, in which the severity of the conditions gradually decreased. These results dem-
onstrate the effectiveness of the system in tracking retinopathies via funduscopic examination.

4 Discussion

Locating abnormalities in the retina is crucial to diagnostic decision-making. Previous studies
have reported that heatmaps obtained from Grad-CAM++ can be used to highlight such abnor-
malities in instances of single retinopathy (e.g., AMD or DR).14,35,36 Note however that many
patients suffer more than one retinopathy in either or both eyes; therefore, we proposed the use of
a main-classifier to differentiate patients from HCs in order to detect all potential abnormalities
within the regions identified by the retina specialist (Dr. P.K. Lin). As shown in Figs. 6 and 7, the
resulting heatmap was able to locate all potential regions of abnormality, regardless of whether
the prediction outcome was correct. Our weakly supervised approach to learning pixel-wise
labeling directly from image-level annotation is meant to reduce the effort required to label
ground-truth locations of retinopathy. Experiments demonstrated the feasibility and efficacy
of the proposed method in locating potential sites of retinopathic abnormality.

Our model also demonstrated competitive classification performance when compared to the
other retinopathy detection models in the literature, either in distinguishing retinopathy from
HCs or discriminating between types of retinopathy. Table 2 gives the reported performance
of other binary classification models. Compared to other binary retinopathy classification

Fig. 7 Heatmaps of misclassified cases. (a) AMD case misclassified as DR and (b) DR misclas-
sified as AMD (AMD: age-related macular degeneration; DR: diabetic retinopathy).
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models, the proposed system demonstrated superior sensitivity compared to other models. It is
worth noting that most binary classification models in the literature only involve detecting a
single type of retinopathy. In contrast, the binary classification in our study involves distinguish-
ing four types of retinopathy from HCs. With larger diversity in the disease characteristics, it is
thereby a more difficult task compared to detecting a single disease type. Nonetheless, although
studies by Gulshan et al.37 and Zhang et al.38 reported higher AUC and F1 score, respectively,
the proposed model still achieved competitive performance in most respect under significant
larger disease diversity.

Table 3 shows the reported performance in the literature for distinguishing between multiple
retinopathy types. Compared to other models, the proposed system demonstrated superior

Table 2 The reported performance of binary retinopathy classification models in the reviewed
literature, compared with the proposed system. The best performance according to each metric
is highlighted by boldface.

Database Classification AUC Accuracy Sensitivity Specificity F1 score

Gargeya and
Leng35

Private dataset DR 0.97 — 0.94 0.98 —

E-Ophtha DR 0.95 — 0.9 0.94 —

Choi et al.8 STARE Nine diseases 0.903 — 0.803 0.855 —

Tan et al.10 Private dataset AMD — 0.9545 0.9643 0.9375 —

Gulshan et al.37 Private dataset DR 0.98 — 0.921 0.952 —

Zhang et al.38 Private dataset DR — 0.98 0.98 — 0.98

Zago et al.39 Messidor DR 0.912 — 0.94 — —

Das et al.40 DIARETDB1 (train) DR — 0.974 0.976 0.972 —

Private dataset (test)

Proposed Private dataset Four diseases 0.939 0.99 0.98 0.97 0.85

Fig. 8 Visualization results from two fundus images obtained at different timepoints, where (1), (2),
and (3) denote the first-, second-, and third-time scans, respectively. (a) and (b) the left column
displays the original color fundus images. The middle column displays lesion-site candidates over
time. The right column displays close-up images from one of the lesion-site candidates indicating
a potential region of abnormality. It is worth noting that color is used to differentiate specific
candidates over time. Green bounding boxes indicate correctly identified regions, whereas the
red bounding boxes denote the miss-detection regions.
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sensitivity. It is worth noting that the classification of CM yielded a lower sensitivity compared to
other types of retinopathy. As previously shown in Fig. 5, CM is occasionally confused with
other types of retinopathy, such as AMD and DR. We hypothesize that this lower performance is
attributable to the confounding effects by the prevalence of myopia in Taiwan. Nonetheless, the
proposed system still serves as an effective screening tool with its ability to accurately detect
the presence of retinopathy, despite occasional confusion between retinopathy types. In-depth
examinations using other imaging techniques (such as optical coherence tomography and fluo-
rescein angiography) can be used after the screening stage for a more accurate diagnosis of
retinopathy types.

It is worth noting that our study incorporated real-world data with minimal data cleaning and
annotations. In the literature, screening models trained in real-world clinical settings are gen-
erally outperformed by those trained in a laboratory setting with carefully selected data,43,44

due to noise or artifacts originated from sub-optimal imaging equipment, patient movement, or
exposure error.45,46 Nevertheless, our comparison results demonstrate that the proposed model
achieved comparable performance to models trained with carefully selected data. Additionally,
the proposed system infers location information from eye-based annotation in a weakly super-
vised manner, by which we sought to preserve the subclinical features of fundus images and to
mitigate the labor-intensive annotation process. How to improve the detection performance and
localization ability under the real-world data paradigm will be one of our future focus.

Monitoring disease progression from multiple examinations performed on different days
provides quantitative and qualitative information by which to monitor disease progression.
This process is critical to ensuring timely treatment; however, the process is time-consuming.
Recent studies have reported that the discrimination of disease stage can help to reveal the risk of
disease progression, particularly in areas such as the AMD and DR.47,48 Sequential changes in
retinopathic characteristics observed in fundus images can be used to detail the evolution of
retinopathy progression. In the current study, we developed a novel user-friendly tool by which
to obtain assessments tailored to the individual for use in pinpointing the location of abnormal-
ities from a single fundus image and visualizing changes in the corresponding disease spot
region over time.

To the best of our knowledge, this is the first attempt to automate the location and visuali-
zation of retinopathic regions in the temporal domain. Our results demonstrates the capability of
the proposed PADAr to identify potential retinopathy sites and perform longitudinal follow-ups
of disease progression, suggesting its feasibility for facilitating clinicians in their decision-
making process and focusing on patient-centered treatment.
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