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Abstract. Piezoelectrically actuated resonant micromirrors were designed to meet the light
detection and ranging (LiDAR) system requirements. Key features were a 3-mm mirror aperture,
a 40-deg field of view, and a 50-Hz refresh rate. The presented micromirror provides biaxial
symmetrical beam steering with �12.7 deg mechanical tilt angle, resulting in a 50-deg field
of view with an adjustable Lissajous XY-scanning pattern for a forward-looking LiDAR system.
The mirrors were fabricated using silicon on insulator wafers, and actuation was based on piezo-
electric aluminium nitride thin film. The mirrors were vacuum packaged for high-quality factor
resonator operation. The device design contained eight separate piezoelectric aluminium nitride
elements arranged as differential pairs for each axis, where each actuator was equipped with a
sensing element providing a mechanically coupled electrical feedback signal. The piezoelectric
elements connected as actuators required only minimal power and were directly compatible with
CMOS low-voltage logic, which eases integration to driving digital systems. The sense elements
are used to monitor phase, amplitude, and frequency. A digital control system connected to each
of these elements provides accurate frequency and phase control of independent orthogonal res-
onators, permitting control of the X and Y amplitudes and the refresh rate of the Lissajous pat-
tern. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License.
Distribution or reproduction of this work in whole or in part requires full attribution of the original pub-
lication, including its DOI. [DOI: 10.1117/1.JOM.2.1.011006]
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1 Introduction

Advanced driver-assistance systems and, more generally, autonomous vehicles of any size or
type are and will be using light detection and ranging (LiDAR) systems for mapping their sur-
roundings and providing data for decision making. Microelectromechanical system (MEMS)-
based scanning elements aim to solve the need for miniaturization and cost reduction of LiDAR
systems while maintaining high performance in key parameters such as range, angular resolu-
tion, and scan rate. Various methods have been applied to miniaturize the optical scanning ele-
ments of the LiDAR system, such as the two-mirror systems presented by Wang et al.1 and
Nguyen et al.2 or the wobbling mirror for circular scanning presented by Pensala et al.3 and
Hoffman et al.4 This work is concentrated on a single-mirror approach for a 2D-scanning pattern
suitable for use in forward-looking LiDARs. Different types of 2D-scanning LiDARs have been
reported based on PZT-elements5 and electrothermal,6,7 electromagnetic,8 or electrostatic
actuators.9 Actuators fabricated on the aluminium nitride (AlN) thin-film-based process offer
comparable performance levels with other state-of-the-art 2D scanning techniques, in which the
tilt angle and the mirror size are mainly limited by mechanical considerations. The main benefit
of vacuum packaged AlN-based actuators is the possibility of using CMOS compatible drive
levels, allowing for direct control of mirror resonators with digital integrated circuits. AlN is
compatible with the CMOS processing technology, and due to its reasonable piezoelectric coef-
ficient of 5.15 pm∕V for d33 and low permittivity of 10.7, it is a suitable material for micromirror
actuation and sensing.10 The evolution of devices and processes presented by Pensala et al.3 is
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tailored for a 2D-beam steering automotive forward-looking MEMS LiDAR. As the LiDAR is a
highly optimized and performance-driven system, the optimization of each key component is
essential. In this paper, an MEMS mirror is designed, fabricated, and characterized with a fully
digital FPGA-based control method. The MEMS mirror design section covers the mirror design
process with LiDAR system parameters affecting the design. The microfabrication of the mirror
is described in Sec. 3. Section 4 includes the digital electronics design and the characterization of
the system. Section 5 contains a discussion and comparison with other work, and finally, con-
clusions are presented in Sec. 6.

2 MEMS Mirror Design

MEMS mirror specifications were defined to meet the requirements of the LiDAR system while
taking into account the limitations and capabilities of the fabrication process. The intended target
application for the mirror is a coaxial forward-looking LiDAR, in which both outbound and
inbound optical signals are reflected by the mirror. For a coaxial transceiver, mirror rotation
between outbound and inbound events should be minimized. Ideally, the mirror should move
only between measurement points. A compromise between the scanning area and speed is
required. Suitable values for a forward-looking LiDAR were selected: a �10- deg mechanical
tilt angle and a 1 kHz resonance frequency with a 10% difference between orthogonal axes.
These selections provide a rectangular scan area in front of the vehicle with a refresh rate of
about 50 Hz. This scanning method is rarely used in LiDAR systems compared with the more
common raster scanning,5,7,8 in which one axis is fast and the other axis is slow. When both axes
are driven with only a small frequency difference between them, the resulting almost uniform
XY-movement enables measurements evenly around the scan area. Based on simulations of mir-
ror angular speed, dynamic deformation, and optical needs, the mirror diameter was selected to
be 3 mm. The simulated dynamic deformation is 320 nm peak-to-peak. In general, dynamic
deformation reduces the performance of the LiDAR as beam divergence is affected by the scan-
ning element. After the mechanical tilt angle, resonance frequency, and mirror diameter are
selected, the design can be optimized within the limitations of a manufacturing process. The
combination of design parameters and the piezoelectric AlN-thin film MEMS platform requires
the use of high-quality factor resonators. Suitable resonators are attainable with vacuum pack-
aging in the range of 0.1 to 1 Pa, allowing large mechanical tilt angles to be reached with low
drive voltages. The AlN sense elements, mechanically coupled to the actuators, provide a real-
time mirror position signal. The position signal is captured by the controller presented in
Sec. 4.1, allowing for synchronization between the LiDAR system and the mirror movement.
The full set of mirror specifications is shown in Table 1.

Table 1 Specifications of MEMS scanning mirrors.

Parameter Specification

Chip dimension 7 × 7 × 2.5 mm

Movable structure Single-crystal silicon, thickness 50 μm

Control and sensing 1.5 μm piezoelectric aluminium nitride thin film

Packaging Wafer-level packaging with controlled low pressure

Optical aperture 3 mm (diameter)

Scanning type Resonant XY , independent

Max tilt angle �10 deg

Resonant frequency 1000 Hz

Refresh rate 50 Hz

Position sensing AlN elements within main actuator beams
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The mirror has two orthogonal sets of concentric differential actuators applying torsion to the
mirror plate. The mirror deflection is amplified by attaching the actuators close to the rotation
axes. The sensing AlN elements are located concentrically around larger AlN-actuator elements
on the same actuator beams. The concentric design elements are coupled to each other by strain-
relief serpentine springs. The strain-relief serpentine springs reduce the twisting stress between
the actuators and the mirror, allowing balanced actuator beams to bend without an in-plane
movement of the connection points. The discrete AlN elements are contained within concentric
actuator beams, and the top and bottom metallization enveloping the AlN continues to the con-
tact pads. The structure of the MEMS mirror is presented and annotated in Fig. 1.

Modeling and optimization of the micromirror geometry was done by numerical simulations
using COMSOL Multiphysics software without geometric nonlinearity built into the models.
The optimization of the piezoelectric actuators was crucial not only to reaching large tilt angles
but also to providing robustness against mechanical breakage. The simulated stress levels at
maximum tilt angle were kept below 1 GPa to provide safety buffers against external stimuli,
such as vibration and shock coming from the environment. The vacuum cavity height was

Fig. 1 The strain-relief springs; blue Y -sense elements around green Y -actuators and red
X -sense elements wrapping around orange X -actuators.

Fig. 2 A COMSOL model of mirror displacement in single-axis excitation modes. (a) Y axis and
(b) X axis resonance simulations.
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limited by the wafer thickness to 650 μm, limiting the maximum movement range to �25.7 deg

for the X axis and to �18.6 deg for the Y axis. Simulated deflections of the mirror with a
�10 deg tilt angle for the X and Y axes movements are presented in Fig. 2, leaving a height
margin of 300 μm between the mirror plate and cavity walls.

3 Microfabrication

The micromirror elements were fabricated at a VTT Micronova cleanroom, and the wafers were
vacuum packaged at Murata Electronics Oy. Micromirror fabrication was based on SOI-wafer
technology, in which the device layer defined the thickness of the mirror elements. The key
parameters of the SOI-wafers are summarized in Table 2.

Unlike most of the SOI-wafers used in MEMS applications, the device layer had (111) ori-
entation to reduce or eliminate the effect of crystal orientation to the mechanical spring constant.
The fabrication of the resonating elements was based on VTT’s piezoMEMS platform.3 A thick,
1500-nm piezoelectric AlN actuator was sputtered on a molybdenum bottom electrode.
Piezoelements were patterned with TMAH wet etching and were covered with oxide made
by plasma enhanced chemical vapor deposition. Oxide was further patterned to make contact
holes for the top electrode; sputtered molybdenum was used as the top electrode material. After
top electrode patterning, mirror elements were defined by photolithography and etched to the
silicon device using deep reactive ion etch (DRIE), etching was stopped at buried oxide. Mirror
elements were released by etching a 650-μm deep cavity into the handle wafer with DRIE.
Finally, the mirror area was coated with an evaporated reflective metal layer. The wafers with
micromirrors were vacuum packaged using glass and silicon wafers capping on the front and
back sides, respectively. The actuator side contained the electrical interconnects, and the mirror
capping was a simple glass wafer to allow the laser light to reach the metal coated mirror. To
accommodate the large deflection of the mirror element, correspondingly large recesses were
etched in cap wafer. Figure 3 shows an overall cross section of the MEMS micromirror, includ-
ing the piezoelectric AlN elements on the top side and sputtered gold on the bottom side of the
mirror plate with the packaging.

Murata Electronics Oy processed the final device packaging, including the cap wafer
processing, anodic bonding of the wafers, and mounting of the finalized components to ceramic
carriers. The anodic bonding was done in a single step, in which mirror wafers, silicon cap
wafers, and glass wafers were brought into contact simultaneously at an elevated temperature,
and high voltage was applied. The drawback of this packaging method is that it does not allow
for the deposition of an antireflective coating on the glass cap wafer because it would not survive
the high-temperature bonding. The fabrication process was finalized by dicing and by attach-
ment of ceramic carrier boards presented in Fig. 4, enabling easy mirror changes in the test setup.

Table 2 SOI-wafer parameters.

Parameter Value

Wafer type SOI

Diameter 150� 0.2 mm

Device layer thickness 52� 2.0 μm

Buried oxide thickness 1000� 50 nm

Handle wafer thickness 650� 5 μm

Conductivity type P+

Crystal orientation [111] �0.5 deg

Resistivity range 0.007 to 0.020 Ohm-cm
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4 Results

The maximum mechanical tilt angles were measured by sweeping the excitation frequency
upward through the resonance. Figure 5 shows an example of the dependence of the mechanical
tilt angle on the driving frequency when a single-resonance axis is actuated at a time.

In Fig. 5, the curvature of the angle versus frequency curves present a typical Duffing effect.
The Duffing nonlinearity is a well-known phenomenon in silicon resonators:11,12 the stress-
induced stiffening of the silicon beam bends the resonance curve and therefore lessens the ampli-
tude to frequency ratio compared with a nonstiffening resonator. This effect is highly useful in
Lissajous-mode scanning as a low amplitude to frequency ratio enables the selection of frequen-
cies for each axis more freely without affecting the resonance amplitude.

4.1 Electronics

In the previous work,13 a fully digital phase-locked loop (PLL) controller for micromirrors was
presented. The evolution of that system is used for these mirrors to drive and maintain precise
drive frequencies for differential actuators. The analog front end for this system is presented in
Fig. 6, containing a three-state half-bridge buffer for simplified drive and a summing amplifier
with a comparator as an analog to digital stage.

The analog front end presented in Fig. 6 captures the high-impedance signals with opposite
polarities from the piezoelectric differential sense elements. Capturing sense signals with oppo-
site polarities causes the rotation signals to be added together, whereas common-mode mechani-
cal signals due to shocks or vibration are cancelled out, improving the signal-to-noise ratio.
On the drive side, benefits of a three-state drive are twofold. From an experimental perspective,

Fig. 4 Biaxial MEMS mirror on ceramic breakout board.

Fig. 3 Simplified MEMS mirror cross section with AlN-elements and gold mirror.
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the benefits of a three-state drive are separation of digital and analog domains and the ability to
test different drive voltages. From system architecture perspective, the three-state drive allows for
an accurate power adjustment via pulse-width modulation techniques and an ability to set the
MEMS elements to a high-impedance state. The mirror drive systems, sensing amplifiers, and
comparators were supplied from a single 3.3-V supply.

The digital mirror controller design is implemented with Verilog hardware description lan-
guage. This digital design utilizes 879 logic cells and 567 registers when loaded into a MAX10
FPGA by Intel. The controller architecture allows for fast adaptation to different element con-
figurations as drive and sense pairs can be separated or combined depending on the topology of
the MEMS device. The implementation of the controller by a programmable logic allows for
multiple feedback routes and control methods without compromising the low-latency synchron-
ized operation of the controller. The digital design integrates the required frequency generator
start-up circuitry, reset, and state machines. The design block diagram for two independent res-
onators is presented in Fig. 7.

The presented system allows for a selection between open- and closed-loop operations.
The Lissajous patterns presented in Secs. 4.2 and 4.4 are all taken with the open-loop test mode,
in which parametric frequency sweep excites the resonators to predetermined resonances. An
FPGA-system driven square wave has a basic period resolution of 8 ns derived from a 125-MHz
system clock. With resonance frequencies at 915 Hz, a single 8-ns step changes the frequency by
7 mHz. To increase the frequency resolution, a 46-bit phase accumulator was included in the

Fig. 6 Analog front end for the MEMS mirror.

Fig. 5 Measured angle versus frequency curves of independent axis of the MEMS mirror.
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design. The phase accumulator allows for a very flexible parametric frequency sweep and high-
resolution frequency output. The expression 1

2N�CLK describes the phase accumulator resolution
dependency on the number of bits in the accumulator (N) and on the frequency of the FPGA
system clock (CLK). With 46 bits used for a phase accumulator, the resolution is 1.78 μHz
independent of the frequency selection. The system offers two solutions to record the position
of the micromirror. The primary method is based on phase signal derived from the AlN sense
elements and measured with a counter running at a 125 MHz system clock. This method gives
accurate real-time timing information that is captured at the rising or falling edges of a trigger
event coming from internal or external sources. The precision of this method is limited by the
system clock period of 8 ns, which with a 915 Hz resonant frequency yields 46-μrad angular
resolution. The secondary method for capturing the mirror position is by directly recording the
drive side phase accumulator value, i.e., the high-resolution presentation of the phase. The drive
side capture of phase information offers more precision, whereas the accuracy of phase infor-
mation is not as good as there is a varying phase difference between the drive signal and the
mirror movement. The phase difference varies depending on the operation point of the oscil-
lation, which is affected by many factors, such as the three-state duty cycle, temperature, fre-
quency, and element properties. The hybrid of these modes is used when Lissajous pattern
synchronization is engaged; in this hybrid mode, phase accumulator phases of one resonator
are captured with the rising edge of the sense signal of another resonator. When the ratio of
the X and Y scanning frequencies is rational, the phase difference at the rising edge of the sense
signal has a repeating pattern. By capturing the minimum of the repeating phase difference pat-
tern, a reference point for a static Lissajous pattern is established. By changing one of the
frequencies slightly, we can induce a slowly changing pattern, in which the phase difference
minimum changes over time. When the minimum reaches the desired value, the pattern change
is halted by reverting the frequencies to an exact frequency ratio.

4.2 Q-Factor

The quality factor of the micromirror was recorded using a damping method in which the oscil-
lation drive is cut off and the decaying oscillation curve is measured. The X axis resonator was
driven to resonance at 915 Hz in the open-loop configuration, and an amplitude of 509 mV was
measured with a Tektronix MSO460 oscilloscope. The cutoff event disconnects the mirror driver
power supply, and decaying oscillations are measured with the oscilloscope. Measuring the time
between the last drive signal and the 1∕e-point at the attenuation curve yields a result of 6.24 to
6.26 s. The Q-factor calculation is presented in the following equation:

EQ-TARGET;temp:intralink-;e001;116;145Q ¼ τωN

2
¼ π � 915 Hz � 6.25 s ≈ 18;000: (1)

4.3 Optical Test Setup

For the system level optical characterization, the optical setup utilizes a 635-nm diode laser and a
mechanical support for the micromirror. The laser beam reflected by the mirror is projected on a

Fig. 7 Digital resonance controller design for XY -mirrors.
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calibrated optical target, allowing for measurements of the mirror tilt angle by visual observation
of the laser beam pattern. In the center of the pattern, one can see a bright spot due to the
reflection from the plain glass cap wafer. In Ref. 14, the glass reflection is solved by aligning
the reflection out of the scanning pattern. The projector type of test setup allows for straightfor-
ward distance measurements of the projected pattern, with measurement accuracy limited
mostly by the fuzzy edge of the laser beam. Uncertainty of the measurement point is mostly
dominant at small dimensions, and therefore results under 4 deg are not presented here.
Another error source arises from various optical distortions of the pattern, making repeatable
measurements difficult. In this case, the shortest dimensions between the pattern edges were
used to define the angle. On the corners where the pincushion effect distorts the pattern, angles
are somewhat larger.

The shape nonuniformity of the Lissajous patterns in Figs. 8 and 9, in which the bottom edge
has a barrel distortion instead of the pincushion distortion on the other edges, is due to a non-
symmetric projection as the laser source is at a 20-deg angle from the mirror normal. The varying
incident angle between the laser scanning pattern and the planar glass wafer causes the varying
angle of refraction on air–glass boundaries. Corrections for these distortions could be designed
into the optics or distortion correction algorithms15–17 may be used to compensate for the dis-
tortions in an imaging application. Figure 8 presents a varying scanning pattern that meets the
design specifications.

4.4 Lissajous Patterns

In Fig. 8, the X and Y axes’ frequencies for the pattern are 861.018 and 915.074 Hz, respectively.
The frequencies were derived from the system clock cycles driving the circuit. The selection of
frequencies in Fig. 8 is optimized for a rapidly changing pattern; the frequency ratio between the
X axis and the Y axis determines how much the scanning pattern changes during each cycle. The
change of the phases leads to a high fill ratio of the scanning pattern as all possible combinations

Fig. 8 The projector setup; the screen axes were calibrated to correspond to mechanical tilt
angles utilizing a small power laser targeted to the mirror.
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of phases between the frequencies are invoked. The change of the phases leads to a high fill ratio
of the scanning pattern as all possible combinations of phases between the frequencies are
invoked. The image presented in Fig. 8 was taken with a 1/20 s shutter speed so that the change
in pattern was captured over multiple cycles. The images combined in Fig. 9 were captured with
the same imaging settings, but with different drive parameters. In Fig. 9(a), the maximum
mechanical tilt angles were about 12.8 deg on the X axis and 12.7 deg on the Y axis, limited
by the diagonal tilt angle close to the design maximum. In Fig. 9(b), the tilt angles are limited to
the specified �10 deg, and the pattern has much less distortion as the diagonal angles are also
smaller.

In Fig. 9(a), a scanning pattern is established with a 34/35 frequency ratio, with the X axis
resonance at 915.053766 Hz and the Y axis at 888.909373 Hz. The phase accumulator synchro-
nization, introduced in Sec. 4.1, was enabled to match the scanning lines on top of each other,
effectively doubling the refresh rate of the pattern to 52.3 Hz. As the design specifications for the
pattern were�10 deg for a rectangular area, the frequencies were adjusted to 915.042175 Hz for
the X axis and 861.216165 Hz for the Y axis, providing a frequency ratio of 16/17 and a pattern
refresh rate of 53.8 Hz. The phase difference for the pattern in the image is tuned to space the
scanning lines equally inside the pattern to provide an equal distribution of possible 3D-point
vector measurement locations.

The simple rational ratio between the Lissajous frequencies eases the generation of the
measurement algorithm as the same coordinates can be measured again at 50 Hz intervals.
Measuring the same coordinates requires careful planning of frequencies and the open-loop
operation mode to stabilize the oscillation to the desired frequency. In the phase-locked
closed-loop operation mode, the exact frequency could not be forced, therefore leaving the
closed-loop system more suited for scanning patterns not requiring an exact control of the
frequency or the pattern.

4.5 Cross-Axis Coupling

The cross-axis amplitude measurement result in Fig. 10 explains the difference between
Lissajous-pattern frequencies and frequencies presented in Fig. 5.

In Fig. 10, cross-talk coupling causes a shift of the frequency that is proportional to the
amplitude of the orthogonal axis. The resonance amplitude of the X axis is 4.7 deg, which cor-
responds to X axis data in Fig. 5, with the Y axis at rest. When the resonance amplitude on the Y
axis increases, the stress and therefore the spring constant change on the orthogonal axis also,
which in turn results in an operation point with a higher amplitude. The amount of this frequency
shift could be adjusted by changing the strain-relief serpentine spring structures presented
in Fig. 1.

Fig. 9 Frequency and phase matched Lissajous patterns: (a) X : 12.8 deg, Y : 12.7 deg and (b) X :
10.6 deg, Y : 10.4 deg.
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5 Discussion

During micromirror characterization, it was observed that to reach large and stable tilt angles,
resonant MEMS micromirrors must operate in a nonlinear regime. This nonlinearity was
observed already by Pensala et al.,3 and it is due to stress-induced stiffening of the actuator
springs. In this regime, the dependence of the tilt angle on the frequency is described by a
Duffing curve,11 instead of a Lorenz resonance curve, typical for linear systems. Also cross-axis
coupling was observed between the frequencies and amplitudes of the X and Y axes, complicat-
ing the prediction of the available scanning pattern from the linear simulations. Even though the
pattern prediction was found to be challenging, the pattern generation was not as the Duffing
effect in our case leads to an almost linear correlation between the frequency and the amplitude.
The results presented here are well in line with other state-of-the-art micromirrors presented in
Table 3.

The mirror behavior agrees well with the established theory of spring stiffening and simu-
lated operation mode. The performance of the piezoelectric system compares well against other
mirrors with various manufacturing technologies presented in Table 3, and the desired mode of
operation is very good for coaxial LiDARs. Future research on micromirrors control should

Table 3 Comparison with other work.

Author Actuators Size Frequency Angle Drive

Ben-Mrad and
Pasiliao9

Electrostatic ϕ1 mm 24 frames �2.5 deg 200 V

Sarkar et al.7 Electrothermal 1.4 mm × 1.2 mm 5 kHz, 30 Hz �16.25 deg, �6.25 deg 3.3 V

Wang et al.6 Electrothermal 1.4 mm × 1.2 mm 1.69 kHz �3.5 deg 5 V

Yalcinkaya
et al.8

Electromagnetic ϕ1.5 mm 21 kHz, 4 kHz �14.5 deg, �16.25 deg 150 mA

Piot et al.5 PZT piezoelectric ϕ1.5 mm 450 Hz, 25 kHz �3.875 deg, �1.5 deg 2 V, 5 V

This work AlN piezoelectric ϕ3 mm 915 Hz, 860 Hz �12.8 deg, �12.7 deg 3.3 V

Fig. 10 The X axis resonance amplitude at 915 Hz versus the Y axis resonance amplitude.
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address shortcomings of the presented system and advance the technology readiness level by
introducing application environmental testing. One of the shortcomings of the mirror drive was a
requirement for a predetermined operation point coming from an open-loop style of the start-up
circuit. The start-up frequency sweep needs to be slow enough to maintain the correct phase
between excited resonance and the drive signal. Another way to excite resonators would be
a broad-spectrum start-up pulse with PLL locking into resonances awakened in the resonator.
Although a PLL was determined to be unsuitable for precision pattern forming, it might still be a
better way for the start-up, error handling, and backup operations. The weakness of a non-PLL
approach for a resonator controls its inability to respond to shock events, pushing the excitation
signal out of sync with movement. These shock-induced fail states require additional recovery
mode development so that the system state machine responds and adjusts accordingly. More
application development and safety assessments would be required to study required safety mar-
gins and recovery time requirements for automotive use of MEMS mirrors. A matter to consider
is unwanted vibrations existing in any machine with moving parts, and undesired secondary
vibration modes also exist in MEMS mirrors. Digital control logic with a non-PLL type of
wake-up and control solves most of these as undesired frequency vibrations are not amplified,
and fast controlled transitions over unwanted frequencies can move resonances to ranges not
achievable with the PLL approach. The final application grade mirror controller would need
to incorporate multiple feedback loops to provide a solution to different scenarios.

Another point of study would be the safety margin in real-life operation conditions with
random vibrations and shocks. Although the micromirror with AlN-resonators can operate with
1.8 V voltage or lower, the higher voltages enable higher resonance amplitudes up to mechanical
limits of the mirror design. Also empirical experience shows that the increase of operating volt-
age increases the robustness of the system as a larger disturbance is needed to desynchronize the
sinusoidal movement of the mirror with the drive signal.

In light of the presented data, the AlN-based micromirror system would meet requirements
for a good scanning element: the maximum mechanical tilt angles are up to �12.8 deg, the tilt
angles can be adjusted digitally, the Lissajous-pattern frequency ratio can be selected and phases
synchronized, and the real-time position information is available. However, the lack of exper-
imental data on the mirror system behavior on shock and vibration scenarios leave the suitability
for vehicle use to be studied.

6 Conclusion

A resonating piezoelectric micromirror was successfully designed, manufactured, and verified to
meet given LiDAR application specifications. Near square output with a �10.4- deg mechanical
tilt angle was achieved, and the design margins allowed for pushing the Lissajous pattern up to a
�12.7 deg square with some distortion on the edges of the pattern. This showcases the capabil-
ity of CMOS-compatible AlN fabrication platform to fulfil the requirements of MEMS Lidar.
The micromirror aperture was set to 3 mm to avoid large micromirror deformations, although the
preselected chip layout would have allowed for a larger aperture size. A tunable Lissajous scan-
ning scheme meeting the specifications was demonstrated and shown to be accessible with low-
voltage digital control methods.
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