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ABSTRACT. Significance: Brain–computer interfaces (BCIs) can provide severely motor-
impaired patients with a motor-independent communication channel. Functional
near-infrared spectroscopy (fNIRS) constitutes a promising BCI-input modality given
its high mobility, safety, user comfort, cost-efficiency, and relatively low motion
sensitivity.

Aim: The present study aimed at developing an efficient and convenient two-choice
fNIRS communication BCI by implementing a relatively short encoding time (2 s),
considerably increasing communication speed, and decreasing the cognitive load of
BCI users.

Approach: To encode binary answers to 10 biographical questions, 10 healthy
adults repeatedly performed a combined motor-speech imagery task within 2
different time windows guided by auditory instructions. Each answer-encoding run
consisted of 10 trials. Answers were decoded during the ongoing experiment from
the time course of the individually identified most-informative fNIRS channel-by-
chromophore combination.

Results: The answers of participants were decoded online with an accuracy of
85.8% (run-based group mean). Post-hoc analysis yielded an average single-trial
accuracy of 68.1%. Analysis of the effect of number of trial repetitions showed that
the best information-transfer rate could be obtained by combining four encoding
trials.

Conclusions: The study demonstrates that an encoding time as short as 2 s can
enable immediate, efficient, and convenient fNIRS-BCI communication.
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1 Introduction
Individuals with severe motor disabilities caused by diseases, such as late-stage amyotrophic
lateral sclerosis may experience a state known as “locked-in” syndrome. They remain conscious
and aware of their surroundings while experiencing complete or near-complete motor paralysis.
Thus, natural means of communication with these patients might become impossible albeit
essential in daily life and for treatment. With the aim to establish alternative brain-based means
of communication for these individuals, brain–computer interfaces (BCIs) have been suggested
and developed. BCIs enable users to communicate via intentionally evoked brain signals
recorded through various functional-neuroimaging methods.1–17

Electroencephalography (EEG) has been the most widely used input modality for BCIs due
to its high temporal resolution and general availability. However, not all individuals can success-
fully use an EEG-based BCI:18 some individuals may produce excessive motion artifacts that
mask brain activity necessary to control a particular BCI; or they cannot generate strong enough
brain activity that is detectable on the scalp.19 Therefore, hemodynamic neuroimaging methods,
such as functional magnetic resonance imaging (fMRI) and functional near-infrared spectros-
copy (fNIRS), have been additionally explored in the context of BCIs.20 These non-invasive
methods measure brain activity indirectly through the neurovascular response.21 Especially
fNIRS has recently received increased attention as a BCI-input modality as it is safe, quick
to set up, easy to operate, its application is almost silent, and recordings are feasible even in
natural body postures. Moreover, it is a portable and relatively inexpensive method. Thus,
it could eventually be used in clinical routine or ultimately at home of potential users.22–24

In numerous studies with healthy participants (e.g., Refs. 2, 9, 22, and 25–36) and patients
(e.g., Refs. 1, 15, 37, and 38), different methodological aspects of motor-independent fNIRS-
based communication have been investigated. Generally, for motor-independent communica-
tion, covert (mental) tasks are used to elicit voluntary modulation of brain activation. While
motor-imagery tasks2,9,25–27,29,30,32,37 and mental-calculation tasks1,22,28,29,31,32,34,36,38 are used
most often, additional strategies, such as mental singing/music imagery,1,31,33,34 speech,15,35

or spatial navigation,25 have been shown to work effectively as well. Mostly, encoding
instructions are provided via auditory1,15,25–27,37 or visual cues.2,9,28–36,38 Recently, also tactile
guidance has been successfully implemented.27 To detect voluntary modulation of brain
activation, temporal,1,9,22,26–28,30,31,37,38 spatial,2,15,29,32–34 or both signal features combined25,36

have been utilized. The number of encoding options is so far mostly limited to binary
choices,1,2,9,15,22,25,26,28,32–35,37,39–41 nevertheless multiple-choice paradigms27,29,31,36,38 allowing
up to six-class classification30 have been demonstrated to be possible as well. Depending
on the fNIRS-signal features used for decoding, univariate9,26–28,30,37 or multivariate analysis
strategies2,15,25,29,31,38 have been applied. FNIRS-BCI studies are usually conducted in a laboratory
environment. However, lately the potential of fNIRS as an in-the-field BCI technique has been
demonstrated when participants successfully communicated multiple-choice answers in a
cafeteria.27 All these studies show that the fNIRS-BCI approach is very promising. One unfav-
orable aspect, however, is the limited temporal resolution inherent to all hemodynamic neuro-
imaging methods. As a result, implemented encoding times have been relatively long, ranging
from 6 s30,38 up to 30 s37 while most studies use 10 to 20 s.1,2,9,22,25,27–29,31 This has limited com-
munication speed and required relatively high cognitive demand and endurance from BCI users.

The current study aimed at increasing the speed of fNIRS-based communication using
a shortened encoding time of 2 s. A temporal encoding approach was implemented: healthy
participants freely communicated their binary answers by performing a mental-imagery task
at temporally distinct encoding periods. To activate a large portion of the cortex and therewith
increase the chance of evoking sufficient brain activation, a combined motor-speech imagery task
was used. The study shows that an encoding time as short as 2 s is indeed feasible, making
fNIRS-BCI communication more efficient and less cognitively demanding.

2 Methods

2.1 Participants
The experimental procedure conformed to the Declaration of Helsinki and was approved by
the local ethics committee [Ethics Review Committee Psychology and Neuroscience (ERCPN)].
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Ten healthy individuals [10 females, 9 right-handed, age = 26.0 ± 7.2 years (mean ± SD),
all with reportedly normal hearing; see Table 1] were externally recruited or were recruited from
students and staff members of the Faculty of Psychology and Neuroscience at Maastricht
University. Written informed consent was acquired prior to the experiment. Participants were
compensated financially for their participation (7.50 €/h in form of vouchers).

2.2 General Procedure
The study was composed of a training session and the fNIRS-BCI session (see Fig. 1). The
training session entailed a training of the mental imagery task and familiarization with the com-
munication paradigm. To evoke a measurable signal, a combined motor-speech imagery task was
used. Participants were asked to imagine checking off a list with their right hand while saying
“check” or “correct” simultaneously for ∼2 s. Each participant was instructed on how to perform
the mental task and trained to encode answers until they felt comfortable in doing so (for
∼15 min). Additionally, participants’ head circumference was measured to select an appropriate
cap size. Cap sizes used in this experiment ranged from 56 to 58 cm (see Table 1). After training,

Table 1 Participant demographics.

Participant Age (years) Gender Handedness FNIRS experience Cap size (cm)

P01 25 Female Right No 56

P02 22 Female Right No 58

P03 47 Female Right Yes 56

P04 24 Female Right Yes 56

P05 26 Female Right Yes 56

P06 21 Female Left No 58

P07 21 Female Right No 56

P08 24 Female Right No 58

P09 21 Female Right No 58

P10 31 Female Right Yes 56

Note. Participant demographics are displayed.

Fig. 1 General procedure. Each participant underwent a training session (day 1) comprising of
assessing fNIRS suitability, determining the correct cap size, and familiarization with the men-
tal-imagery task and encoding paradigm. In the experimental session (day 2) two localizers were
performed to determine a COI followed by 10 encoding runs to encode answers and decode
the corresponding signal online. Subjective ratings were acquired after each run and finally the
mental-imagery task was rated at the end of the session.
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participants chose 10 unobtrusive binary questions to be answered during the BCI session from a
list of 45 possible questions (see Appendix 1 in the Supplementary Material). To ensure an equal
distribution of both answer options regardless of choice, each question was to be answered
truthfully first before also encoding the opposite answer. Finally, to quantify participants’ suitability
for fNIRS measurements, a suitability score was determined by means of an in-house questionnaire
(see Appendix 2 in the Supplementary Material) completed prior to the measurements.25

During the second part of the study, the fNIRS-communication paradigm was tested. In the
beginning, participants were seated in a sound-attenuating and darkened room. Nasion-inion
distance was measured to ensure correct positioning of the cap. FNIRS optodes were additionally
covered by a black cap to prevent influence of external light on the measurements. Finally, the
room was equipped with a microphone and speakers to enable communication between partici-
pant and researcher and to play recorded auditory instructions given during the experiment.
Participants were instructed to get into a comfortable position and to relax their jaw and facial
muscles during the session.

The measurements commenced with two localizer runs to determine the most informative
channel [channel of interest (COI)]. After the first localizer, participants were able to take a short
break during which the channel setup was changed for the second localizer. Thus, each partici-
pant underwent two localizer runs with a different setup per run. To counterbalance possible
effects of fatigue in the setup choice, half the participants started with one setup and the remain-
ing half with the other one. Following the localizers, 10 encoding runs (1 per question) were
performed. For encoding runs, the optode setup, including the most informative channel was
chosen for each participant. In between runs, participants were allowed to take a short break,
adjust posture, and drink water. After each run, they were asked to rate their current comfort-
ability, concentration, and alertness on a scale between 1 (not at all) and 10 (very). After the final
run, participants were asked to rate the easiness and pleasantness of the mental task.

2.3 Communication Paradigm
Participants answered binary questions by performing a mental-imagery task for ∼2 s at different
points in time to indicate the answer. Simple auditory instructions, i.e., concise spoken com-
mands (“yes,” “no,” and “switch”) informed participants of the start of each encoding window.
Note that no explicit instruction to stop the mental imagery was required as participants had been
trained to perform the task for ∼2 s. Instructions and corresponding time point triggers were
implemented using the stimulation software NIRStim 4.0 (NIRx Medizintechnik GmbH,
Berlin, Germany). Each run consisted of a 40 s baseline [to calculate oxyhemoglobin (HbO)
and deoxyhemoglobin (HbR)] concentrations preceding 10 trials in which a question was
answered 10 times in total (5:08 min/run; see Fig. 2). Each trial consisted of a 5-s pre-window,
a 2-s window for one encoding option (cued by auditory instructions) followed by 8 s resting
time before the second 2-s window (cued by auditory instructions), and then a 10-s post-window.

Fig. 2 Answer encoding scheme. The figure shows the two possible answer-encoding scenarios
for both a “yes” (top) and “no” (bottom) answer. Expected oxyhemoglobin (HbO) time courses
(black curves) in mental imagery-related brain regions are displayed. When participants intended
to encode “yes,” they performed combined motor-speech imagery causing HbO to rise during the
encoding time span for “yes” (2s; green bars). When participants wished to encode “no,” they per-
formed combined motor-speech imagery causing HbO to rise during the encoding time span for
“no” (2s; red bars). Participants encoded the same answer five times per run before a designated
switch (auditory cue “switch”) indicated to encode the opposite answer for five times again.
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In the first five trials, answers should be given truthfully and in the last five the opposite answer
should be encoded. An auditory cue “switch” instructed participants when to change their
encoded answer. This ensured that each answer option was encoded equally often independent
of a participant’s choice of questions and answers. To indicate the answer, the participant had to
perform the mental imagery task for about 2 s at the respective time of a trial. Each trial was
initiated by the first auditory cue for indicating “yes.” If the participant wished to answer “yes,”
they then performed the 2-s mental imagery. 10 s after the first auditory cue a second cue for
“no” followed. To indicate the second answer option, the participant performed the task in the
respective time window.

2.4 FNIRS Suitability Questionnaire
Because fNIRS constitutes an optical neuroimaging method, its signal quality can be crucially
impacted by the presence of certain physical features of participants, such as hair characteristics
(e.g., color, thickness, and density42–47), skin pigmentation,47 and head size (inter-optode distance
and skull thickness variation affects light absorption). To quantify participants’ suitability for
fNIRS measurements, a suitability score was determined by means of an in-house questionnaire
(see Appendix 2 in the Supplementary Material) completed prior to the measurements.25 The
physical features of interest were rated on a scale ranging from 0 to 4 regarding their risk to
absorb NIR light. Individual ratings were summed up to a total score (possible scoring range:
1 to 21). A low fNIRS-suitability score has been associated with improved signal quality.25

2.5 Data Acquisition
Hemodynamic brain activity was measured with an NIRScout-816 system (NIRx
Medizintechnik GmbH, Berlin, Germany). Eight detector and nine source optodes (small light
emitting diodes were used to produce light at wavelengths of both 760 and 850 nm. Recorded
signals were sampled at a rate of 6.94 Hz. Optodes were positioned according to the international
10 to 20 EEG system. The optodes always covered the left-hemispheric fronto-temporo-parietal
cortex for optimal coverage of brain regions activated during the performance of the combined
motor-speech imagery.48

To increase the chance of defining a promising channel-by-chromophore combination for
each participant for the subsequent encoding runs, two alternative setups were used in two initial
localizer runs. For one setup, optodes were positioned in a checkerboard pattern, interleaving
sources with detectors. For the other setup, positions of sources and detectors were changed
thereby forming a rowed placement with rows of sources alternating with rows of detectors.
Thus, one setup partially covered those cortical regions that were not covered by the alternative
one (see Fig. 3).

A custom-build short-distance channel (SDC) was created by placing source S9 as close as
the optodes would allow (∼10 mm away) to detector D5 on the same sagittal plane that connects
D5 to source S6 (see Fig. 3). The mid-sagittal sinus covered by the added SDC and other large
vascular structures49 have been shown to correlate with low frequency oscillations and cardiac
signals.50 The SDC was used in both setups to acquire these signal influences and thereby
account for the (extracerebral) physiological noise in the region covered by the setups.30 In total,
the setups contained 25 (“checkerboard”) and 32 (“rowed”) direct-neighbor channels including
the SDC, respectively.

2.6 Localizer Runs
Two localizer runs were performed for each participant to assess the strength of their hemo-
dynamic responses and determine a channel most sensitive to the answer decoding. Each run
consisted of 20 trials of 2 s each during which participants were instructed to encode “yes” for
the first half of the trials followed by encoding “no” for the subsequent trials. An auditory spoken
cue “switch” indicated to the participants when to alter their answer encoding. After the first
localizer participants were able to take a break during which the channel setup was changed
to another one for the second localizer. Thus, each participant underwent two localizer runs with
a different setup per run. The first participant tested (here referenced as P07) performed 30 trials
in total instead of 20 during the localizer but did not differ in number of trials during subsequent
encoding runs.
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2.7 Data Analysis
For data analysis, the software Turbo-Satori (v.1.2.8, Brain Innovation B. V., Maastricht, The
Netherlands) was used.51 Measured time course values were converted to HbO and HbR values
using the modified Beer–Lambert law. Moving-average high-pass and low-pass filters were
applied (high-pass cut-off: 0.010 Hz, filter order: 1; low-pass cut-off: 0.250 Hz, filter order: 2).
Data were analyzed online (i.e., in real-time) and offline using univariate general linear model
(GLM) analysis.

Selection of an ideal channel and Hb-type for each participant was based on the localizer
data. Specifically, predictors for each answer option were convolved with a standard hemo-
dynamic response function (HRF; double Gamma function, the onset of response and undershoot
was 6 and 16 s, respectively, dispersion 1 s, response to undershot ratio 6). A single most inform-
ative COI and corresponding most informative Hb-type was determined based on the chromo-
phore and channel that led to the highest t-statistic of the active encoding versus rest contrast
across localizer runs. Further, the SDC time course was used as a confound predictor to regress
out noise. Localizer data were additionally used to create topographical maps of HbO and HbR
activation changes obtained for a group fixed effects analysis (with n ¼ 10, Bonferroni-corrected
p < 0.01) during combined motor-speech imagery task for the setups using Satori (version 1.8).
During answer-encoding runs, the encoded answer per run/question was decoded online by fit-
ting a GLM to all 10 trials in each run. Two answer predictors were each convolved with an HRF
to model all 10 trials. T-values for each predictor were determined based on the previously
chosen COI and corresponding chromophore. The answer that led to the highest t-estimate
of the contrast “yes” versus “no” was considered the selected option. From these answers, a
whole-run accuracy was acquired for each participant by dividing the correctly encoded number
of runs by the total number of performed runs. In addition, the SDC time course was used as
confound predictor again. Subsequently, the data of the encoding runs of each participant were
analyzed using offline GLM analysis to calculate a single-trial (ST) accuracy per participant.
Mean accuracies were evaluated in a confusion matrix per participant using a χχ22 test to identify
participants who performed significantly better than theoretical chance level (= 50%) on ST level.
Due to data corruption, one encoding run was lost for one participant (P07).

The effect of the number of trial repetitions on mean accuracy on individual and group levels
was systematically evaluated post hoc.30 Answers were decoded anew from a reduced number of

"Checkerboard" "Rowed"

Text is not SVG - cannot display 

(a) (b)

Fig. 3 3D view of implemented fNIRS optode setups. “Checkerboard” (a) and “rowed” (b) setup
were used during the initial localizer procedure. Light absorption was measured using nine sources
(S; red) and eight detectors (D; blue) placed over the left-hemispheric (pre)motor and speech-
related regions. For the “checkerboard” setup, sources were positioned on FC5 (1), C3 (2),
CP5 (3), P3 (4), FC1 (5), Cz (6), CP1 (7), Pz (8), and 1 cm posterior of FCz (9; SDC source) while
detectors were placed on F5 (1), C5 (2), FC3 (3), CP3 (4), FCz (5), C1 (6), CPz (7), and P1 (8). The
average channel distance was 38.26 ± 3.5 mm (not including the SDC). For the “rowed” setup,
sources were positioned on F5 (1), C3 (2), C5 (3), P3 (4), C1 (5), Cz (6), P1 (7), Pz (8), and 1 cm
posterior of FCz (9; SDC source) while detectors were placed on FC5 (1), CP5 (2), FC3 (3), CP3
(4), FCz (5), FC1 (6), CPz (7), and CP1 (8). The average channel distance was 47.04� 8.4 mm
(not including the SDC). In total, the “checkerboard” setup contained 25 channels and the “rowed”
setup contained 32 channels, including an SDC (S9-D5). The 3D representation was created with
NIRSite v1.0 software (NIRx Medizintechnik GmbH, Berlin, Germany).
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trial repetitions following the same approach as described above. Concretely, the accuracies
of all consecutive trial combinations for every trial number (1∶n trials, where n ¼ ½1;2;
3;4; 5;6; 7;8; 9;10�) were computed. For example, to obtain the accuracy of eight trials, trial
combinations 1-2-3-4-5-6-7-8, 2-3-4-5-6-7-8-9, and 3-4-5-6-7-8-9-10 were used. The effect
of number of repetitions on the decoding accuracy at the group level was quantified with
Spearman’s rho correlation coefficient. The effect of number of trials was additionally evaluated
using information transfer rate (ITR), defined as in Allison, Dunne52

EQ-TARGET;temp:intralink-;e001;117;652ITR ¼
�
log2 N þ P � log2 Pþ ð1 − PÞ � log2

�
1 − P
N − 1

��
� 60

τ
; (1)

whereN is the number of classes, P is the classification accuracy, and τ is the duration of task and
rest period, in seconds. Finally mean and standard error of the subjective data (ratings) were
computed. Furthermore, the relationship of the ST accuracies and (a) fNIRS-suitability scores,
(b) subjective ratings, and (c) localizer t-values within COI were quantified using Pearson’s
correlation coefficient.

3 Results

3.1 Channel Selection
Overall, 10 participants took part in the experiment (see Table 1). For all participants, an indi-
vidual most-informative COI was determined using a localizer procedure described above (see
Table 2 for details). Overall, COIs were mostly located above dorsal and ventral premotor area
[see Figs. 4(a) and 4(c)]. For two individuals, most reliable activation was detected above
superior parietal lobe and precuneus [see Fig. 4(a)]. Generally, the highest t-value was found
for changes in HbR concentrations in all participants. The optode-setup choice based on the
most-informative COI resulted in the “rowed” setup for 6 out of 10 the participants (see Table 2).
The average distance of all COIs was 41.46� 6.1 mm as provided by NIRSite (39� 3.3 mm for
“checkerboard” only; 43.1� 7.1 mm for “rowed” only; for more details, see Table S5 in the
Supplementary Material).

3.2 Communication Accuracy
During the sessions, answers could be encoded in real-time using a whole-run online GLM. An
average accuracy of 85.78% was obtained across participants with a minimum of 40% (P01) and
a maximum of 100% (P03 to P06, P09). All participants except two (P01 and P08) showed an
average whole-run accuracy >70% [see Fig. 5(a)]. To speak of a robust communication method,
a communication accuracy of more than 70% is considered sufficient in a two-choice paradigm
with a sample size equal to 10.53,54

Using an offline GLM analysis, individual answer trials of participants could be decoded
correctly with an average accuracy of 68.09% (theoretical chance level: 50%). ST accuracies
varied overall from 49% (P01 and P08) to 91% (P03). In 6 out of 10 participants, ST accuracies
were significantly above chance level as calculated with a χχ22 test [see Fig. 5(b)]. Average
decoding accuracy of the first five trials (true answer encoded) within an encoding run was
67.0� 0.15%, whereas it was 69.2%� 0.14% for the second half (opposite answer encoded).
Average accuracies of trials of “yes” or “no” encodings were 68.4%� 0.13% and 67.8%�
0.15%, respectively (see Table S4 in the Supplementary Material). Finally, ST accuracies corre-
lated significantly with fNIRS-suitability scores (r ¼ −0.67, p ¼ :03) and localizer t-values
within COI (r ¼ 0.71, p ¼ 0.02). Subjective ratings concerning experienced comfortability,
alertness, and concentration (see Fig. 7) did not correlate with ST accuracies. Note that these
correlations and their significance should be interpreted with caution as the number of partic-
ipants was not sufficiently high to draw a firm conclusion.

3.3 Effects of Number of Trial Repetitions
The assessment of the effect of the number of trial repetitions on decoding accuracy showed that
a mean accuracy >70% could have been achieved already when averaging the data of two trials
(μ ¼ 74.15%, SD ¼ 15.67%, and Mx ¼ 73.33%) and an accuracy of >80% when considering
data of four trials (μ ¼ 81.76%, SD ¼ 17.69%, and Mx ¼ 87.86%). The average accuracy

Vorreuther et al.: It takes two (seconds): decreasing encoding time for two-choice. . .

Neurophotonics 045005-7 Oct–Dec 2023 • Vol. 10(4)

https://doi.org/10.1117/1.NPh.10.4.045005.s01
https://doi.org/10.1117/1.NPh.10.4.045005.s01


T
ab

le
2

S
et
up

ch
oi
ce

fo
r
ea

ch
pa

rt
ic
ip
an

t
ba

se
d
on

ch
an

ne
ls

el
ec

tio
n.

P
ar
tic
ip
an

t
S
ta
rt
se

tu
p

M
os

t
in
fo
rm

at
iv
e
ch

an
ne

ls
pe

r
se

tu
p

p
-v
al
ue

of
C
O
I

S
et
up

w
ith

m
os

t
in
fo
rm

at
iv
e
ch

an
ne

l
F
N
IR
S
-
su

ita
bi
lit
y

sc
or
e

“C
he

ck
er
bo

ar
d”

“R
ow

ed
”

H
bO

H
bR

H
bO

H
bR

P
01

“R
ow

ed
”

5-
3
(0
.9
6)

4-
8
(0
.8
5)

8-
8
(1
.5
9)

8-
8
(1
.7
9)

<
.0
85

“R
ow

ed
”

14

P
02

“C
he

ck
er
bo

ar
d”

2-
3
(7
.5
3)

2-
3
(1
0.
08

)
5-
5
(4
.6
8)

2-
3
(1
0.
29

)
<

.0
01

“R
ow

ed
”

12

P
03

“C
he

ck
er
bo

ar
d”

2-
6
(3
4.
63

)
2-
6
(4
0.
92

)
2-
3
(4
0.
09

)
2-
3
(3
7.
75

)
<

.0
01

“C
he

ck
er
bo

ar
d”

9

P
04

“R
ow

ed
”

5-
6
(6
.9
9)

9-
6
(6
.1
5)

5-
5
(1
0.
51

)
5-
6
(1
4.
84

)
<

.0
01

“R
ow

ed
”

11

P
05

“R
ow

ed
”

2-
6
(2
.8
9)

2-
2
(3
.4
2)

2-
1
(4
.8
5)

3-
3
(7
.3
1)

<
.0
01

“R
ow

ed
”

10

P
06

“R
ow

ed
”

2-
2
(2
.1
7)

1-
2
(5
.4
6)

2-
2
(5
.4
1)

2-
2
(4
.8
6)

<
.0
01

“C
he

ck
er
bo

ar
d”

14

P
07

“C
he

ck
er
bo

ar
d”

1-
2
(2
.5
5)

2-
6
(9
.7
7)

2-
1
(4
.9
1)

6-
6
(3
.5
7)

<
.0
01

“C
he

ck
er
bo

ar
d”

12

P
08

“C
he

ck
er
bo

ar
d”

1-
2
(4
.7
3)

8-
7
(4
.7
9)

5-
7
(3
.4
)

3-
1
(5
.2
1)

<
.0
01

“R
ow

ed
”a

12

P
09

“C
he

ck
er
bo

ar
d”

2-
6
(6
.8
7)

2-
3
(8
.1
4)

2-
6
(9
.9
7)

2-
3
(1
0.
24

)
<

.0
01

“R
ow

ed
”

13

P
10

“R
ow

ed
”

3-
2
(2
.9
7)

3-
4
(5
.0
4)

2-
1
(3
.0
0)

2-
2
(3
.5
6)

<
.0
25

“C
he

ck
er
bo

ar
d”

12

N
ot
e.

T
he

ta
bl
e
di
sp

la
ys

th
e
se

tu
p
ch

os
en

as
st
ar
ts

et
up

fo
r
th
e
fir
st

lo
ca

liz
er

of
ea

ch
pa

rt
ic
ip
an

t.
T
he

m
os

ti
nf
or
m
at
iv
e
ch

an
ne

ls
fo
r
ea

ch
se

tu
p
ar
e
re
po

rt
ed

as
w
el
la

s
m
ea

su
re
d
t-
va

lu
es

(p
ar
en

-
th
es

es
)
fo
r
ox

yh
em

og
lo
bi
n
(H

bO
)
an

d
de

ox
yh

em
og

lo
bi
n
(H

bR
),
re
sp

ec
tiv
el
y.

T
he

p
-v
al
ue

fo
r
th
e
m
os

t-
in
fo
rm

at
iv
e
ch

an
ne

la
cr
os

s
th
os

e
fo
ur

w
as

ch
os

en
as

C
O
I(
bo

ld
)
an

d
de

te
rm

in
ed

th
e
ch

os
en

op
to
de

se
tu
p
fo
r
th
e
en

co
di
ng

ru
ns

.
F
N
IR
S
-s
ui
ta
bi
lit
y
sc

or
es

ar
e
re
po

rt
ed

fo
r
co

m
pa

ris
on

.
a D

ue
to

a
m
ea

su
re
m
en

t
er
ro
r
du

rin
g
th
e
ex

pe
rim

en
ta
ls

es
si
on

,
a
no

n-
id
ea

ls
et
up

w
as

ch
os

en
fo
r
th
is

pa
rt
ic
ip
an

t
fo
r
en

co
di
ng

ru
ns

(“
ch

ec
ke

rb
oa

rd
”
in
st
ea

d
of

“r
ow

ed
”)
.

Vorreuther et al.: It takes two (seconds): decreasing encoding time for two-choice. . .

Neurophotonics 045005-8 Oct–Dec 2023 • Vol. 10(4)



reaches the maximum of 87% after nine trial repetitions and then stagnates [see Fig. 6(a)].
A significant positive correlation between the accuracies and the number of repetitions was found
as calculated with Spearman’s rho correlation coefficient (ρ ¼ :997, p < 0.001). Moreover, the
ITR computation indicates that the highest ITR values can be reached, on average, when using
four trials (0.13 bits∕min) instead of 10 [0.09 bits∕min; see Fig. 6(b)].

3.4 Subjective Ratings
Subjective ratings of comfortability, alertness, and concentration remained high overall (concen-
tration: μ ¼ 7.91� 0.95; alertness: μ ¼ 7.64� 1.14; comfortability: μ ¼ 7.53� 1.26; see
Fig. 7). They ranged from 5 (P02) to 10 (P04) for concentration, 4 (P05) to 8 (P04) for alertness,
and 4 (P05/P10) to 10 (P04/P08) for comfortability (see Tables S1–S3 in the Supplementary
Material). A decrease of all subject ratings could be observed from the first to last run. The
steepest decrease, while still mediocre, was observed in comfortability (from 8.3� 1.19 in the
first to 6.7� 1.79 in the last run). The task was judged as pleasant and easy (pleasantness:
μ ¼ 8.35� 1.61; easiness: μ ¼ 8.9� 1.14; see Fig. 7). Comparing ratings and accuracy, no
obvious trend was observable.

(a)

(b)

Fig. 4 Results of the localizer procedure. (a) Selected COIs for “checkerboard” (arrows) and
“rowed” (dashed arrows) setup are marked. Sources (gray) and detectors (white) for both setups
are displayed. (b) Topographical maps of HbO (red) and HbR (blue) activation change obtained by
group fixed effects analysis (with n ¼ 10, Bonferroni-corrected p < 0.01) during combined motor-
speech imagery task for the “checkerboard” setup. Key speech-imagery (dashed arrows) and
right-hand motor-imagery (arrows) areas are marked. Due to the limited spatial resolution of
fNIRS, the labeling of the brain regions should be considered an approximation. vPM, ventral pre-
motor area; SMA, supplemental motor area; dPM, dorsal premotor area; M1, primary motor cortex;
S1, primary sensory cortex; and S2, secondary somatosensory cortex. Due to an error during the
experimental session, a non-ideal setup was chosen for this participant (“checkerboard” instead of
“rowed” setup).
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4 Discussion
Motor-independent communication through BCIs might improve the quality of life of patients
with severe motor paralysis. Though essential in daily life, communication is difficult for these
patients. While efforts are made to provide means of communication through brain-based

(a)

(b)

Fig. 5 Communication accuracies at individual and group level. Whole-run accuracy (a) and
single-trial accuracy (b) are plotted for each participant (sorted by single-trial accuracies) and
on group level (x -axis). Standard deviations of group averages are indicated by black lines.
Borders of bars represent the individual setup choice. FNIRS-suitability scores are indicated in
the single-trial accuracy graph (black dots). The gray areas mark whole-run accuracies ≥70%
(a) and single-trial accuracies that were significantly above chance level as determined by a
χ2 test (with a corresponding p ≤ 0.05; panel b). Individual easiness/pleasantness ratings of
the mental task are provided.

(a) (b)

Fig. 6 Effect of the number of trial repetitions on decoding accuracy. (a) The box-plot shading
depicts classification accuracy for all numbers of repetitions used for decoding: from ten trials
to a single trial. Mean values (horizontal lines) and ITR (black bars) are indicated for each number
of trials. Participant-wise accuracies (%) are plotted for each number of trial repetitions (colored
dots), and average participant-wise accuracy is represented through colors ranging from green to
red. The dashed line shows the chance level. The number of trials used to decode each run influen-
ces the decoding process. Mean- and several single-participant accuracies remain above chance
level even on a single-trial level. (b) Average (colored markers) and single-participant (gray mark-
ers) ITR values (bits/min) for different numbers of trial repetitions (curves) as a function of achieved
classification accuracies. Lines represent the theoretical values the ITR can take (ranging from
0 to 1) as a function of the number of classes, trial duration and accuracy based on Eq. (1).
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paradigms, complex mental imagery over a prolonged period of time can be exhausting for
patients and caregivers alike. A shorter encoding time may result in less fatigue for patients and
faster exchange with caregivers about crucial information (i.e., pain indication and basic needs).

Reliance on fNIRS-signal features that can be voluntarily modulated for encoding BCI com-
mands offers a viable addition to established BCI-input modalities, such as EEG and fMRI.
Especially the portability of the fNIRS equipment and its easy application highlights the potential
of its use by non-experts (e.g., patients’ caretakers) and at the bedside compared to other meth-
ods. Successful communication with fNIRS-based BCIs has already been demonstrated in
healthy participants (e.g., Refs. 22 and 25) and patients (e.g., Refs. 1 and 37). In previous studies,
the speed of information encoding was usually limited by implementing relatively long encoding
windows of 6 s30 up to 30 s37 with many paradigms using periods of 101,2,25–29 to 20 s.2,9,15,31 In
the present study, participants successfully communicated binary answers through fNIRS signals
evoked by performing a differently timed mental-imagery task cued by simple auditory instruc-
tions. Participants indicated their choice by performing a combined motor-speech imagery task
for ∼2 s only. An individualized localizer procedure together with a combined use of motor and
speech imagery facilitated high accuracy. Overall, the paradigm required only a short time of
concentration on a relatively easy mental task thus considerably limiting the cognitive effort for
BCI users. This makes this communication paradigm ideal for users with limited cognitive
resources or cognitive impairments, for example patients or children. The increased efficiency
and convenience further emphasize the potential of fNIRS as BCI-input modality.

4.1 Encoding Period of 2 s Enables Effective and Convenient Communication
To advance progress towards an efficient and convenient binary fNIRS-BCI, a communication
paradigm exploiting temporal fNIRS-signal features and using an encoding time of only 2 s was
tested. Whole-run communication accuracies were decoded online. On average, a high online
communication accuracy was obtained (μ ¼ 85.78%). While communication accuracy varied
inter-individually, a sufficient communication accuracy (>70%) was obtained for the vast major-
ity (80%) of the tested healthy participants. Only two participants (P01 and P08) obtained com-
munication accuracies that did not exceed the 70% criterion considered necessary for robust
2-class communication [see Fig. 5(a)].53,54

The data of the communication runs were further analyzed offline to obtain individual ST
accuracies and a group mean. Overall, a high ST accuracy (68.09%) was achieved with 6 out of
10 participants showing a significant individual ST accuracy. Expectably, only chance-level
ST accuracies were obtained for those two participants for whom insufficient communication

Fig. 7 Average subjective ratings. Average ratings of concentration, alertness, and comfortability
are plotted for all runs (and corresponding measurement time). Standard errors are indicated by
bars.
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accuracies were observed online [see Fig. 5(b)]. By comparison, other studies employing a
binary communication approach obtained ST decoding accuracies of 64.4%36 and 77.2%.34

Communication accuracy obtained when combining several trials reached comparable results
when decoded in real-time. One study, for instance, obtained 67% accuracy when combining
20 trials in real-time analysis.25 Another study reached 77.4% online accuracy combining three
20 s-trials after training a classifier offline.39 Offline analysis of multiple combined trials gen-
erally yields better results. A study combining 20 trials of 15 s-encoding windows each obtained
an offline whole-run accuracy of 80%.9 Accuracy went up as high as 89% in a study by Sitaram
et al.2 utilizing 20 trials with 10 s-encoding windows per mental imagery task.

Notably, the ITR of the paradigm is low for any number of trial repetitions compared to more
advanced communication BCIs.30,55 This is partly due to the length of the pre- and post-window
of trials and the small number of answer options, which both yields lower ITRs regardless of
accuracy compared to more complex paradigms. The calculation of the ITR was useful in show-
ing the potential for reducing the number of trial repetitions needed for robust communication in
some participants. Regardless, the paradigm’s value lies not in increasing the ITR, instead its
focus was the decrease of effort for participants through a shorter encoding time. Results indicate
that a mental imagery task of 2-s duration is sufficient for most participants to answer binary
questions accurately.

Overall, results show that encoding windows as short as 2 s yield comparable accuracies
both on an ST and multi-trial level of analysis. Importantly, most participants (7/10) could have
reached sufficient accuracy when considering as few as four or even fewer trials as shown during
offline analysis, suggesting that speed of communication can be further increased. Note however,
that for some individuals (P01, P02, and P08), a larger number of trials encoding one answer or
a longer encoding period might have been beneficial and could result in robust communication
accuracy (see Fig. 6).

4.2 Most Informative Channels over the Prefrontal Motor Areas
It was expected that activation caused by the combined motor-speech imagery would be reflected
in channels directly above the prefrontal motor areas. In line with this, the most informative
channel was located above these areas in most of the participants (8/10). For two pairs of par-
ticipants, the same channels were chosen as COI (S2-D3 and S2-D5, respectively, see Table 2).
While the combinatory use of the two different optode setups (“checkerboard” and “rowed”) led
to a longer experimental session and more effort for the participants (due to performing an addi-
tional localizer), it was a pragmatic approach to improve coverage of the fronto-temporo-parietal
cortex. Results demonstrated that the COI was found almost equally often in the “checkerboard”
and the “rowed” setup (see Table 2, Fig. 3) suggesting that using different setups might be useful.
Note, however, that the present study was not intended (and is not suited) to systematically evalu-
ate potential benefits of such an approach. This methodological aspect is currently investigated in
a separate study.

Due to an experimenter error, the wrong setup (the “checkerboard” setup) was used during
the encoding runs for one participant (P08). The most-informative COI in the ideal (“rowed”)
setup (S3-D1) for this participant was actually located above the prefrontal motor areas whereas
the used COI (S8-D7) was located more posterior above the parietal cortex. The fact that the
premotor area was selected for use in the encoding runs for almost all other participants, suggests
that this difference in location could (at least partially) explain why decoding results for P08 were
low. Notably, the selected COI of the other participant with chance-level accuracy (S8-D8, P01)
was also located more caudally although the signal quality of this participant was generally weak,
and the location overlap here might be just coincidental. It should be noted that only one SDC
was included in each setup although the use of multiple SDCs per setup would be ideal to account
for the heterogeneity in scalp hemodynamics when covering several brain regions.56 While this
might make application of setups in a natural (non-lab) environment easier, future studies should
investigate whether signal quality can be significantly improved through usage of SDCs on
multiple sites. Furthermore, a potential research question is whether participants have individual
ideal locations for SDCs. If only one SDC is available, it would be ideal to place the SDC
accordingly.
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4.3 On the Benefits of Using a Combined Motor-Speech Imagery Task and
the Association of fNIRS Suitability and BCI Performance

The purpose of using a combined motor-speech imagery task was to increase the amount of
cortex activated by mental-task performance and therewith to boost the chance to define a prom-
ising channel in each participant. After the last encoding run, participants were asked to rate the
easiness and pleasantness of the mental task. The task was rated easy and pleasant on average,
suggesting that it required only little cognitive effort (see Fig. 7). Since the present study was
meant to assess feasibility of shortened encoding times rather than cognitive workload, simple
subjective ratings were collected to confirm that the combination of motor and speech imagery
was not too demanding for participants. A more detailed systematic evaluation of cognitive work-
load in relation to the paradigm and imagery could be done in future work. Additionally, one
should systematically investigate whether an increased number of answer options could result in
high cognitive demand despite short encoding time.

Moreover, participants were asked to rate their current comfortability, concentration, and
alertness on a scale between 1 (not at all) and 10 (very) after each run. Ratings of concentration,
alertness, and comfortability during the experimental session remained generally high. A small
decrease could be observed over runs, particularly for comfortability (see Fig. 7 and Tables S3–S5
in the Supplementary Material). Note that the measurements took place in a darkened room with
closed door to improve signal quality and to keep the environment constant across participants. A
more natural measurement setting might improve user comfort. To quantify participants’ suit-
ability for measurements, an fNIRS suitability score was determined for each participant by
means of a questionnaire filled out prior to the experimental session (see Appendix 2 in the
Supplementary Material). ST accuracies correlated negatively with the fNIRS-suitability scores
indicating high scores (inferior suitability) can be predictive of limited accuracy [see Fig. 5(b)]. It
should be noted that the participant with the lowest accuracy (P01) also had a quite high fNIRS
suitability score (14/21 possible points) indicating low fNIRS suitability in terms of hair texture,
hair and skin color, and/or head size. While the score offers the possibility to predict a partic-
ipant’s BCI performance to some degree, obtained communication accuracies also show that
participants can still yield great accuracy despite a suboptimal fNIRS-suitability score (e.g.,
P06). Thus, while the score may be used as an initial judgement method of general fNIRS suit-
ability, it is not the only factor that determines BCI performance. Limited fNIRS suitability might
be compensated by other factors, such as motivation or mental-task performance.

4.4 Remaining Limitations
The present study has some limitations that should be considered. Coincidentally, only female
participants were included; in addition, the number of participants is limited (n ¼ 10) although in
BCI experiments (where the focus is on the individual level), the current sample size is sufficient
to demonstrate feasibility of the paradigm at hand.2–4,7,9 A replication of the study, preferably
performed in another lab, with a larger number of participants, including male participants would
be a valuable extension.

While the overall aim was to design a paradigm aiding everyday use of an fNIRS-based
communication BCI, the conditions under which answers were encoded, were kept as constant
across participants as possible. However, while a darkened, closed-off room likely aids consis-
tency and signal quality, it does not represent a realistic situation of potential application in
patients. Thus, to conclusively proof suitability of fNIRS for everyday use, this BCI-
communication method should also be tested in a less controlled environment, i.e., natural envi-
ronments, as was done recently in a study by Nagels-Coune et al.27

Finally, the design of one communication trial resulted in a shorter resting period following a
“yes” compared to a “no” answer which could potentially induce a bias. However, this difference
did not confound the present results as there was no difference in encoding accuracies between
“yes” and “no” answers (see Table S4 in the Supplementary Material).

4.5 Future Research Directions
The presented fNIRS communication BCI opens up several new directions for further investi-
gation. First, the present study used a questionnaire score to determine suitability of participants
for fNIRS, and even though obtained scores seem to correlate with ST decoding accuracy, this
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measurement is based on the subjective evaluation of participants’ physical appearance. The
presented FNIRS findings suggest that the signal quality observed during localizer runs could
also be indicative of attainable communication accuracy. Future studies should investigate
whether one could determine fNIRS suitability of a BCI user based on localizer data alone.
Second, the chosen combined motor-speech imagery task was thought to be easy in terms of
cognitive effort while also increasing the chance to find a suitable COI in all participants.
To further improve the signal quality for each participant individually, one could choose an indi-
vidually selected, optimal task per user which elicits the best possible signal. Finally, results
(see Fig. 6) indicate that, at least for certain participants, the number of trials required for robust
answer decoding can be reduced. It remains to be tested whether it is possible to predict the
number of required trials for an individual to adjust run time accordingly and then gain sufficient
accuracy for all tested participants who generally are suitable for fNIRS.

5 Conclusion
With increased speed of communication enabled through the shorter encoding time windows, the
present study gives proof of concept for convenient, efficient, immediate, and motor-independent
communication with healthy human participants. Working memory load for participants is kept
at a minimum through the short phase of encoding and the use of a single simple mental imagery
task. A relatively easy BCI setup enabled through use of fNIRS-based neuroimaging could make
the paradigm a feasible option for use at patients’ bedsides as well. Future studies should focus
on tailoring (fNIRS-)BCIs to individual needs and further improve comfortability for the user.
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