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ABSTRACT. Significance: Early diagnosis of depression is crucial for effective treatment. Our
study utilizes functional near-infrared spectroscopy (fNIRS) and machine learning to
accurately classify mild and severe depression, providing an objective auxiliary
diagnostic tool for mental health workers.

Aim: Develop prediction models to distinguish between severe and mild depression
using fNIRS data.

Approach: We collected the fNIRS data from 140 subjects and applied a complete
ensemble empirical mode decomposition with an adaptive noise-wavelet threshold
combined denoising method (CEEMDAN-WPT) to remove noise during the verbal
fluency task. The temporal features (TF) and correlation features (CF) from 18 pre-
frontal lobe channels of subjects were extracted as predictors. Using recursive feature
elimination with cross-validation, we identified optimal TF or CF and examined their
role in distinguishing between severe and mild depression. Machine learning algo-
rithms were used for classification.

Results: The combination of TF and CF as inputs for the prediction model yielded
higher classification accuracy than using either TF or CF alone. Among the predic-
tion models, the SVM-based model demonstrates excellent performance in nested
cross-validation, achieving an accuracy rate of 92.8%.

Conclusions: The proposed model can effectively distinguish mild depression from
severe depression.
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1 Introduction
Depression is a prevalent psychological disorder characterized by persistent feelings of sadness
and loss of interest in activities, significantly impacting the lives and work of individuals
during the onset of the illness. Recognized as a pressing concern by the WHO’s Mental Health
Gap Action Program (mhGAP),1 ∼3.8% of the global population suffers from this condition.
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The severity of depression, as assessed by the Hamilton Depression Rating Scale (HAMD),2 can
be roughly categorized as mild, moderate, and severe. However, the diagnosis process often
involves subjective evaluations, such as clinical interviews and professional medical assess-
ments, which may impede the timely and accurate diagnosis of severe depression. Moreover,
due to the shortage of mental health workers, only 9.2% of individuals with depression receive
appropriate treatment, whereas some individuals with anxiety disorders or mild depression are
mistakenly prescribed antidepressant medications.3 Research4 has indicated that antidepressants
are ineffective in treating mild depression. Thus, there is an urgent need to develop an objective
and efficient approach to quickly differentiate between mild and major depression for early
diagnosis and effective treatment evaluation.

Several studies5,6 have found evidence of structural and functional changes in various brain
regions among individuals with severe depression. These changes include abnormal activity in
prefrontal, limbic, thalamic, and cortical areas. In prefrontal regions, increased depression
severity is associated with decreased neural activity in the low-frequency range and increased
activity in the high-frequency range.7 In addition, severe depression is characterized by extremely
low mood, which may be accompanied by severe sleep problems, loss of appetite, and loss of
interest in daily activities. Even for mild depression, the changes in the brain and physiology may
be relatively mild but can still lead to problems with mood, concentration, and cognition.8,9

Depression severity has been found to be significantly associated with cognitive performance
in situational memory, executive functioning, and processing speed, and as depression severity
increases, these cognitive abilities decline.10 Impaired cognitive function in depressed patients
results in reduced regional cerebral blood flow (rCBF) in the frontal, temporal, and anterior
cingulate gyrus during cognitive tasks.11 Functional near-infrared spectroscopy (fNIRS) serves
as a non-invasive, portable tool for monitoring hemodynamic responses in the cerebral cortex,
commonly utilized to observe hemodynamic changes in psychiatric patients undertaking
cognitive tasks due to its simplicity, safety, and resistance to interference. When performing
a cognitive task, the brain experiences an oversupply of rCBF, leading to the hemodynamic
response that can be measured through fNIRS.12 Researchers13–15 found that values of oxyhemo-
globin concentration in the prefrontal lobe measured by the fNIRS device were negatively
correlated with HAMD scores, which were associated with depression severity, suggesting that
changes in oxygen-hemoglobin are a potential biomarker for recognizing depression severity.

In recent years, several researchers16,17 utilized machine learning techniques to construct
prediction models that differentiate between severe depression and healthy individuals based
on fNIRS data, obtaining favorable classification performance. Although these studies13,18–20

suggest that machine learning prediction models developed based on fNIRS data serve as effec-
tive analytical tools for identifying patients with severe depression, few studies have focused on
discriminating depression severity. Ramasubbu et al.21 developed a predictive model for distin-
guishing between patients with mild depression and severe depression but did not achieve high
accuracy. Richter et al.22 proposed a diagnostic system (25 clinical anxiety or depression patients,
76 healthy control participants) and achieved an accuracy of 81.69% in distinguishing the mixed
anxiety/depression group from the control group, but it only achieved a success rate of 50.66% in
differentiating the anxiety group from the depression group.

Inspired by previous researches,14,15,23 we found that fNIRS measurement can be instrumen-
tal in distinguishing the severity of depression. In this study, we proposed a predictive model
based on fNIRS data to differentiate between patients with mild and severe depression. This
model provides mental health professionals with an objective and effective diagnosis method
for determining the severity of depression.

2 Materials

2.1 Participants
In this study, 140 patients with drug-naïve, first-episode depression were recruited with their
permission and informed consent. All subjects had no other neurological disorders (stroke, brain
tumor, severe concussion, migraine, etc.), cardiovascular (myocardial infarction, arrhythmia,
etc.) diseases, and no obvious impairment in vision and hearing. The experiment was conducted
under the guidance of a professional psychiatrist. No data identifying the participants were
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recorded during the entire research process. A senior professional psychiatrist conducted inter-
views and observations, utilizing the HAMD2 scale to evaluate depressive symptom severity.
According to the diagnosis of the psychiatrist, among these 140 first-episode depression patients,
58 individuals were assessed as mildly depressed, whereas the remaining 82 subjects were
classified as having severe depression. More details of the participants are shown in Table 1.

2.2 Activation Task (Verbal Fluency Task)
The verbal fluency task (VFT) is a cognitive task commonly used in fNIRS research, which
primarily reflects executive function and has been correlated with a number of basic neurocog-
nitive activities (e.g., working memory, motivation, and attention).24 In China, the Chinese
version of the VFT has been widely used in the diagnosis of psychiatric disorders as a sensitive
indicator for assessing deficits in domains of cognition and executive function that depend on
activation in prefrontal regions.25 Before the VFT task, the participants were instructed to stay in
a separate, quiet room and sit on a chair, ensuring that their eyes were directly in front of the
monitor at a distance of 60 cm. Participants were asked to look at the “+” symbol on the monitor
and keep their heads still. At the beginning of each experiment, during a 30-s rest period before
the task, a guiding voice prompt was played: “Check begins, please repeat the reading 12345.”
Concurrently, the fNIRS data were recorded. Next, during a 60-s task period, the participants
were required to complete three tasks involving the formation of words using the three characters
“zhong,” “ri,” and “lan,” respectively. Each word formation task had a time limit of 20 s. Finally,
during a 30-s resting period after the task completion, the instructional audio prompt stating,
“Please repeat reading 12345 until the end of the check” was played and the fNIRS data acquis-
ition was terminated. The entire VFT process is shown in Fig. 1(b).

2.3 fNIRS Data Acquisition
In the experiments, an fNIRS instrument (ETG-4100 Optical Topography System) manufactured
by Hitachi Medical is utilized to obtain data. This device utilizes near-infrared light at two spe-
cific wavelengths (659� 20 and 830� 20 nm) to penetrate the scalp, skull, and cerebrospinal
fluid, enabling irradiation of the cerebral cortex. The instrument consists of 17 transmitters and
16 detectors, forming a total of 52 channels, including 18 in the prefrontal lobes and 17 channels
each in the right and left frontal lobes. The distance between each pair of transmitters and detec-
tors was 3.0 cm, with a sampling frequency of the instrument was 10 Hz. During the VFT, neural
activity leads to changes in CBF, causing changes in brain oxygen-hemoglobin (ΔHbO) and
deoxygen-hemoglobin (ΔHbR).6 According to Lambert-Beer,26 changes in ΔHbO and ΔHbR
can be deduced from the NIRS signals measured during the task. These changes provide a more
accurate reflection of the activation state of the cerebral cortex in relation to cognitive tasks. The
entire process of data collection in the experiment is shown in Fig. 1.

3 Methods
To predict the severity of depression, we developed a prediction model for mild and severe
depression. The model involves data preprocessing, feature extraction, feature selection, feature
fusion, and classification prediction, as shown in Fig. 2.

3.1 Data Pre-Processing
We utilized the HOMER2 toolbox in MATLAB 2018b to process NIRS data and obtained the
change in ΔHbO and ΔHbR using the Beer-Lambert law.27 These hemodynamic parameters are

Table 1 Subject information of our data.

Severe depression Mild depression

Number 82 58

Gender 54 females, 28 males 39 females, 19 males

Age (years) 32.48 ± 17.71 36.65 ± 19.97
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recognized as sensitive indicators for investigating psychiatric disorders.28 However, the raw
hemodynamic signals often contain various types of noise that can affect the feature extraction
process. Therefore, preprocessing of the fNIRS data is essential to remove noise before further
analysis.29 We utilized a polynomial regression model to estimate linear or nonlinear trends and
then subtracted this trend from the original hemoglobin concentration signal to obtain detrended
data. The temporal derivative distribution repair method30 was employed for motion artifact cor-
rection. In addition, a third-order Chebyshev type II filter31 with a cutoff frequency of 0.01 Hz
and a stopband frequency of 0.2 Hz was used to remove most physiological noise [e.g., respi-
ration (0.2 to 0.4 Hz) and heartbeat (0.5 to 2.0 Hz)]. However, various artifacts, such as ambient
light, electrical interference from the instrumentation, and positional movements, still contami-
nated the effective frequency band. In previous studies,32,33 empirical mode decomposition
(EMD) and ensemble empirical mode decomposition (EEMD) methods have been used to

Fig. 2 The overview of the model.

Fig. 1 The experimental data collection process. (a) Details of the probe for the fNIRS device.
(b) The VFT consisted of three stages: a 30-s pre-task baseline period, a 60-s VFT task period,
and a 30-s post-task baseline period. (c) The ΔHbO and ΔHbR curves for 17 channels in the
right temporal lobe, 18 channels in the prefrontal lobe, and 17 channels in the left temporal
lobe.
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eliminate motion artifacts and baseline drifts in physiological signals. In this study, to enhance
the signal-to-noise ratio (SNR) and facilitate subsequent feature extraction, we applied a com-
plete EEMD with adaptive noise-wavelet threshold (CEEMDAN-WPT) denoising method to
eliminate noise contaminating the effective frequency band of fNIRS data. The flowchart of
the CEEMDAN-WPT algorithm is shown in Fig. 3, and the specific implementation steps are
detailed below.

1. Suppose Eið·Þ represent the i’th intrinsic mode function (IMF) component operation cal-
culated by the EMD algorithm. White noise that conforms to the standard distribution is
added to the original signal, resulting in I initial signal xiðtÞ:

EQ-TARGET;temp:intralink-;e001;117;495xiðtÞ ¼ xðtÞ þ εiω
iðtÞ: (1)

Here, xðtÞ represents the original signal, εi is the white noise amplification factor, and ωiðtÞ
denotes the white noise following a standard Gaussian distribution.

2. Perform EMD decomposition on all initial signals to obtain the first modal component:

EQ-TARGET;temp:intralink-;e002;117;433IMF1ðtÞ ¼
1

I

XI

i¼1

IMFi1ðtÞ: (2)

Then, calculate the first-order remaining components:

EQ-TARGET;temp:intralink-;e003;117;379r1ðtÞ ¼ xðtÞ − IMF1ðtÞ: (3)

3. Add E1ðωiðnÞÞ to r1ðtÞ, obtaining the new signal r1ðtÞ þ ε1E1ðωiðnÞÞ, and perform EMD
decomposition again to calculate the second residual component:

EQ-TARGET;temp:intralink-;e004;117;327IMF2ðtÞ ¼
1

I

XI

i¼1

E1ðr1ðtÞÞ þ ε1E1ðωiðnÞÞ: (4)

Then, calculate the second-order residual components:

EQ-TARGET;temp:intralink-;e005;117;273r2ðtÞ ¼ r1ðtÞ − IMF2ðtÞ: (5)

4. Repeat the above steps until the number of poles of the obtained residual signal is less than
two, indicating the end of the decomposition algorithm. At this stage, the original signal
xðtÞ has been decomposed into

EQ-TARGET;temp:intralink-;e006;117;208xðtÞ ¼
XK
k¼1

IMFk þRðtÞ: (6)

5. Carry out wavelet threshold denoising on the noisy high-frequency component IMFk:

EQ-TARGET;temp:intralink-;e007;117;151

8<
:

y ¼ WðIMFkÞ
ỹ ¼ D̃ðy; λÞ
IMFk ¼ WðỹÞ

: (7)

In the equation, W and W are the wavelet packet change and its inverse operation, respec-
tively. D̃ and λ are the threshold function and threshold magnitude, respectively, and IMFk
denotes the high-frequency component after denoising processing.

Fig. 3 The overall process of the CEEMDAN-WPT.
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6. The denoising high-frequency component IMFk and the low-frequency component IMF
are reconstructed to obtain the denoising signal x 0ðtÞ.

3.2 Methodology for the Effective Feature and Identified Model
In our study, we employed a methodology to extract key features for effective classification of
patients with mild and severe depression. This involved identifying critical features from the data
obtained from channels. Subsequently, we established a recognition model using these key fea-
tures to classify patients with severe depression and those with mild depression. Figure 4 shows
a detailed description of feature selection and classification model construction process in this
study. To ensure an objective assessment of the classification performance, the analysis was con-
ducted exclusively on the training set within the blue-bordered box, whereas the final selected
features were validated on the test set within the orange-bordered box. For comprehensive model
evaluation, we utilized nested cross-validation (black-bordered box) to obtain model metrics. The
principle of nested cross-validation, as shown in Fig. 4, involves two loops: an outer loop and an
inner loop. The inner loop consists of cross-validation and search for the best hyperparameters of
the model, such as grid search, which determines the optimal hyperparameters for the outer loop.
Meanwhile, the outer loop provides training data to the inner loop while retaining some data for
testing the models within the inner loop. The entire process was repeated for all possible fold
combinations within the outer loop, providing a robust estimation of the model performance.
This approach prevents information leakage and overfitting.

3.2.1 Feature extraction

Temporal feature. Considering that the actual task time for VFT is only 60 s, we extracted
the temporal features (TF) within this time period. These features encompass time domain
characteristics, frequency domain attributes, and information entropy. The time domain features
consist of maximum, minimum, mean, rectification average, skewness, and peak factors. Mean
squared frequency was selected as frequency domain feature. Detailed information about the
selected time and frequency domain features can be found in Table S1 in the Supplementary

Fig. 4 The procedure for feature selection and model training.
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Material. Power spectral entropy and singular spectral entropy serve as the information entropy
features, calculated as follows:

EQ-TARGET;temp:intralink-;e008;117;712Hf ¼ −
Xk−1
k¼0

�
Sk

XN
k¼1

Sk

�
log

�
Sk

XN
k¼1

Sk

�
: (8)

In the equation, Hf represents the power spectral entropy, and Sk denotes the energy
distribution of the signal in the frequency domain:

EQ-TARGET;temp:intralink-;e009;117;644Ht ¼ −
Xl

i¼1

�
λiP
l
i¼1 λi

�
log

�
λiP
l
i¼1 λi

�
; (9)

where Ht is the singular spectral entropy and λi represents the singular value spectrum obtained
through the singular value decomposition of the signal.

Correlation feature. In our study, the correlation among channels was extracted as the cor-
relation features (CF). These were obtained by calculating the Pearson correlation coefficient19 of
the change in ΔHbO and ΔHbR between 18 frontal channels of each participant. The equation
for calculating the CF is as follows:

EQ-TARGET;temp:intralink-;e010;117;519CorðX; YÞ ¼
P

XY −
P

X·
P

Y
Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�P

X2 −
�P

X
�
2

N

��P
Y2 −

�P
Y
�
2

N

�s ; (10)

where X and Y represent the concentration change of hemoglobin in different channels of the
participant, respectively.

Therefore, a total of 18 × 2 × 9 ¼ 324 TF and C2
18 × 2 ¼ 306 CF can be extracted from

the change curves of ΔHbO and ΔHbR in the 18 frontal channels of each participant.

3.2.2 Feature selection

In the classification task, when the sample size is small and the number of features is large, it can
lead to the problem of dimensionality curse and reduce the accuracy. To address this issue, recur-
sive feature elimination with cross-validation (RFECV) method34 can be utilized to select the
optimum features from TF and CF. The RFECV method utilizes RFE35 to obtain the importance
of each feature and find the optimal number of features based on cross-validation accuracy.
Compared to dimension reduction methods, such as PCA,36 the RFECV method can eliminate
redundant feature information and determine the most impactful features for optimal classifica-
tion performance. In our prediction model, we applied REFCV method twice. First, the optimal
47 TF and 54 CF were screened separately. Then, after fusing the optimal CF and TF selected in
the first step, we further identified the best 35 features for distinguishing between mild and severe
depression.

3.2.3 Classification models

Given the limited number of samples in depression data, we employed machine learning tech-
niques to construct the classification prediction. Four classical algorithms were utilized, includ-
ing two supervised learning methods [logistic regression (LR)37 and support vector machines
(SVM)38], an ensemble learning algorithm [random forest (RF)],39 and an artificial neural net-
works [multi-layer perceptron (MLP)].40 According to the participants, the dataset was split
into two parts: a training set comprising 60% (49 severe depression and 35 mild depression)
and a testing set comprising 40% (33 severe depression and 23 mild depression). To identify
the optimal prediction model for each pattern, a grid search41 based on hyperparameter turning42

was employed to determine the model parameter with the highest accuracy.
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3.3 Model Metrics
The denoising performance of the CEEMDAN-WPT algorithm is evaluated using two metrics:
SNR and root mean square error (RMSE). SNR quantifies the relationship between signal and
noise intensity, where a high SNR indicates stronger useful signals compared to noise, resulting
in clearer and more reliable signals. RMSE measures the average deviation between predicted
values and actual values. The equations for calculating SNR and RMSE are as follows:

EQ-TARGET;temp:intralink-;e011;114;664SNR ¼ 10 lg

� P
N
n¼1 x

2ðnÞP
N
n¼1½xðnÞ − yðnÞ�2

�
; (11)

EQ-TARGET;temp:intralink-;e012;114;614RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
n¼1

½xðnÞ − yðnÞ�2
vuut ; (12)

where xðnÞ represents the original signal, n is the the signal length, and yðnÞ denotes the denoised
signal.

For the classification models, we calculated the area under the ROC curve (AUC) for differ-
ent models to compare their performance differences. In addition, several other metrics, including
specificity, sensitivity, accuracy, and F1 score, were calculated. Supplementary Material provide
detailed calculation methods for these metrics.

4 Results and Analysis

4.1 Result on Denoising
As shown in Fig. 5, the original signal is decomposed into five high-frequency components and
five low-frequency components. The high-frequency components denoised by wavelet packet
threshold and low-frequency components are reconstructed into a new signal, which is visibly
smoother. Figure 6 shown the spectrum of the original signal and the signal processed using the
CEEMDAN-WPT method. In Fig. 6(a), it can be observed that even after filtering, a small
amount of noise remains mixed within the effective frequency range. However, our proposed
method effectively removes this noise while retaining the information relevant to neural activity.
In Table 2, compared to EMD,43 the CEEMDAN-WPT method significantly improves SNR and
reduces the RMSE. Compared to wavelet filtering,44 although there is a slight difference in
RMSE, the SNR is improved by 4.1 dB.

Fig. 5 Noise reduction signal comparison. (a) IMF1 through IMF5 represent the high-frequency
components, (b) IMF6 through IMF10 represent the low-frequency components; (c) the high-fre-
quency components after denoising. (d) Comparison diagram of the original signal and the
denoised signal.
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4.2 Result on Feature Selection
Through the RFECV algorithm, we identified 35 optimal features that are related to the severity
of depression. As shown in Fig. 7, we plotted some violin figures regarding the features. It can be

Fig. 6 The spectrum of the original signal and the denoised signal; (a) represents the one-sided
spectrum of the original signal and (b) illustrates the one-sided spectrum of the denoised signal.

Table 2 Performance comparison of three algorithms.

Method SNR RMSE

EMD 5.8842 0.1675

Wavelet filtering 16.8702 0.0297

CEEMDAN-WPT 20.9767 0.0258

Fig. 7 Violin and SHAP diagram about features. (a) through (d) represent the maximum, minimum,
average, and root mean square frequency, respectively. (e) through (h) correspond to the peak
factor, skewness, singular spectrum entropy, and correlation coefficient, respectively. (a) through
(d) visualize the features that were excluded, while (e) through (h) showcase features selected by
RFECV. The SHAP diagram ranks the importance of 35 optimal features, depicting the distribution
of their impact on the prediction results along the X -axis. Each point represents a sample, and the
color represents the feature value. For instance, the first row indicates that high peak factor has
a positive impact on the prediction results, whereas low peak factor has a negative impact.
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seen from the figure that there are significant differences between mild depression and severe
depression subjects in terms of peak factor, skewness, singular spectral entropy, and correlation
in certain channels. Conversely, the differences in maximum, minimum, mean, and mean square
frequency are relatively small. The SHAP diagram in Fig. 7 demonstrated that peak factor and
skewness in certain channels have a significant impact on the prediction results, whereas the
influence of maximum, minimum, average, and mean square frequency is relatively minor.

4.3 Activation Analysis
Individual-level statistical analysis was performed on preprocessed fNIRS data using the general
linear model to calculate beta values representing brain activation intensity during the VFT task.
The activation levels of individual channels were evaluated using a one-sample t-test, and the
heat map of channel activation t-values is presented in Fig. 8(a). Channels, such as ch1, ch3, ch9,
ch10, ch11, ch12, ch17, ch19, ch33, and ch40, did not show significant activation during the
VFT task, whereas the remaining channels exhibited significant activation. In Fig. 8(a), 52 chan-
nels were mapped onto the brain, with non-activated channels mainly located in the left and right
temporal lobes. To compare brain activation intensity between the severe depression and mild
depression groups, a paired t-test was conducted. The results indicated that, during the VFT task,
the activation levels in the mild depression group were higher than those in the severe depression
group. Notably, there was a significant difference in channel activation intensity in the frontal
lobe region, as depicted in Figs. 8(c) and 8(d). The Supplementary Material contain detailed
results of both the one-sample and paired sample t-tests.

4.4 Result on Classification Model
We evaluated the TF, the CF, and the fusion of both as inputs for the four classification models
and validated the results on the test set, as shown in Table 3. Across all models, the fusion of
temporal and CFs consistently outperformed individual temporal or CFs. Furthermore, in LR,
MLP, and SVMmodels, the AUC of the fusion features was greater than 0.9, indicating its ability
to better distinguish between mild and severe depression. Notably, the fusion features of temporal
and correlation fusion features showed outstanding performance in the SVM classification
model, with an accuracy of 92.8%, a sensitivity of 91.6%, a specificity of 93.7%, and an
F1-score of 92.7%.

5 Discussion
Cerebral blood flow (CBF) is associated with brain activity and metabolism. During cognitive
tasks, rCBF increases12 while significant changes in CBF occur in patients with depression,

Fig. 8 Analysis of channel activation status and activation intensity in mild and severe depression.
(a) The heat map of t -values representing the brain channel activations during the VFT, where the
blue regions indicate non-activated channels. (b) Dark blue channels (p < 0.05) indicate activated
channels. (c) The heat map of t -values compares the intensity of activation between the mild
depression and severe depression groups, with blue regions indicating no significant differences
between the two groups. (d) Dark blue channels (p < 0.05) represent significant differences
between the mild depression and severe depression groups.
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particularly in the prefrontal region. Specifically, rCBF is lower in patients with mild depression
compared to the normal control group, whereas it is higher in patients with moderate to severe
depression compared to the rCBF in most cortical regions of the normal control group.45,46 The
changes in rCBF can lead to hemodynamic responses, which can be measured using an fNIRS
device, making it an important tool for studying depression. However, the fNIRS device is sen-
sitive to motion artifacts and noise, posing a challenge in filter out noise while retaining depres-
sion-related information. Some researchers47 attempted to use wavelet filtering to remove the
motion artifacts from fNIRS data and compared it with other methods for correcting motion
artifacts, such as principal component analysis, spline interpolation, and Kalman filtering.
The results indicated that wavelet filtering had better performance. However, in this paper,
the CEEMADN-WPT method was utilized to remove noise from fNIRS data, which is a more
powerful technique. Compared to signals filtered by wavelet filtering, the signal filtered by
CEEMADN-WPT had higher SNR (as shown in Table 2). With this denoising method, we
effectively reduced the noise mixed in the valid frequency band in fNIRS data, thus preserving
information related to depression. Shallow tissues, such as the scalp, skull, and meninges, are
abundant in capillaries. The concentration of hemoglobin within these capillaries fluctuates due
to respiration, heartbeat, and task-related autonomous neural activity. When near-infrared light
penetrates these shallow tissues, changes in hemoglobin concentration lead to variations in
fNIRS light attenuation, referred to as shallow physiological noise. The “short-separation”
method (channels where the emitter-detector distance is below 1.0 cm) is recognized as an effec-
tive approach of removing shallow noise. This method involves using additional short-separation
fNIRS channels to record shallow physiological noise and then subtract it from the signal. The
absence of physiological noise data during our data collection process has posed a certain limi-
tation on our preprocessing of fNIRS data. In future studies, we plan to collect both fNIRS data
and physiological noise data to better capture data related to brain neural activity.

In this study, temporal and channel CFs extracted from fNIRS data of the prefrontal lobe of
patients with severe and mild depression were compared. Our findings suggest that using TFs as
inputs leads to higher accuracy compared to using only CFs. Furthermore, the fusion of temporal
and CFs obtained the highest accuracy with an AUC of 96.3% on SVM models. These results

Table 3 The results of classification models.

Method Classification metrics

Model Feature AUC Accuracy Sensitivity Specificity F1-score

RF TF 0.757 0.678 0.333 0.937 0.619

CF 0.645 0.642 0.333 0.875 0.590

TCF 0.739 0.714 0.50 0.875 0.688

LR TF 0.770 0.714 0.50 0.875 0.688

CF 0.911 0.821 0.833 0.812 0.819

TCF 0.927 0.857 0.666 1.0 0.844

MLP TF 0.916 0.821 0.583 1.0 0.801

CF 0.906 0.821 0.750 0.875 0.815

TCF 0.968 0.892 0.750 1.0 0.885

SVM TF 0.942 0.857 0.750 0.937 0.850

CF 0.895 0.821 0.750 0.875 0.815

TCF 0.963 0.928 0.916 0.937 0.927

Abbreviation: RF, random forest; LR, logistic regression; MLP, multi-layer perceptron; SVM, support vector
machine; TF, temporal features; CF, correlation features; TCF, temporal and correlation fusion features.
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indicate that studying the functional connectivity of the brain alone is insufficient in distinguish-
ing between patients with mild and severe depression. By combining the temporal and CFs of
fNIRS data, the classification accuracy can be improved. Through feature visualization, signifi-
cant differences can be observed between patients with mild depression and those with severe
depression in certain TFs, such as peak factor, skewness, and singular spectral entropy. In addi-
tion, the peak factor and skewness of ΔHbO and ΔHbR curves play a crucial role in the output of
the model. The research results indicate that temporal and channel CFs extracted fromΔHbO and
ΔHbR are important for distinguishing the severity of depression, and these features have the
potential to serve as biomarkers for distinguishing between mild and severe depression, which is
consistent with previous research results.13

The findings of our research have several potential applications in clinical services. The
diagnostic support system based on fNIRS that we propose provides a non-invasive, objective,
and quantitative method for assessing the severity of depression, which can serve as a supplement
to traditional diagnostic methods, such as clinical interviews or self-report questionnaires. By
combining fNIRS technology and machine learning algorithms, our model can extract valuable
information from brain activity patterns that are difficult to detect using traditional methods.
These results can serve as an auxiliary tool for psychiatrists, helping them accurately assess the
severity of depression in patients and develop more personalized treatment plans. In addition, our
research outcomes can be utilized for monitoring treatment progress. By regularly conducting
fNIRS tests, clinicians can objectively understand changes in patient’s conditions and make
timely adjustments to treatment plans for better therapeutic efficacy.

It is important to note that this study has several limitations. First, the small sample size of
140 participants, including 82 cases of severe depression and 58 cases of mild depression, may
have limited the precision of our model. A larger dataset is needed to improve the effectiveness of
the model. The participants in the study were drug-naive, first-episode depression patients receiv-
ing outpatient treatment at the Mental Health Center in Chongqing City. Therefore, our findings
are not influenced by medication, or previous treatments, as these data were not included in the
analyzed dataset. However, our study did not consider potential differences among the partic-
ipants, such as long-term smoking, alcohol consumption, the number of past depressive episodes,
or a family history of mental illness, all of which could have had an impact on the severity of
depression. In addition, the diagnostic data were obtained from a single psychiatric research
center, and the generalizability of our model to other hospitals has not been validated.
Furthermore, due to the small sample size, patients with moderate depression were not included
in the study, necessitating further research in this area. Future work will involve collecting a
larger sample size to investigate the severity of depression and analyzing clinical information
among participants. We also plan to develop a deep learning-based predictive model for
classifying mild, moderate, and severe depression and embed the model into the software used
by hospitals. By connecting to the fNIRS database and integrating clinical information from
patients, we aim to obtain more accurate and personalized diagnostic results through big data
analysis, providing psychiatrics with a more reliable and efficient tool to support their decision-
making in depression treatment.

6 Conclusions
This paper proposes a depression severity prediction model based on the temporal and
CFs extracted from fNIRS data, achieving high classification accuracy for mild and severe
depression. As an objective auxiliary tool, this model can improve the diagnostic efficiency of
depression severity and assist doctors in clinical diagnosis, which is of great significance for
the treatment of depressed patients.
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