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ABSTRACT. Significance: Recently developed miniaturized neural recording devices that can
monitor and perturb neural activity in freely behaving animals have significantly
expanded our knowledge of neural underpinning of complex behaviors. Most minia-
turized neural interfaces require a wired connection for external power and data
acquisition systems. The wires are required to be commutated through a slip ring
to accommodate for twisting of the wire or tether and alleviate torsional stresses. The
increased trend toward long-term continuous neural recordings has spurred efforts
to realize active commutators that can sense the torsional stress and actively rotate
the slip ring to alleviate torsional stresses. Current solutions however require the
addition of sensing modules.

Aim: Here, we report on an active translating commutator that uses computer vision
(CV) algorithms on behavioral imaging videos captured during the experiment to
track the animal’s position and heading direction in real time and uses this informa-
tion to control the translation and rotation of a slip ring commutator to accommodate
for accumulated mouse heading orientation changes and position.

Approach: The CV-guided active commutator has been extensively tested in three
separate behavioral contexts.

Results: We show reliable cortex-wide imaging in a mouse in an open field with a
miniaturized wide-field cortical imaging device. Active commutation resulted in no
changes to measured neurophysiological signals.

Conclusion: The active commutator is fully open source, can be assembled using
readily available off-the-shelf components, and is compatible with a wide variety of
miniaturized neurophotonic and neurophysiology devices.
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1 Introduction
Understanding how the brain mediates complex behaviors requires the synchronized acquisition
of both large-scale neural activity and behavior monitoring. Miniaturized neural devices that can
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be docked to mice, for neural recording and active manipulation of activity, have become key
tools for neuroscience to address these questions.

Miniaturized neurophotonic imaging devices allow imaging of specific populations of neu-
rons at a large scale and have been particularly instrumental in conducting these critical neuro-
science studies.1–3 The generally open-source culture underpinning these innovations has spurred
the development of myriad miniaturized neurophotonic with new variants of miniscopes that
have smaller form factors and multiple Field of views (FOVs), and4,5 large FOVs.1,6 Variants
that incorporate optics for structured optogenetic stimulation7 and simultaneous electrophysiol-
ogy recording8 have also been developed. These tools complement the head-borne electrophysi-
ology recording devices, such as tetrode microdrive,9–14 and more recent miniaturized
high-density complementary metal oxide semiconductor (CMOS) recording probes.15–19

Most miniaturized head-borne devices require a wired tether for powering the devices and
interfacing with a fixed remote data acquisition system. The wire can get entangled as behaving
mice locomote naturally in the behavior arenas or when they perform tasks requiring them to
execute several stereotyped behavioral trajectories (such as in an eight-maze choice task20). This
is typically mitigated using passive commutators that can relieve the torsion in the wires and
transfer data through a slip ring. The increased trend toward long-term continuous neural record-
ings has spurred efforts to realize active commutators. These active commutators rely on inertial
sensing, and both these solutions require the incorporation of additional hardware elements
within the head-borne devices, which constrains the design space where functional elements
of the head-borne device need to be limited to <3 g (∼15% of bodyweight of a 20-g mouse).
Wireless data transfer rates are typically limited and further require specialized hardware
surrounding the behavioral arena for powering and data transfer.

To mitigate this issue, active commutator systems utilizing inertial measurement unit
(IMU),21,22 magnetic rotation sensor,23 torque sensor,14 Hall sensor,24,25 and video-based tracking26

have been developed. Measurement of an animal’s heading angle using a torque sensor to estimate
animal rotations (by indirectly measuring tethered cable rotations) is easy to implement, but the
effectiveness of this approach is limited by sensitivity issues, as cables are poor transmitters of
torque.14,21 Similarly, Hall sensor and magnetic rotation sensor-based heading angle estimation
approaches are affected by sensitivity. The IMU-based heading angle estimation approach is not
affected by the cable sensitivity issue but requires calibration due to magnetic distortions.21 Further,
the IMU data can necessitate adding more channels to the commutator for data transfer, adding
more weight to the already limited payload and limited cable data transfer bandwidth.

Video-based methods offer potential solutions to issues with torque or inertial sensing and
have been explored previously where light-emitting diodes (LEDs) on the head-mounted devices
could track the position and direction of a mouse in the captured video frames.26 The incorpo-
ration of LEDs however requires modification to existing miniature imaging and recording tech-
nologies. Given that monitoring the behavior of the animal is a critical requirement, and in these
experiments, making use of this information to actively rotate a commutator and further move the
commutator along with a mouse across a large behavior arena could enable new kinds of experi-
ments with existing miniaturized devices.

Here, we present a computer-vision (CV)–guided active translating commutator. The
CV-guided active commutator leverages recent advances in real-time markerless tracking to esti-
mate the location and heading direction of the animal and uses a translating stage and a motor to
move and rotate a slip ring commutator along with the mouse. We show that position and heading
direction can be computed in real-time at 6 Hz in three different behavioral assays—open field
behavior, active place avoidance behavior, and the Barnes maze spatial navigation task. We
further show that this information can be used to actively control the position and angular
orientation of the slip ring commutator in response to mouse locomotion in the active place
avoidance (APA) task and exploration of a linear maze.

2 Methods

2.1 General Design of the CV-Guided Active Commutator
The CV-guided active commutator system dynamically adjusts the position and angular orien-
tation of a slip ring commutator in response to the estimated movement and angular orientation of
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a mouse within a behavioral arena. The overall principle of operation is illustrated in Fig. 1(a).
An overhead camera captures video of the mouse behaving in the arena. A deep neural net
algorithm [DeepLabCut (DLC)27] is used to estimate the real-time position and heading angle
direction of the mouse. These estimates of the mouse position and angular heading direction
are used to actively translate and rotate a slip ring commutator.

Fig. 1 Open-source CV-guided active, translating commutator system. (a) Principle of operation—
mouse behavior video captured from an overhead camera is used to estimate the real-time posi-
tion of the mouse location and heading direction, which is used to actively translate and rotate a slip
ring commutator. (b) CAD schematic of the CV-guided active translating commutator system.
(c) Photo of the CV-guided active translating commutator system. (d) Detailed CAD schematic
of the motorized commutator module. (e) Photograph of the motorized commutator module.
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The overall architecture of the CV-guided active commutator hardware is shown in Fig. 1(b).
The CV-guided commutator consists of two main components, a behavior imaging camera
located above an arena gantry that supports the actuator components. Two stepper motors
(NEMA 17, OpenBuilds Parts Store, Zephyrhills, Florida, United States) coupled to linear actua-
tor modules provide actuation in x and z directions. A rotation module is mounted on the
z-translation stage [Figs. 1(b) and 1(c)]. A third stepper motor (NEMA 17) is coupled to the
slip ring commutator via a timing belt drive [Fig. 1(d)]. We tested two slip rings: a single-channel
coax slip ring with 24 channel plane wires (LPC-24YT-2402-01HC, JINPAT Electronics,
Shenzhen, China) and a three-channel universal serial bus (USB) slip ring with 24 plane wires
(LPT000-2402-04HF, JINPAT Electronics). The stepper motor and slip ring were attached to the
anterior side of the three-dimensional (3D)-printed holding structure. A custom printed circuit
board (PCB) was designed to wirelessly receive commands from a computer and drive the step-
per motor (Fig. S1 in the Supplementary Material). The custom PCB housed a microcontroller
(Teensy 4.0; Fig. S1 in the Supplementary Material), a radio transceiver (NRF24L01, Fig. S1 in
the Supplementary Material), and a stepper motor driver (A4988, Pololu, Las Vegas, Nevada,
United States; Fig. S1 in the Supplementary Material) and was mounted on the posterior side of
the 3D-printed holding structure. Figure 1(d) shows a photograph of the rotation module of the
CV-guided motorized commutator. The translation stages feature the same custom PCB used in
the rotation stage and have stepper motors mounted directly on the arena gantry [Figs. 1(b) and
1(c)]. The x-translation stage is equipped with two limit switches on either end to prevent the
mounted components from running past the edge and for self-calibration of the stage [Fig. 1(c)].

2.2 Operating Modes
The CV-guided commutator can operate in two modes: passive and active. In the passive mode,
the experimenter manually controls the commutator using a joystick, and the commands are
wirelessly transmitted to the commutator (Fig. S2 in the Supplementary Material). In the passive
mode, there is no computerized tracking of an animal. The control is solely based on video play-
back from cameras attached to the experiment arena. In the active mode, the commutator control
is executed automatically by the computer without any input from the experimenter using loca-
tion and heading angle estimates (Fig. S2 in the Supplementary Material).

2.3 Training and Evaluating Real-Time Position and Heading Direction
Algorithms

The position and heading direction of the mice were estimated using the DLC toolbox—an open-
source pose estimation and behavioral analysis toolbox.27 The toolbox was employed to train a
model tailored to the arena’s environment that incorporates the CV-guided commutator. We
trained three models, namely, DLC implemented on MobileNetV2,28 DLC implemented on
ResNet,29 and a third model that used social LEAP estimates animal poses (SLEAP) imple-
mented on U-Net.30,31 For comparing the real-time detection capabilities of these models, behav-
ior videos from three different studies were used—mouse performing an active place avoidance
task32 (n ¼ 3 mice); mice performing a spatial navigation task, Barnes maze33 (n ¼ 3 mice); and
mice exploring an open-field arena (n ¼ 3) mice. In each behavioral assay, 50 randomly selected
frames from videos lasting 15 min were manually annotated to generate a ground truth of the
location of the head and base of the tail. These were compared with the estimated head position
and position of the base of the tail from the three models evaluated. In each assay, estimated and
actual positions of the head and tail base (manually annotated) were compared using a 10-pixel
radius threshold. The estimation error was used as a metric for comparing the three models.

2.4 Implementation of Rotation and Translation Compensation
To compensate for the rotation of the animal, the model estimates the heading angle. This was
achieved by estimating the x and y coordinates of the head of the animal and the base of the tail of
the animal across sequential camera frames captured at a rate of 6 to 10 frames per second (FPS).
The magnitude of frame-to-frame change in heading angle was computed using the dot product
of the heading direction vectors, and the direction of the change, i.e., clockwise (CW) or counter-
clockwise (CCW), was computed using the cross-product of the heading direction vectors.
During operation, the cumulative change in heading direction was computed, and when the
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cumulative value surpassed a predefined threshold, the rotation motor in the active commutator
was activated to alleviate torsional stresses in the cable. We used a threshold of 90 deg in the APA
task and Barnes maze task and 225 deg in the linear maze task.

For translational compensation on the x stage, the model estimated the location of the head.
Experiments were conducted when mice explored in a linear 1.2-m-long maze. The length of the
maze was virtually divided into eight segments, each ∼150 cm long. For each frame of the
behavioral video, the estimate of the mouse’s head location was used to determine the current
segment occupied by the mouse. When mice moved between segments, the linear stage was
activated to ensure the commutator was directly above the mouse. Active commutation was
evaluated in the APA task and the linear maze.

2.5 Cortex-Wide Calcium Imaging During Active Commutation
We performed cortex-wide mesoscale calcium imaging using a miniaturized microscope, mini-
mScope1 through a polymer transparent cranial window34,35 during the APA task using the CV-
guided active commutator to transmit signals through the slip ring. Calcium activities were acquired
at 15 FPS. The CMOS gain was set to a value of 55, and the LED voltage and current were set to 8 V
and 0.8 A, respectively, for the blue LEDs. The blue LEDs were pulsed for 120 s, prior to the experi-
ment, to allow them to warm up and reach a stable intensity. The mice were brought into the different
behavioral arenas under red light and placed into an opaque cylinder at the center of the maze ∼90 s

after the LEDs were turned on. The mini-mScope was attached to the mice via three interlocking
magnets. At ∼120 s, the opaque cylinder was removed, marking the start of the trial.

2.6 Calcium Data Pre-Processing
Calcium imaging was captured under both blue light illumination and green light illumination in
alternate frames. The mean pixel intensity of each frame captured by the mini-mScope was cal-
culated, and K-means clustering was used to classify each mean pixel intensity of the video and
segregate the frame captured under blue light illumination (Calcium signals) and green light
illumination (reflectance signals, see Ref. 1). K-means clustering also enables identification and
removal of outlier frames in the data due to large motion artifacts or irregularities in LED inten-
sity (∼0.04% of all frames). The videos corresponding to both illumination wavelengths were
then passed through a motion correction algorithm.36

The calcium data videos were compressed to 80% of their original size with a bilinear bin-
ning algorithm (2022b, MathWorks, Natick, Massachusetts, United States). One frame randomly
selected in each trial was used to draw a mask around the imaged brain surface and exclude the
background and superior sagittal sinus artery to reduce noise in the overall fluorescence over
baseline fluorescence (DF/F) signal. For each mouse, the masks across all trials were averaged
to generate a mouse-specific average cortex mask. The average mask was imposed across images
acquired in all trials for a mouse so that the number of pixels used in each analysis remained
consistent.

Each pixel within the mask was corrected for global illumination fluctuations using a cor-
rection algorithm that produces DF/F data.37 The DF/F data was filtered using a zero-order phase
Chebyshev band-pass filter with cutoff frequencies of 0.1 and 5 Hz (2022b, MathWorks). The
resulting data were then spatially filtered with a 7-pixel nearest-neighbor average using a custom
MATLAB (2022b, MathWorks) script. The resulting DF/F time series for each pixel was then
z-scored.

3 Results

3.1 Comparative Analysis of Pose Estimation Toolboxes and Networks
Accurately tracking animal position and heading direction across diverse experimental assays
and imaging conditions is crucial for a CV-guided active commutator to reliably mitigate wire
entanglement. Several open-source markerless pose estimation models27,30 have demonstrated
capabilities in accurately tracking mice across a wide range of imaging setups and behavioral
assays. To determine the model most suitable for integration with a CV-guided active commu-
tator, we compared three models—DLC implemented in MobileNetV2,27,28 DLC implemented in
ResNet,27,29 and SLEAP implemented on U-Net30,31—based on four criteria. First, the selected
markerless pose estimation model should be able to track the position of the mouse in a wide
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range of imaging conditions and behavioral assays. Second, the model should be accurate and
reliable such that it ensures minimal tracking errors. Third, the implementation of the model
should allow for near real-time (>6 Hz) estimation of the animal’s position and heading angle,
allowing up to 10 compensatory adjustments to the commutator position and angular orientation
per minute. Finally, the model should be executable on a regular desktop computer without
necessitating an expensive graphic processing unit, ensuring that the system is accessible and
cost-effective for widespread laboratory use.

To evaluate the efficacy of the three models, we tested markerless tracking capabilities on
three independent behavioral assays that can be tracked using a single overhead camera. In the
APA task, mice are introduced into a circular rotation arena and receive mild foot shocks when
entering a designated sector.32,38 As the arena rotates, mice must continuously move and adjust
their position to avoid entering these shock zones.38 The behavioral camera encompassed a circular
area of 34.5 cm diameter and had a bed of parallel wires for delivering shock. The Barnes maze
task, a dry-land version of a spatial task for studying the effects of aging on navigation in rats, is
an avoidance task in which rodents learn to leave the center of a large circular platform (where
they are exposed under bright, aversive lights) to find an escape hole among those at the edge of
the platform.33 Only one of the holes provides access to a nest space. The Barnes maze allowed
the evaluation of real-time markerless tracking of an animal exploring a large open environment
(1 m diameter). Third, we used a standard open-field arena, where mice explored the whole extent
of the maze, exhibiting a variety of behaviors, including thigmotaxis, rearing, and grooming.

Figures 2(a)–2(c) show the results of markerless tracking of the mouse head position in each
of the three behavioral assays, as well as the range of head angle estimated. As expected, in the
APA task, active avoidance resulted in higher occupancy in the non-shock areas of the maze, with
polarized heading angles. Barnes maze tasks resulted in animals predominantly exploring the
edge of the maze, with nearly uniformly distributed heading angles. Similarly, in open-field
experiments, the animal position could be estimated without any large errors or jumps in position
estimates. Animals had a tethered head-borne device, and tracking was robust to variations in
wired connection position within the FOV.

To evaluate the accuracy of three models—DLC implemented in MobileNetV2, DLC imple-
mented in ResNet, and SLEAP implemented on U-Net—we compared the estimation head posi-
tion [Fig. 2(d)] and estimated the base of tail position [Fig. 2(e)] to 50 randomly selected
manually annotated images in each of the three behavioral assays.

Of the three models, DLC implemented in MobileNetV2 consistently demonstrated superior
performance across all tasks. In the APA task, DLC implemented in MobileNetV2 achieved
perfect accuracy (100% precision and sensitivity) for both head and tailbase predictions.
Similarly, in the Barnes maze task, DLC implemented in MobileNetV2 achieved 100% accuracy
for head prediction and 97.87% and 95.83% precision and sensitivity, respectively, for tailbase
prediction. In the open field, DLC implemented in MobileNetV2 again achieved 100% accuracy
for both head and tailbase predictions.

We also determined the time taken for estimation or inference time. The mean inference time
for detecting head and tail position in an image frame was 61.3� 50.5 ms for DLC implemented
in MobileNetV2. In comparison, DLC implemented in ResNet took 155.7� 135.9 ms, and
SLEAP implemented in U-Net took 91.0� 48.2 ms. Based on these results, we concluded that
the DLC implementation in the MobileNetV2 model was ideal for real-time computer vision
feedback for the motorized commutator.

3.1.1 CV feedback allows active compensation of commutator position and
rotation angle in response to mouse movement and heading direction

We next evaluated the ability of the CV-guided motorized commutator to actively compensate
and adjust the position and angular orientation of the commutator in response to the movement of
mice in the behavioral arena.

To assess the combined translation and rotation capabilities, mice were tracked along a long
linear maze measuring 1.2 m long [Fig. 3(a), Video 1]. The length of the maze was virtually
divided into eight segments, each ∼150 cm long, and the position of the commutator was
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Fig. 2 Evaluation of pose estimation toolboxes and convolution neural networks for real-time posi-
tion and heading direction estimates. (a) Trajectory plot of a mouse performing the active place
avoidance task32 (top) and polar histogram showing the distribution of the head direction (n ¼ 3
mice) in the same arena (bottom). The pose tracking was done using the DLC toolbox. (b) Trajectory
plot of amouse performing the Barnesmaze task33 (top) and polar histogram showing the distribution
of the head direction (n ¼ 3 mice) in the same arena (bottom). (c) Trajectory plot of a mouse in an
open field arena (top) and polar histogram showing the distribution of the heading direction (n ¼ 3
mice) in the same arena (bottom). The pose tracking was done using the DeepLabCut toolbox.
(d) Accuracy of real-time estimation of head position (top) and tailbase position (bottom) of the
mouse during APA behavior for each of the three models: DLC implemented on MobileNetV2, DLC
implemented on ResNet, and SLEAP implemented on U-Net. (e) Accuracy of real-time estimation of
the head position (top) and tailbase position (bottom) of the mouse during Barnes maze behavior for
each of the three models. (f) Accuracy of real-time estimation of the head position (top) and tailbase
position (bottom) of themouse during open field behavior for each of the threemodels. (g) Distribution
of position inference time during APA behavior for the three models evaluated. (h) Distribution of
position inference time during Barnes maze behavior for the three models evaluated. (i) Distribution
of position inference time during open field behavior for the three models evaluated.
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Fig. 3 CV-guided active translation and commutation. (a) Still image captured from the overhead
video camera of the mouse in a 1.2-m-long linear track arena. (b) Plot of estimated mouse position
in linear track as shown in panel (a) and the position of the commutator. Left: positions over the
whole trial. Right: highlighting time duration indicated in a dashed rectangle in the plot on the left.
(c) Plot of estimated mouse heading direction in the linear track arena as shown in panel (a) and
the angular position of the commutator. Left: angular positions over the whole trial. Right: high-
lighting time duration indicated in a dashed rectangle in the plot on the left. (d) Still image captured
from the overhead video camera of a mouse in an active place avoidance arena. (e) Plot of esti-
mated mouse heading direction in the active place avoidance arena as shown in panel (d) and the
angular position of the commutator. Left: angular positions over the whole trial. Right: highlighting
time duration indicated in a dashed rectangle in the plot on the left. (f) Plot of the head position
tracking accuracy of three DLC models implemented on MobileNetV2, trained on 40, 180, and
360 labeled frames. Left: head position tracking accuracy for the first 45 s of a Barnes maze trial.
Right: highlighting time duration indicated in a dashed rectangle in the plot on the left. (g) Video
frames from positions 1 and 2 as indicated in panel (f) for DLCmodel 1 with the head and tailbase
tracking points marked on the images. (h) Plot showing the percentage of tracked frames below
the 90% accuracy threshold for each of the three models over a whole trial (Video 1, mp4,
2.37 MB [URL: https://doi.org/10.1117/1.NPh.11.3.034312.s1]; Video 2, mp4, 9.42 MB [URL:
https://doi.org/10.1117/1.NPh.11.3.034312.s2]; Video 3, mp4, 8.10 MB [URL: https://doi.org/
10.1117/1.NPh.11.3.034312.s3]; Video 4, mp4, 5.21 MB [URL: https://doi.org/10.1117/1.NPh.
11.3.034312.s4]).
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adjusted when mice moved from one segment to the next. The heading angle of the commutator
was also adjusted when mice accumulated heading angle exceeded a threshold.

A plot of the real-time position estimate of the mouse within the linear track and the position
of the commutator directly above it is shown in Fig. 3(b). Within the same experiment, the mouse
heading angle was also estimated and accumulations of cumulative head motion of 225 deg
resulted in compensation of the commutator to mitigate wire entanglement [Fig. 3(c)]. We were
able to reliably run trials lasting 24 min, with no errors in tracking and active compensation
observed.

To assess just the rotation capabilities of the CV-guided motorized commutator, we repeated
the experiment in the APA task. Mice were tracked in a circular maze of diameter 34.5 cm
[Fig. 3(d), Video 2]. The heading angle of the commutator was adjusted when mice’s accumu-
lated heading angle exceeded a threshold. A plot of the real-time heading angle estimates of the
mouse within the circular track and the heading angle of the commutator directly above it is
shown in Fig. 3(e). Accumulations of cumulative head motion of 90 deg resulted in compensa-
tion of the commutator to mitigate wire entanglement [Fig. 3(e)]. We were able to run n ¼ 150

trials ranging from 10 to 45 min, cumulatively 30 h of testing, with no errors in tracking and
active compensation observed. The longest continuous experiment we have performed lasted
85 min. To evaluate whether longer-duration experiments with active commutation could be per-
formed, we also conducted four consecutive trials in the APA arena without shutting down the
commutator software. The CV commutator was paused when mice were switched in between
trials lasting 45 min. Cumulatively, in an experimental session lasting 3.3 h, the CV commutator
was able to reliably track and compensate for the rotation motion of the animals (Fig. S3 in the
Supplementary Material). Videos 3 and 4 illustrate the performance of the CV commutator over
a single whole 45-min trial and all four trials visualized in parallel, respectively.

One confounding factor in real-time estimation of heading direction angle or position is that
the animal being tracked can be occluded by wires or other artifacts. The CV commutator
accounts for this issue by only considering frames where both the head and tailbase tracking
accuracy is above a threshold of 90%. Depending on the contrast between the mouse and the
background, as well as the quality of training data, the numbers of frames below this accuracy
threshold of 90% can vary. To assess the influence of the size of the training data on the tracking
accuracy of the DLC tracking model, three DLC models implemented on MobileNetV2 were
trained on different amounts of labeled data. The models were trained on 40, 180, and 360
labeled frames. Aside from the number of labeled frames, all other training parameters were
kept the same. In addition, Barnes maze behavior videos were used for this evaluation because
the trained DLC models for the Barnes maze performed worse than models trained on other
behavioral videos—keeping the number of labeled frames the same and other training parameters.

A plot comparing the head position tracking accuracy of three DLC models trained on differ-
ent numbers of labeled data is shown in Fig. 3(f). The plot shows tracking data for the first 45 s of
a Barnes maze behavior video. We were able to get better tracking accuracy with increased
labeled training data. Figure 3(g) shows two instances where DLC model 1 had head position
tracking accuracy values below the 0.9 accuracy threshold. Similarly, a plot showing the number
of frames with tracking accuracy below the accuracy threshold in the whole trial per training
model is shown in Fig. 3(h). DLC model 1, trained on the least number of labeled frames,
resulted in over 90% of frames below the threshold, and DLC model 3, trained on the largest
number of labeled frames, resulted in 8.2% of frames below the threshold. The algorithm further
requires estimation once every five frames. Thus, it is possible to ignore frames with low tracking
accuracy without affecting active commutation. Overall, with a well-trained model, it is possible
to limit the number of frames disregarded by the algorithm for active commutation, but this must
be taken into consideration when implementing CV-guided active commutation in behavioral
contexts beyond what has been tested in this work.

3.1.2 Stable in vivo imaging during active commutation

We performed wide-field imaging of calcium activities across the whole dorsal cortex using a
miniaturized mesoscale imaging device1 [Fig. 4(a)] while routing the digital interlink through the
motorized commutator. We were able to stably record calcium dynamics at 30 FPS with only
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Fig. 4 Wide-field calcium imaging in freely behaving mice during active commutation. (a) Pseudo-
color DF/F z-score heat maps showing calcium activity progression during an active place avoid-
ance trial during active commutation. (b) Top: mouse body angle tracking during a trial in the active
place avoidance task. Gray lines denote active commutation periods to account for mouse angle
changes greater than 90 deg, highlighted in green. Bottom: average DF/F z-score maps plotted for
a wide range of regions of interest following the Allen Brain Atlas across one hemisphere of
the brain. Gray lines denote active commutation periods to account for mouse angle changes
>90 deg. (c) Top: peri-event time histograms for the average of 10 clockwise rotations of 720 deg
with the active commutator. Bottom: peri-event time histograms for the corresponding average
DF/F z-score across five regions of interest in the 10 clockwise rotations. Solid color lines indicate
the average DF/F z-score for each region of interest. The gray solid line indicates the average of
1000 randomized bootstraps of the DF/F z-score data for the entire trial taken during the commu-
tation period for each region of interest. The gray dashed line indicates the standard deviation of
1000 randomized bootstraps of the DF/F z-score data for the entire trial taken during the commu-
tation period for each region of interest. (d) Top: peri-event time histograms for the average of 10
counterclockwise rotations of 720 deg with the active commutator. Bottom: peri-event time histo-
grams for the corresponding average DF/F z-score across five regions of interest in the 10 counter-
clockwise rotations. Solid color lines indicate the average DF/F z-score for each region of interest.
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25 frames dropped during a recording lasting 10 min (0.13% of a total of 18,000 frames).
Qualitatively, the recorded calcium activities in the regions of interest distributed throughout
the cortex were similar to those acquired with the same device in previous studies.1,33 We
recorded in total of 40 min, resulting in 130 frame drops (0.18% of 72,000 frames), again com-
parable to the results obtained in our previous work that used a commercial commutator. Note
that the frame drop rate is a function of acquisition speed and the configuration of the data acquis-
ition hardware, as well as the efficiency of the computer USB disk drive speed. The frame drops
we measured in our motorized commutator system (JP41-119-01HW, JINPAT Electronics) are
comparable to the frame drop rate we have observed when using a commercial static commutator
system (Carousel Commutator 1× DHST 2× LED, Plexon Inc., Dallas, Texas, United States).1

Frame drops can occur even in the absence of commutation. As shown in Fig. S4 in the
Supplementary Material, data loss occurring during acquisition even without a slip ring is com-
parable to data loss that occurs when the data are acquired through a slip ring, with and without
active commutation. Our modular design can be modified to incorporate other slip rings or
commutators with additional data transfer capabilities. Further users will need to pay attention
to the data acquisition hardware for efficient data transfer with minimal frame losses.

The active commutator turns on the rotational motor when a threshold of 90 deg of rotation—
threshold changes depending on the arena type and size—is exceeded from the starting heading
direction angle. Active commutation occurs at a speed of ∼100 deg ∕s. Nevertheless, the active
commutation itself may result in interfering with the neural imaging experiments in two ways—
the untwisting of the wired data cable during active compensatory motion may result in mechani-
cal displacement of the imaging device with respect to the skull and the brain. Second, the com-
pensatory motion may be perceptible to the mouse and result in a neurophysiological response to
the same that might result in artifacts.

Calcium imaging data analysis pipelines typically incorporate motion correction algorithms
to account for mechanical displacements of the imaging device with respect to the brain. In our
analysis pipeline, we used a rigid body error correction scheme that can correct for lateral dis-
placements of the FOV.36 We quantified the overall changes in x and y displacement of the FOV
as detected by the algorithm throughout the open field behavior trial and specifically around the
CW and CCW compensatory motion epochs [Fig. 4(b)]. For the entire trial lasting 10 min, the
average delta X corrections were −1.67� 3.3 μm, and the average delta Y corrections were
9.04 × 10−4 � 0.11 μm. Within the compensatory rotation epochs lasting 140 s, the average delta
X corrections were −2.0� 3.2 μm, and delta Y corrections were −1.00 × 10−3 � 0.06 μm,
which is not visually different from the whole trial averages.

We next evaluated the calcium activity during the active compensation epochs. Wide-field
imaging with the mini-mScope1 allows us to look at both global cortex-wide changes but also at
regions of interest located at multiple sensory cortices and motor cortices. All these specific
regions of interest may have neurophysiological changes in response to a perception of the com-
pensatory motion. Figures 4(c) and 4(d) show peri-event calcium activity histograms of multiple
selected regions of interest (ROIs) during CW and CCW active compensation epochs. We found
that at a frame-by-frame time scale, average calcium activity is not significantly different
(Bonferroni correction, 1000 random bootstraps) from the whole trial bootstrapped calcium
activity traced for all the ROIs analyzed. Thus, we can conclude that active compensation does
not introduce any neurophysiological artifacts.

4 Discussion and Conclusion
We present a CV-guided active translating commutator that can track and move along with a
mouse in behavioral arenas that are large (>1 m) while minimizing cable length and using over-
head behavioral cameras that simultaneously track the behavior of the animal. The commutator

Fig. 4 (Continued) The gray solid line indicates the average of 1000 randomized bootstraps of
the DF/F z-score data for the entire trial taken during the commutation period for each region of
interest. The gray dashed line indicates the standard deviation of 1000 randomized bootstraps
of the DF/F z-score data for the entire trial taken during the commutation period for each region
of interest.
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was tested extensively in three separate behavioral experiments—where mice were tracked over
large arenas (Barnes maze), in standard open-field environments where most of the natural rep-
ertoire of behaviors were recapitulated, and the active place avoidance tasks where mice perform-
ing rapid movements were reliably tracked in real-time over a shocking grid background. We
found that the model using the DLC algorithm implemented in MobileNetV2 performed reliably,
with 100% precision and sensitivity in the APA task, 98.94% precision and 97.12% sensitivity in
the Barnes maze task, and 100% precision and sensitivity in the open field. Importantly, the
model had an inference time of 61.3� 50.5 ms when executed on a standard desktop PC.
Further, data acquisition using miniaturized microscopes was performed with the same computer.
Thus, this is an approach that can be implemented in a wide variety of behavioral experiments
using minimal computational resources. In summary, we show that active commutation can be
achieved without errors in 24 min of testing in a linear track and over 30 h of testing in the
APA task.

The CV-guided active commutator uses inexpensive open-source hardware elements for
translation and rotation of the slip ring. The linear actuator and the rotary actuators both use
the OpenBuilds stepper motors and gantries, which are modular, and can be adapted for much
larger arenas. Although we implemented translation in one direction in this study, in the future,
the approach can be extended to translation in two directions. Thus, miniaturized devices with
short lengths (<1 m) wired tethered can be used to interface with head-borne devices when mice
are exploring significantly larger arenas. In comparison with existing active commutation
approaches, our approach simplifies the experiment but does not require any modifications
to the head-borne imaging and recording devices. Thus, the approach is compatible with most
head-borne devices that are already being used by neuroscience laboratories.

Active commutation could be a useful extension to existing commutators. First, it will allow
longer experiments without the need for experimenter intervention. This may be critical for
experiments where experimenter interventionmight result in behavioral artifacts. Second, CV-com-
mutation may open up new experimental capabilities. For instance, newly developed miniaturized
two-photon2 (2P) and three-photon39 (3P) miniaturized microscopes rely on significant engineer-
ing efforts to reduce the torsional integrity of the optic fibers used for light delivery. Indeed, there
have been active efforts to design miniaturized 2P microscopes that utilize fibers with reduced
torsional integrity for light delivery.40 With the ability to actively commutate, it may be possible
to relax this design constraint and design higher-performance 2P and 3P miniaturized micro-
scopes that do not require ultra-thin optic fibers. Further, arrays of multiple imaging systems
could be developed, as we have recently demonstrated,41 where active commutation is a necessity.

Although we strived to test the CV-guided active commutator in several behavioral contexts,
it is possible that implementing this in behavioral assays where mice need to be tracked in arenas
offering low contrast may result in lesser accuracy and precision in estimating position and head-
ing direction. Although the algorithm accounts for instances when tracking accuracy is dimin-
ished, this strategy can only work if the animal heading direction can be tracked reliably in most
of the image frames. This is an important consideration when designing experiments using the
CV commutator. We incorporated a manual override option to mitigate this issue. Second, the
issue may potentially be mitigated by imaging the mice from the bottom of the arena if com-
patible with the behavioral test. Finally, we note that robotic actuation of the commutator, par-
ticularly translation, may be perceived as the sweeping of an aerial predator, which might result
in innate defensive behaviors by the mice. Although we did not observe this in our experiments,
this is an issue that might arise in other experimental contexts.
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