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ABSTRACT. Significance: The advances and miniaturization in functional near-infrared spec-
troscopy (fNIRS) instrumentation offer the potential to move the classical labora-
tory-based cognitive neuroscience investigations into more naturalistic settings.
Wearable and mobile fNIRS devices also provide a novel child-friendly means
to image functional brain activity in freely moving toddlers and preschoolers.
Measuring brain activity in more ecologically valid settings with fNIRS presents
additional challenges, such as the increased impact of physiological interferences.
One of the most popular methods for minimizing such interferences is to regress out
short separation channels from the long separation channels [i.e., superficial signal
regression (SSR)]. Although this has been extensively investigated in adults, little is
known about the impact of systemic changes on the fNIRS signals recorded in
children in either classical or novel naturalistic experiments.

Aim: We aim to investigate if extracerebral physiological changes occur in toddlers
and preschoolers and whether SSR can help minimize these interferences.

Approach: We collected fNIRS data from 3- to 7-year-olds during a conventional
computerized static task and in a dynamic naturalistic task in an immersive virtual
reality (VR) cave automatic virtual environment.

Results: Our results show that superficial signal contamination data are present in
young children as in adults. Importantly, we find that SSR helps in improving the
localization of functional brain activity, both in the computerized task and, to a larger
extent, in the dynamic VR task.

Conclusions: Following these results, we formulate suggestions to advance the
field of developmental neuroimaging with fNIRS, particularly in ecological settings.
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1 Introduction
Functional near-infrared spectroscopy (fNIRS) is a non-invasive neuroimaging modality that
measures the cortical hemodynamic and oxygenation changes that follow neuronal activity.
Due to it being portable, relatively robust to head movements, and versatile for a wide range
of population and tasks, fNIRS has gained increased popularity over the past 30 years, as recently
acknowledged in the “Celebrating the 30 years of fNIRS” special issue in Neurophotonics.1 The
tremendous progress in hardware developments has led to the availability of wireless/mobile
fNIRS devices that now enable brain function imaging in real-world settings and in those sit-
uations in which other neuroimaging methods such as functional magnetic resonance imaging or
electroencephalography (EEG) are not suitable, such as those requiring dynamic movements2–4

or face-to-face social interactions.5,6

fNIRS is very often used within the field of cognitive neuroscience to localize the task-
evoked functional brain activity or to evaluate the brain-to-brain or within-brain functional
connectivity.7 Results are typically assessed at the group level rather than at the individual level
by testing specific hypotheses on the pooled single subjects’ data. The reliability and robustness
of the inference results strongly rely on the amount of noise in the included fNIRS data. In fact,
the fNIRS signals are contaminated by noise components of different origin: measurement noise
(e.g., electronic noise), motion artifacts, and physiological noise (e.g., changes in blood pressure,
respiration rate, and heart rate7,8). These can act as confounding factors in the fNIRS analysis and
can either mask and/or mimic the presence of a task-evoked hemodynamic response, leading to
false positives and/or false negatives in the group-level statistics.9 Some of these components
have distinct frequency characteristics from the task-evoked hemodynamic response and hence
can be easily removed or minimized using filtering methods (e.g., band-pass filter to remove
very-low- and high-frequency noise or wavelet filtering to correct for motion artifacts10).
However, other physiological confounders can overlap with the task-evoked hemodynamic activ-
ity, such as variations in arterial blood pressure known as Mayer waves (∼0.1 Hz11) or respiration
(∼0.2 Hz), and more advanced methods are needed to minimize their impact.

Among these, one major source of interference on the cortical fNIRS signals comes from
extra-cerebral contamination: the near-infrared light emitted from the light source travels twice
through various layers of the head (skin, skull, dura, and cerebrospinal fluid) before reaching the
brain and being back-scattered to the detector.9 Previous work has shown that ∼96% of the
injected light is absorbed in the skin and skull, whereas only 3% is absorbed in the brain.12

Therefore, the measured fNIRS signal is a mixture of the hemodynamic and oxygenation changes
happening in both the superficial and cortical vasculature. In addition, blood flow changes in
both the brain and the scalp can be modulated by those physiological processes that act on the
vascular tone. These processes encompass changes in blood pressure, respiration, partial pressure
of carbon dioxide (PaCO2), and autonomic activity, among others. These changes can either be
spontaneous (i.e., heartbeat, respiration, variations in arterial blood pressure or Mayer waves, and
very low frequencies), modulated, or induced by the task itself. For example, posture changes can
alter blood pressure,13 speaking and jaw movements can lead to changes in PaCO2 and non-
neural blood flow changes related to the use of the temporalis muscle,14 and stressful tasks can
promote vasoconstriction by triggering a sympathetic response.15 Even passive and apparently
stress-free tasks such as passive color light exposure can induce physiological changes.16 It is
thus reasonable to expect even a larger impact of systemic interferences when fNIRS neuroimag-
ing experiments are extended from the stationary laboratory setting to those with a higher degree
of ecological validity in which participants may be able to walk, engage in dynamic movements,
or speak freely.17

Different strategies have been proposed so far to deal with physiological interferences, such
as multimodal monitoring or appropriate task design (e.g., avoid 10-s-long task and rest blocks
that overlap with Mayer waves),7 including experimental conditions with the same level of physi-
cal activity so that some of the effects can be subtracted when contrasting the conditions (see
Burgess et al.3 for an example). A popular method to account for superficial contamination is to
use short separation channels alongside long separation channels. In contrast with long separa-
tion channels in which a pair of source and detector is placed at a distance>2 cm (typically 2 cm
for infants and 3 cm for adults) and is assumed to be sampling from the brain, short separation
channels are created by placing a source and a detector at a <1-cm distance and assuming that the
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back-scattered photons have traveled through the superficial layers of the head only and are not
brain-sensitive.18 The optical signal from the short separation channel can be regressed out from
the long separation channel to obtain a more brain-specific fNIRS signal with reduced scalp
contamination. This method is often referred to as superficial signal regression (SSR19,20).
SSR has been widely used in the fNIRS field and has been demonstrated to improve the recovery
of the hemodynamic response,21 even in instances when strong Mayer wave components are
present.11 It was also proven to be effective in increasing the performance of resting-state func-
tional connectivity analyses.22

Although the benefit of SSR has been well established in adult populations and nowadays
can be considered common practice,7 less is known on its impact on the group-level statistics of
developmental fNIRS data. Furthermore, it is not routinely used in children’s fNIRS data analy-
sis. It is reasonable to hypothesize that the scalp hemodynamic changes might be different in
younger populations compared with adults because of a different head anatomical structure or
maturation stage of the vasculature system;23 therefore, it is not clear yet whether there are sig-
nificant superficial changes in children and whether regressing out the short separation channels
can reduce physiological interference and increase the reliability of the task-evoked group level
inferences. To date, only the study by Ferradal et al.24 performed SSR in high-density fNIRS data
recorded on newborns. However, others have reported task-evoked patterns in channels with a
source–detector separation of ∼10 mm in 4- to 7-month-old infants that suggest that a proportion
of this signal is of superficial origin.23,25 Emberson et al.23 were the first to investigate whether
SSR has an impact on the group-level statistics in a developmental sample; however, this was
only investigated in infants’ fNIRS data. They showed that both superficial and deeper hemo-
dynamic responses can be observed in the occipital cortex of 6-month-old babies while under-
going a visual and auditory stimulation task. However, the removal of superficial signals did not
lead to significant changes in the group-level results. As pointed out by the authors, these results
might be task-specific, region-specific, and population-specific, and a different outcome may be
expected in other experiments or populations; thus, further investigations are needed.

There remains a notable gap in knowledge regarding the benefits of SSR across develop-
ment, such as in toddlers and preschoolers. Previous studies have shown that cerebral blood flow
is lower in the postnatal brain than in adults, then increases until 7 years of age, and then
decreases to a similar level to adults in teenage years, which may reflect brain maturation and
synapse formation.26 Therefore, children older than 3 years old may exhibit a different pattern of
blood flow changes which may significantly differ from those of younger or older population.
More importantly, task-evoked hemodynamic changes in these age groups may be modulated by
experimental contexts (e.g., standing or sitting) and physical movements, as previously shown in
adults.13,17 With the recent advances in wireless and more mobile NIRS instrumentation, cog-
nitive neuroscience investigations can now move to more naturalistic settings,27 which are more
dynamic and may thus enhance the impact of physiological interferences on the fNIRS-derived
brain signals. Increasing the ecological validity of fNIRS procedures is of critical importance for
studying toddlers and preschoolers whose neuro-cognitive development is traditionally under-
researched due to their difficulty sitting still and complying with task demands.

In this work, we aim to fill this gap and investigate if (1) there are significant extracerebral
physiological and hemodynamic changes in toddlers and preschoolers, (2) extracerebral inter-
ference is stronger when fNIRS data are recorded in standing and freely moving children,
(3) SSR can mitigate the impact of systemic confounding factors and improve the robustness
of fNIRS data, and (4) SSR has a significant effect on the group-level inference results on the
task-evoked brain activity. To this goal, we collected fNIRS data on a group of 3- to 7-year-old
children undergoing an inhibitory control task, a core executive function.28 Participants per-
formed a standard computer version of the task sitting at a desk and a naturalistic virtual reality
(VR) version adapted after the computer task. The VR task was carried out in an immersive VR
cave automatic virtual environment (CAVE) where kids could stand and were able to move
about. The task was designed to account for possible systemic interferences. Finally, we provide
some recommendations on how to adapt some of the best practices7 to help enable fNIRS neuro-
imaging on young children.

Our hypotheses are as follows: (1) there are task-evoked changes in scalp blood flow in
toddlers and preschoolers; (2) these are larger in the VR version of the task compared with the
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computer-based one because of posture (standing versus sitting) and physical activity; (3) SSR
changes the outcome of the group level statistics, especially in the VR task; and (4) SSR has a
larger effect on oxygenated hemoglobin than deoxygenated hemoglobin, as previously found in
adults.9,29

2 Material and Methods

2.1 Participants
Thirty-nine 3- to 7-year-old children (Mage ¼ 4.45, SD ¼ 1.08, 35.9% female) were recruited.
All participants were born full-term, healthy, with normal or corrected to normal vision and hear-
ing, and with no diagnosis of a neurodevelopmental condition. The protocol for this study was
preregistered on the Open Science Framework.30 All parents or caregivers provided written
informed consent. Ethical approval was granted by the Ethics Committee of the Department
of Psychological Sciences at Birkbeck, University of London (No. 2021072).

For the VR task, seven participants were excluded for poor fNIRS data and two for task
performance; for the computer task, two participants were excluded due to poor fNIRS data and
performance, six for poor fNIRS data only, and one for task performance only. The final sample
thus included 30 participants for the VR task (Mage ¼ 4.5, SD ¼ 1.14, 21 males) and 30 par-
ticipants for the computer task (Mage ¼ 4.53, SD ¼ 1.14, 21 males).

2.2 Experimental Protocol
Participants performed a response inhibition task, a type of inhibitory control referring to our
ability to suppress a certain action or a prepotent response. The go/no-go task is a widely used
measure of response inhibition, which requires participants to press a button in response to some
stimuli and to refrain from button presses when certain other stimuli appear.28 Here, we used
child-friendly versions of a go/no-go task.31 In particular, a block-designed go/no-go task was
performed in two versions: a computerized version and a VR version.

2.2.1 Computer-based (CB) go/no-go task

This version [Fig. 1(a)] was previously used in Schröer et al.31 and restructured as a block-design
to fit with fNIRS requirements. Children were sitting in front of a computer screen and were told

Fig. 1 Experimental protocol. Children performed a computerized version of the go/no-go task
sitting in front of a computer (a) and a VR version while freely moving in a VR CAVE (b). In the
CAVE, children wore the fNIRS cap in conjunction with motion tracking markers and custom-made
shutter glasses.
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a story that a town was haunted by vampires and that they had to be monster hunters and catch all
of the bats that would soon become vampires. They were presented with pictures of bats (go
trials) and cats (no-go trials). They were asked to press the space bar on the computer keyboard
as fast as possible to catch the bats (go) but refrain from doing so when they would see a cat
(no-go). The task started with two practice trials before moving on to the main experiment.

2.2.2 VR go/no-go task

The VR version of the task was performed in the Peltz VR CAVE at the ToddlerLab, Birkbeck,
University of London [Fig. 1(b)]. The CAVE is an immersive VR space made of a four-sided
custom-designed projection system (Mechdyne Corporation, Marshalltown, Iowa, United
States). The projection space includes a front wall (4.3 × 2 m), two side walls (2.4 × 2 m), and
the floor (4.3 × 2 m). Two blended single-chip laser projectors overlapping by 65% (resolution
of 2716 × 1528 pixels; total resolution ¼ 3297 × 1528 pixels) display images onto the front and
floor walls; a single laser projector (resolution 2716 × 1528 pixels) is used to present images on
the side walls. Children wore an in-house-built three-dimensional (3D) printed model of a child-
sized pair of liquid crystal display (LCD) shutter classes for active stereo viewing at 30 Hz that
increases the immersive experience of participants in the virtual scene. Four six-degree-of-free-
dom optical motion tracking cameras (Vero 1.3 X, Vicon, Hauppauge, New York, United States)
at the corners of the CAVE tracked the orientation and movements of the children’s head and
right hand. Head tracking was achieved by reflective markers mounted onto the shutter glasses
[Fig. 1(c)] and allowed for the virtual scene to be reoriented according to the participant’s posi-
tion. Reflective markers were also attached to a child-sized glove to track the right hand move-
ment, which was used as a means of interaction with the virtual objects. The right hand was
tracked for all participants regardless of handiness as the task did not require fine motor skills.
The same glove was presented in the virtual environment, and the position was updated in real
time based on the participant’s hand position and movements.

In this version, participants found themselves in a virtual playground. An elephant-shaped
bubble machine was located at the center of the playground and generated virtual bubbles of two
different colors: blue (go trials) and red (no-go trials). Children were asked to pop the blue bub-
bles (go) but not the red bubbles (no-go trials) by means of the motion-tracked glove. The task
started with practice trials to help the child acclimated to the virtual space and ensure the child
was comfortable and confident in how to use their right hand to pop the bubbles.

Both the VR and CB go/no-go tasks were block-designed, with six go-only blocks and six
go/no-go (mixed; 50% go trials and 50% no-go trials) blocks. A total of 120 trials were split into
90 go-only trials and 30 no-go trials across the blocks. Each block had between 9 and 11 trials
each; each trial was presented on screen or the CAVE for 2 s with an intertrial interval of
a maximum of 1 s. Task blocks were spaced by rest periods with a randomized duration
between 8 and 12 s; in the computer-based task, children were asked to look at a fixation cross
at the center of the screen. To replicate this in the CAVE, they were asked to fixate a star
appearing on the elephant’s trunk. Each task took between 6 and 8 min to complete. Go-only
and mixed blocks were alternated. The order of the CB and VR tasks was counterbalanced across
participants.

2.3 fNIRS Data Acquisition
Two wearable and wireless continuous wave fNIRS devices (Brite MKII, Artinis Medical
Systems BV, Elst, Netherlands) were combined onto the same cap to measure the concentration
changes of oxygenated hemoglobin (HbO2) and deoxygenated hemoglobin (HbR) while children
carried out both the VR and the CB go/no-go tasks. Each instrument is equipped with 10 light
sources, emitting light at 760 and 840 nm, and eight detectors, sampling intensity data at 25 Hz.
Optodes were arranged in the configuration shown in Fig. 2(a), providing 44 long separation
channels (LSCs) and 4 short separation channels (SSCs) [Fig. 2(b)].

Sources and detectors covered the dorsolateral prefrontal cortex (dlPFC) and the motor cor-
tex bilaterally (Fig. 2). The source–detector separation for the LSCs was set at 2.5 cm and 1 cm
for the SSCs. The source–detector separation of the SSC was constrained by the geometry of the
optodes of the fNIRS hardware, which did not allow the sources and detectors to be placed at less
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than 1 cm away. Based on Brigadoi and Cooper18, the optimum source–detector distance for
SSCs resulted in being 0.84 cm for adults and 0.215 cm for infants, suggesting that 1 cm might
include some signal contribution from the brain in toddlers and preschoolers. To investigate the
age-related differences in channels’ brain sensitivity for SSCs at 1 cm, we performed a prelimi-
nary analysis on the sensitivity distribution of our fNIRS array in younger (3-year-olds) and older
(5-year-olds) children’s head models. This analysis demonstrated that SSCs at 1 cm are mini-
mally sensitive to the brain in 5-year-olds but still include some brain contribution in 3-year-olds
(Fig. S1 in the Supplementary Material), and a source–detector separation of 0.8 cm might be
more appropriate (Fig. S2 in the Supplementary Material). Methodological procedures and
further details about the computation of the sensitivity distributions are included in Sec. 1 of
the Supplementary Material.

To achieve a reliable placement across participants, the cap was aligned to the Fp1 and Fp2
landmarks of the 10 to 20 electrode placement system. A short 10-s-long frontal video of the
participant was recorded to perform the co-registration of the fNIRS array onto a common tem-
plate (see Sec. 2.4).

2.4 fNIRS Data Preprocessing and Analysis
For each participant, the locations of the optodes and channels were co-registered onto a common
5-year-old MRI template from the Neurodevelopmental MRI Database of the University of South
Carolina32,33 using the procedure described in Ref. 34. Briefly, we 3D printed the MRI template
to create our head model and to specify the ideal placement of the cap; the head model coor-
dinates of the sources and detectors as well as the anatomical landmarks (Nasion, Inion, Cz,
right and left preauricular points, Fp1, Fp2, Fpz, F7, F8, O1, and O2) were recorded using

Fig. 2 fNIRS probe configuration. Optodes’ arrangement (a) and corresponding channel numbers
(b). Short and long separation channels are marked in green and yellow, respectively.
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a 3D magnetic digitizer (FasTrak, Polhemus, Colchester, Vermont, United States). These were
used as an input to STORM-Net (https://github.com/yoterel/STORM-Net) for the off-line stage
of the algorithm. The frontal videos of the participants were then used for the online step to
estimate the position of the child’s optodes and landmarks based on the displacement with
respect to the ideal head model.35 The MRI template was segmented into five tissues [scalp,
skull, cerebrospinal fluid, grey matter (GM), and white matter] using the FMRIB Software
Library (FSL36), and a volumetric multilayer mask was then created using routines from the
DOT-HUB toolbox (https://github.com/DOT-HUB). A tetrahedral volumetric mesh and a GM
surface mesh were generated; the optodes’ coordinates for each participant were co-registered
onto the scalp mesh first via affine transformation and then projected onto the GM surface mesh.
The same procedure was applied to the head model coordinates. The LONI Probabilistic Brain
Atlas (LPBA4037) atlas was used on the head model data to identify the anatomical locations of
all channels; the anatomical labels of the channels and their percentage of overlap are reported in
Table 1.

Raw intensity fNIRS data were first visually inspected to identify noisy channels to further
exclude from the following analyses; channels with no clear heart rate peak or detector saturation
or that were severely impacted by motion artifacts were excluded. Table 1 includes the number of
participants that contributed good-quality data for each channel. Intensity signals were then pre-
processed using Homer2.38 More precisely, two separate pipelines were applied to both the VR
and CB tasks (Fig. 3) to compare the impact of SSR.

In both pipelines, raw fNIRS data were first converted into changes in optical density
(hmrIntensity2OD) and corrected for motion artifacts using the wavelet-based algorithm
(iqr = 0.8, hmrMotionCorrectWavelet39). Optical density signals were band-pass-filtered
(Fc = [0.01 0.1] Hz; hmrBandpassFilt) and converted into changes in HbO2 and HHb through
the modified Beer–Lambert law (DPF = 5.5, 4.7; hmrOD2Conc40).

Participants were included in the analysis if they had at least 50% of the fNIRS channels of
good quality and at least three blocks with a performance >50% for both the go-only and mixed
blocks. A general linear model-based deconvolution approach was then used to estimate the
hemodynamic responses to the go and mixed blocks, for each participant, channel, and chromo-
phore. The hemodynamic responses were extracted using a set of Gaussian basis functions with
standard deviation and temporal spacing of 1.5 s in the time window ½−2 32� s around each onset
of the included blocks; for pipeline 2, the design matrix included the short separation channel
with the highest correlation to each long separation channel;41 no SSC regression was performed
in pipeline 1 (trange = [− 2 32], glmSolveMethod = 1, idxBasis = 1, paramsBasis = [1.5 1.5],
rhoSD_ssThresh = 0 for pipeline 1 and 1.5 cm for pipeline 2, flagSSmethod = 1, driftOrder = 0,
and flagMotionCorrect = 0; hmrDeconvHRF_DriftSS). In this case, a local SSR regression (i.e.,
regressing out the highest correlated SSC for each LSC) was chosen over a global SSR regression
(i.e., regressing out the average of all SSCs out of all LSCs) to account for the heterogeneity of
scalp interference; in addition, as our array did not cover the whole head and included a small
number of SSCs (up to four), the average of all SSCs might not reflect a truly global component
(i.e., signal changes that affect the whole brain or large regions). This was confirmed by our
supplementary analyses using pipeline 2 with global SSR regression (trange = [−2 32],
glmSolveMethod = 1, idxBasis = 1, paramsBasis = [1.5 1.5], rhoSD_ssThresh = 1.5 cm,
flagSSmethod = 2, driftOrder = 0, and flagMotionCorrect = 0; hmrDeconvHRF_DriftSS); in
fact, results showed that the global SSR regression leads to very minor to no differences com-
pared with the local SSR at the group level (see Tables S1–S4 and Figs. S3 and S4 in the
Supplementary Material).

For both the VR and CB tasks, the area under the curve (AUC) in the estimated responses to
the go and mixed blocks were computed within a time window from 15 to 25 s post-task onset;
this was done for each pipeline and for both HbO2 and HHb of each participant and was used for
the group-level statistics. Channel-wise one-sample t-tests were run on the group AUCs for each
pipeline to test whether there is a statistically significant (p < 0.05) larger increase in HbO2 and a
larger decrease in HbR in the mixed blocks versus the go blocks. One-sample t-tests were also
used to test whether there were significant hemodynamic changes in the SSCs in response to
either the mixed or the go blocks. Results were corrected for multiple comparisons using the
false discovery rate (FDR42) method.
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Table 1 Anatomical locations of the fNIRS channels. The anatomical areas (LPBA40 atlas) and
the corresponding atlas-based probabilities for each channel are included. Only probabilities
greater than 20% are listed. Number of participants contributing to each channel for the VR
(NVR) and CB (NCB) tasks because of cap placement and data quality are also listed.

Channel LPBA40 label Probability NVR NCB

Ch 1 R middle frontal gyrus 0.84 28 24

Ch 2 R middle frontal gyrus 0.88 29 28

Ch 3 R middle frontal gyrus 0.99 25 24

Ch 4 R middle frontal gyrus 0.86 20 20

Ch 5 R superior frontal gyrus 0.65 19 13

R middle frontal gyrus 0.35

Ch 6 R middle frontal gyrus 0.96 30 27

Ch 7 R middle frontal gyrus 0.93 26 25

Ch 8 R inferior frontal gyrus 0.76 27 30

Ch 9 R precentral gyrus 0.75 25 26

Ch 10 R superior frontal gyrus 0.75 17 15

R middle frontal gyrus 0.24

Ch 11 R precentral gyrus 0.70 27 23

Ch 12 R postcentral gyrus 0.57 25 22

R precentral gyrus 0.32

Ch 13 R superior frontal gyrus 0.48 18 16

R precentral gyrus 0.45

Ch 14 R precentral gyrus 0.78 13 14

Ch 15 R postcentral gyrus 0.48 28 27

R precentral gyrus 0.34

Ch 16 R supramarginal gyrus 0.64 26 26

R postcentral gyrus 0.31

Ch 17 R postcentral gyrus 0.61 22 22

Ch 18 R precentral gyrus 0.61 14 15

R postcentral gyrus 0.30

Ch 19 R superior parietal gyrus 0.45 21 20

R postcentral gyrus 0.38

Ch 20 R postcentral gyrus 0.48 14 16

R superior parietal gyrus 0.37

Ch 21 R supramarginal gyrus 0.89 24 23

Ch 22 R angular gyrus 0.55 26 25

R supramarginal gyrus 0.40

Ch 23 R superior parietal gyrus 0.56 23 25

R angular gyrus 0.40

Ch 24 R superior parietal gyrus 0.96 19 21
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Table 1 (Continued).

Channel LPBA40 label Probability NVR NCB

Ch 25 L superior parietal gyrus 0.91 15 17

Ch 26 L angular gyrus 0.42 24 27

L supramarginal gyrus 0.35

Ch 27 L superior parietal gyrus 0.49 11 16

L postcentral gyrus 0.47

Ch 28 L precentral gyrus 0.58 14 15

L postcentral gyrus 0.35

Ch 29 L postcentral gyrus 0.57 16 20

L superior parietal gyrus 0.22

Ch 30 L postcentral gyrus 0.71 13 16

Ch 31 L supramarginal gyrus 0.93 21 22

Ch 32 L supramarginal gyrus 0.83 23 22

Ch 33 L precentral gyrus 0.50 13 14

L superior frontal gyrus 0.37

Ch 34 L precentral gyrus 0.53 17 17

L postcentral gyrus 0.43

Ch 35 L precentral gyrus 0.57 22 21

L middle frontal gyrus 0.37

Ch 36 L middle frontal gyrus 0.76 13 11

Ch 37 L precentral gyrus 0.70 15 15

L middle frontal gyrus 0.21

Ch 38 L postcentral gyrus 0.62 28 26

L supramarginal gyrus 0.21

Ch 39 L precentral gyrus 0.55 25 26

L postcentral gyrus 0.37

Ch 40 L middle frontal gyrus 0.90 28 27

Ch 41 L middle frontal gyrus 0.85 19 15

Ch 42 L middle frontal gyrus 0.95 28 26

Ch 43 L middle frontal gyrus 0.94 23 18

Ch 44 L inferior frontal gyrus 0.48 20 26

L precentral gyrus 0.38

Ch 45 L inferior frontal gyrus 0.70 22 30

L middle frontal gyrus 0.29

Ch 46 L middle frontal gyrus 0.83 28 28

Ch 47 L middle frontal gyrus 0.97 25 22

Ch 48 L middle frontal gyrus 0.95 22 20
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3 Results

3.1 Optimization of the Preprocessing Pipeline
Initial visual inspection of the raw intensity data revealed that some children exhibited signal
changes with a periodicity of 10 s corresponding to Mayer waves, similar to what has been
reported in adults.11 These were clearly visible from the raw intensity time series, both in the
long separation channels and in the short separation channels. In Fig. 4, we show an example of
raw signals at the two wavelengths for a long (channel 12) and a short (channel 14) separation
channel for one child. In addition to the heartbeat, the Mayer wave component can be clearly
distinguished for the VR task [Fig. 4(a)] and, to a lesser extent, for the CB task [Fig. 4(b)],
suggesting that Mayer waves may be present when fNIRS data are recorded from children both
when they are standing and when they are sitting.

When using common low pass cutoff frequencies of 0.5 Hz7 in conjunction with a high pass
filter at 0.01 Hz in pipeline 1, the 10-s modulations related to the Mayer waves are still visible in
the block-averaged responses, especially for HbO2. Figure 5 (dashed lines) shows the resulting
hemodynamic responses averaged across the VR go blocks for channel 12 and channel 14 pre-
sented in Fig. 4(a). Channel 43 is included as well to show the effect of the three pipelines on a
long separation channel not adjacent to channel 14. It is important to notice that similar hemo-
dynamic changes occur both in channels 12 and 14, with amplitude changes of ∼0.5 μMol∕L for
HbO2 and that similar modulations are present in the opposite hemisphere as well (channel 43).

However, when reducing the pass band of the filter to [0.01 0.1] Hz, such modulations are
attenuated (Fig. 5, dotted lines). Therefore, even though Mayer waves cannot be simply removed
by low pass filters,11 a low pass cutoff frequency closer to the Mayer waves fundamental fre-
quency (0.1 Hz) can help in attenuating the effect of such components. It is worth mentioning that
these parameters are appropriate for our task design with a task frequency of ∼0.03 Hz, with the
[0.01 0.1]-Hz range including three harmonics of the task frequency. In the case of faster task
designs, careful considerations should be made in narrowing the pass band of the filter.8 When
performing short channel regression following the [0.01 0.1]-Hz filter in pipeline 2, the Mayer
waves modulations are further reduced (Fig. 5, solid line), particularly in HbO2, suggesting that,
for our type of experimental context and population, the combination of these preprocessing
steps seems to be optimal in reducing the impact of physiological noise. At the group level,
for the VR task, this translates to either inflation or deflation of t-statistics for the contrast
of interest (mixed > go-only). Group-level statistical results are reported in Tables S1–S2 and
Fig. S3 in the Supplementary Material. Results suggest that leaving all or part of the Mayer wave
modulations in the signals can either mask or mimic the presence of a hemodynamic response.9

This seems to be more pronounced in HbO2 for which more differences in group-level statistics

Fig. 3 Analysis pipelines.
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between pipeline 2 and pipeline 1 (with either filter range) are observed in 11 channels compared
with HbR, for which three channels are affected. In addition, pipeline 2 maximizes the overlap
among the significantly active channels for HbO2 and HbR (i.e., concurrent and anticorrelated
changes in the two chromophores are expected in the case of a functional brain activity), further
suggesting that SSR combined with a narrower band-pass filter can increase the robustness of the
data. In terms of the CB group-level statistics (Tables S3–S4 and Fig. S4 in the Supplementary
Material), differences between pipeline 2 and pipeline 1 (with either filter range) are found in one
channel for HbO2 and two channels for HbR, indicating that the presence of Mayer waves in
the signals affects group-level statistics in stationary tasks to a lesser extent than mobile and
dynamic tasks.

3.2 Extracerebral Changes and Impact of SSR
At the group level, significant changes were found in the short separation channels (Fig. 6). For
the VR task, we found a significant decrease in HbO2 in channel 48 (tch48 ¼ −2.54; p ¼ 0.02

uncorrected) for the mixed condition. For the CB task, a significant increase in HbO2 in channel

Fig. 4 Examples of raw fNIRS data. Panels (a) and (b) show the raw intensity signals at the two
wavelenghts for long and short separation channels of one participant for the VR task (a) and the
CB task (b). Periodic 10-s components corresponding to Mayer waves can be observed in all
channels.
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14 (tch14 ¼ 2.27; p ¼ 0.04 uncorrected) and channel 48 (tch48 ¼ 2.36; p ¼ 0.03 uncorrected)
was found for the go-only condition. When comparing mixed > go-only, the increase in
HbO2 is larger in the go-only condition than in the mixed blocks. All statistical results are
included in Table S5 in the Supplementary Material.

To test the effect of the regression of short separation channels on the group-level statistics,
we ran channel-wise one-sample t-tests on the group AUCs for our contrast of interest (mixed >
go-only) for HbO2 and HbR for pipeline 1 and pipeline 2. This was done for both the VR and CB
tasks. Group-level t-maps are shown in Figs. 7 and 8 for the VR and CB experiments, respec-
tively, and all statistical results are also reported in Tables S1–S4 in the Supplementary Material.

Fig. 5 Impact of different pipelines on the reduction of physiological components. The estimated
task-evoked hemodynamic responses with different pipelines are presented for the go-only con-
dition for two long channels (channel 12 adjacent to channel 14 and channel 43 on the opposite
hemisphere) and a short separation channel (channel 14) from one participant. The use of a band-
pass filter only in pipeline 1, either with a wider ([0.01 0.5] Hz; dashed lines) or narrower ([0.01 0.1]
Hz; dotted lines) pass band are not as effective as the combination of SSR with a narrower band-
pass filter ([0.01 0.1] Hz; solid lines) in pipeline 2 in reducing the Mayer wave modulations in the
signals.

Fig. 6 Group averaged (mean ± std.err.) HbO2 and HbR responses in the short separation chan-
nels. Task-evoked hemodynamic responses are shown for both the go-only and mixed conditions
and for the VR (HbO2 red and HbR blue) and CB (HbO2 magenta and HbR black) tasks.
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For the VR task, larger significant changes (p < 0.05) in HbO2 and HbR can be observed in
the mixed blocks compared with the go-only blocks in the channels covering the middle frontal,
precentral, postcentral, and inferior frontal gyri directly related to response inhibition, although
only channel 9 (precentral gyrus) survives the FDR correction for HbO2. The opposite pattern is
observed in channels probing the superior parietal gyrus as go-only trials require the continuous
execution and planning of movements more than in mixed trials. Looking at the general and
uncorrected patterns of brain activity, more widespread activations are found when using pipeline
1. Pipeline 2 yields more localized activations, with 10 significant channels for HbO2 (p < 0.05)
compared with the 15 of pipeline 1. For HbR, the regression of short channels in pipeline 2
increases the statistical significance of two more channels, further maximizing the overlap
between HbO2 and HbR that better reflects the expected dynamic of brain activity, i.e., increase
in HbO2 and decrease in HbR.

Similarly for the CB task, we found significant changes (p < 0.05) in HbO2 and HbR when
comparing the mixed condition against the go-only condition in the middle frontal, inferior

Fig. 7 Group level t -value maps for the contrast mixed > go-only for the VR task. Statistically
significant channels at p < 0.05 are circled in white. Channels surviving FDR correction are marked
with asterisks. A positive t -value corresponds to an HbO2 increase and an HbR decrease;
a negative t -value corresponds to an HbO2 decrease and an HbR increase.

Fig. 8 Group level t -value maps for the contrast mixed > go-only for the CB task. Statistically
significant channels at p < 0.05 are circled in white. Channels surviving FDR correction are marked
with asterisks. A positive t -value corresponds to an HbO2 increase and an HbR decrease;
a negative t -value corresponds to an HbO2 decrease and an HbR increase.
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frontal, and superior parietal gyri, although no channels survive the FDR correction. The regres-
sion of short channels results in more localized changes in HbO2, with one channel being active
versus two of pipeline 1, but the effect is smaller than for the VR task. This suggests that physio-
logical changes might affect brain hemodynamics more in standing (VR case) versus seated
(CB case) participants.

In general, in both tasks, the superficial signal regression led to a reduction in the amplitude
of HbO2 and an increase in that of HbR. An example of the resulting group responses to the
contrast mixed–go-only is shown in Fig. 9 for two representative channels, for both the VR and
CB tasks.

4 Discussion
In this work, we investigated for the first time in toddlers and preschoolers if significant hemo-
dynamic and oxygenation changes occur in the extracerebral layers of the head and whether the
removal of such components has an impact on the group-level statistics when localizing hemo-
dynamic responses in the cerebral compartment. Specifically, we explored whether the super-
ficial contamination on the cortical brain fNIRS signals was stronger when data were recorded
from a developmental sample during a cognitive task while freely moving compared with sitting.
To this goal, we collected fNIRS data from 3- to 7-year-olds during a go/no-go task performed
while freely moving in an immersive VR CAVE space (VR task) and while sitting in front of
a computer (CB task). We applied two different analysis pipelines (Fig. 3) to test the effect of
superficial signal regression on the group-level statistics.

Our initial investigations suggested that similar physiological components as adults’ fNIRS
data can be observed in children’s fNIRS data as shown by visible Mayer waves in the raw
intensity data (Fig. 4) alongside other known components such as heart rate, slow trends, and
motion artifacts. If these are not accounted for, they can propagate along the analysis pipeline,
possibly ending up affecting the outcome of the statistical analysis. For example, in Fig. 5, we
showed that, if appropriate approaches, i.e., band-pass filtering along with SSR such as pipeline
2, are not used, Mayer waves components are still clearly visible in the recovered hemodynamic
responses and can affect the amplitude changes of HbO2 and HbR, hence leading to false
positives and/or false negatives.9 In agreement with this, our results showed that group-level
t-statistics are either inflated or deflated due to the presence of physiological modulations in
the fNIRS signals when pipeline 2 is not used (Tables S1–S4 and Figs. S3–S4 in the
Supplementary Material). In fact, we found differences in the group-level t-values across the
three pipelines (pipeline 2 versus pipeline 1 with [0.01 0.5] Hz and with [0.01 0.1] Hz

Fig. 9 Group-averaged task-evoked responses (mean ± std.err.) for the contrast mixed−go-only.
The resulting HbO2 and HbR responses from two representative channels are shown both without
(magenta and cyan lines) and with (red and blue lines) SSR for the VR and CB tasks. SSR leads to
a decrease in HbO2 amplitude and an increase in HbR changes.
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band-pass filters) in HbO2 and HbR, particularly in the VR task compared with the CB task. The
fact that t-values are either inflated or deflated might also further support the possibility that the
impact of physiological noise is not homogenous across the head.43,44 In addition, the use of
pipeline 2 improved the overlap between the HbO2 and HbR statistical results, i.e., the expected
pattern in the case of functional brain activity, suggesting its superior efficacy in reducing physio-
logical contaminations.

Similar to previous studies in adults,11,21,43 we found significant changes in the short sep-
aration channels (Fig. 6; Table S5 in the Supplementary Material) both in the VR task and in
the CB task, indicating that physiological contamination can occur not only when children are
standing or moving around but also when they are performing standard computer-based tasks.
Generally, we found that HbO2 increases and HbR decreases during the CB task and that HbO2

decreases and HbR increases in the VR task in the SSCs. We hypothesize that the superficial
decreases in HbO2 and increases in HbR trends in the VR task might be due to respiration-
induced changes in physiological variables such as in the PaCO2. Previous studies have reported
this inverted pattern in the case of hypocapnia.45,46 Changes in respiratory patterns can be
expected in the case of dynamic tasks, in which the participant is standing and performing larger
body movements (e.g., walk to reach a bubble or move the whole arm to pop the bubble) than
a standard computer-based task in which just a key press is required. Further investigation with
physiological measurements (Systemic Physiology Augmented fNIRS (SPA-fNIRS),7,47 e.g., by
measuring respiration or PaCO2 alongside fNIRS, is needed to further confirm this hypothesis.

Such superficial changes seem to be heterogeneous across the scalp as previously reported in
adults,43,44 showing different trends across the four SSCs (Fig. 6). This is also reflected at the
group level as, when incorporating SSR in pipeline 2, t-values either increase or decrease across
channels compared with pipeline 1 with no SSR (Tables S1–S4 in the Supplementary Material).
Hence, the use of multiple short separation channels and regressing them out locally can be
highly beneficial in this population as much as it is in adults. In this framework, previous stud-
ies10 have proposed removing a global component only or in addition to local SSR regression;20

the global component can be obtained by averaging all SSCs or computing the first two principal
components of the combined SSCs21 or in addition to local SSR regression.20 However, we
believe that such approaches would perform better when a larger head coverage or high-density
measurements with several SSCs are available. These configurations would allow for a more
accurate estimation of a global component, i.e., signal changes that affect the whole brain or
large regions, which might not be estimated accurately with our sparse and low coverage array
with up to four SSCs. In fact, when using a global SSR approach on our data by averaging all
SSCs, we obtained very similar results to local SSR, suggesting that the SSCs average might not
reflect a truly global component (Tables S1–S4 and Figs. S3–S4 in the Supplementary Material).
Therefore, in this study, we regressed SSCs locally rather than globally considering the one
maximally correlated to each LSC.

Our exploratory analyses confirmed that the go/no-go task elicited significant brain activity
in the expected regions of interest within dlPFC,48,49 with larger changes in brain hemodynamics
in the mixed blocks compared with the go-only blocks per effect of response inhibition. The
opposite pattern (mixed < go-only) was found particularly for the VR task in the more posterior
regions covering the motor/superior parietal areas50 and mostly in the left hemisphere (e.g., chan-
nels 25, 26, and 27), contralateral to the arm movement. These regions are involved in motor
execution and planning and are expected to show more sustained and higher activity during
go-only blocks for which a continuous response/movement is required than in mixed blocks
for which movements need to be intermittently suppressed.51,52 This is especially true for the
VR task in which participants need to perform a larger movement with the right arm instead
of a simple button press such as in the CB task. Results also revealed that the regression of
short separation channels has an effect on the group-level statistical maps for both the VR and
CB tasks (Figs. 7 and 8) and across both more anterior and posterior brain regions. In particular,
pipeline 2 (with SSR) led to more localized activation patterns compared with pipeline 1 (without
SSR) forHbO2 as reflected by the smaller number of active channels. The improvement in spatial
localization has also been reported by previous fNIRS studies on adults (e.g., Refs. 21 and 53).
SSR also increased the statistical significance of HbR (Fig. 7), further improving the detection of
brain activity (i.e., increase in HbO2 and decrease in HbR). The increase in spatial localization
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per effect of SSR was more pronounced for the VR task (Fig. 7) than for the CB task (Fig. 8),
suggesting that, in agreement with our hypothesis, systemic interferences might have a larger
impact when fNIRS data are recorded in more physically active conditions.15,17 Nevertheless,
SSR influences group-level results also for the CB experiment, though to a lesser extent
(Fig. 8). Therefore, we also recommend the use of short separation channels in instances in which
fNIRS data are recorded from children in typical non-mobile neuroimaging contexts. Across both
tasks, most of the changes post-SSR can be observed in the HbO2 signal, in agreement with
previous work demonstrating that oxyhemoglobin is more sensitive to physiological interfer-
ences than HbR.29

In summary, our preliminary work represents the first report of the occurrence and influence
of scalp blood flow changes on the estimation of brain activity through fNIRS in toddlers and
preschoolers. As such, it provides the initial evidence that (1) significant changes in scalp hemo-
dynamics can occur in toddlers and preschoolers, (2) extracerebral changes seem to be stronger
when children perform cognitive tasks while moving versus when they are sitting, (3) SSR can
influence the outcome of group-level statistics by improving spatial localization of hemodynamic
responses, and (4) short separation channels can be highly beneficial in 3- to 7-year-olds both in
mobile and non-mobile experimental setups. However, limitations to this work should be con-
sidered. First, the sample size was not ideal for all channels (Table 1). This depended on whether
the optodes were probing brain activity on hairy regions, which worsened the optical coupling in
some participants; when collecting data on young children, coupling optimization procedures
cannot always take place or need to be done very quickly to avoid kids becoming uncompliant.
In addition, the VR and the CB tasks involved different body movements and changes in optical
coupling from one task to the other, and re-optimization procedures could not always take place;
for example, some children moved their heads more during the CB task than the VR task.
Collecting data from a larger cohort of children could help in mitigating these issues in future
studies. It is worth mentioning that, here, we used a source–detector separation of 1 cm for SSCs,
being constrained by the physical dimension of the optodes of the fNIRS systems used in the
current setup. Based on our preliminary sensitivity analysis (Sec. 1 in the Supplementary
Material), SSCs at 1 cm may still include some contribution from the deeper brain areas, par-
ticularly in the younger age range of our sample. Therefore, our results might have been affected
by the removal of part of brain hemodynamic changes in some participants. Future studies should
consider reducing the source–detector separations for short channels to at least 0.8 mm to min-
imize their sensitivity to the brain when collecting fNIRS data on toddlers. If allowed by the
fNIRS hardware, whole-head or high-density measures can also help in this regard to further
reduce scalp contamination by adding the removal of global systemic components.20,21 In addition,
we have not used additional monitors of systemic physiology (e.g., ECG, respiration, and blood
pressure) that could have helped to better assess the presence of significant task-related physio-
logical changes and further improve the robustness of fNIRS signals. This was partly related to
practical challenges in using several pieces of equipment on young children as in our study they
were already wearing the fNIRS cap, a motion tracking glove, and head-mounted shutter glasses/
head tracking (Fig. 1). Nevertheless, previous work has shown that an SPA-fNIRS approach7,47 can
be highly beneficial in denoising the fNIRS signals from systemic interferences. This would be
worth exploring in children in future studies. Alongside physiological monitors, in our future
work, we plan on using signals coming from motion tracking, such as head movements, as addi-
tional nuisance regressors. In fact, von Lühmannet al.54 showed that combining short separation
channels with accelerometer signals on the head can significantly improve the recovery of the
hemodynamic responses. Finally, we chose a source–detector separation of 1 cm due to the physi-
cal constraints of the optodes size; even though young children seem to have a similar sensitivity
profile to adults55 and similar head sizes, it is possible that part of the signal of the short separation
channels is of cortical origin (Sec. 1 in the Supplementary Material); therefore, shorter source–
detector separations might be better suited for SSR in children23 if the hardware allows.

5 Conclusion and Methodological Recommendations
In this study, we have provided the first evidence that superficial signal contamination of
fNIRS data also occurs in younger children. Interestingly, our results indicate that children
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aged 3 to 7 years are more similar to adult populations than infants in terms of non-neural com-
ponents in the fNIRS signals. In fact, previous work from Emberson et al.23 showed that the
removal of superficial vasculature signals did not have a significant impact on group-level sta-
tistics in 6-month-old infants. Nonetheless, it is unclear whether other, more active or physio-
logically arousing paradigms might show greater contributions of superficial vasculature signals
even in infants. The assumption that the fNIRS signal is a mixture of components of both neuro-
nal and non-neuronal origin9 seems to be valid in children as well and can potentially lead to
false positives and false negatives at the statistical inference stage. Therefore, we suggest that
removing the contribution of superficial signals to the long fNIRS channels is an important
step in the analysis pipeline of children’s data, especially when fNIRS signals are recorded
in experimental contexts that elicit stronger physiological changes (e.g., standing, walking, and
full body movements). Future work will be important to further explore how other cognitive tasks
and experimental settings modulate the impact of systemic interferences in children as well as
the feasibility of SPA-fNIRS in these populations.

Task design, array co-registration, and the preprocessing pipeline were optimized for chil-
dren to maximize the robustness of the results. Based on our results, below, we provide prelimi-
nary recommendations as a first step to advance the field of children’s fNIRS neuroimaging.
Figure 10 shows some of the steps that we recommend to enhance the robustness of the results
of fNIRS data recorded on children and particularly in ecological settings.

5.1 Methodological Considerations for Task Design
Tasks were designed to meet different requirements.

First, it is well known that pediatric neuroimaging can present several challenges due to their
compliance with neuroimaging experimental requirements, particularly in preschoolers.56 The
CAVE represents a much more engaging setting for children, increasing their compliance
together with fNIRS being a child-friendly technique.57 Hence, longer tasks with a larger number
of trials that increase the statistical power of the study may be potentially suitable. However, in
this work, a conventional computerized task was needed for the validation of the novel VR natu-
ralistic task and to evaluate the differences in physiological interferences between the two. To
maximize children’s cooperation and participant retention in two experiments, both tasks were
kept to a relatively limited duration of 6 to 8 min each while ensuring a good number of trials.
In particular, six blocks per condition were used to ensure that, in the case of performance- or
attention-based block exclusion, the chances of ending up with at least three blocks per condition
were high (note: a threshold of a minimum of three blocks for participants’ inclusion is often used
in fNIRS developmental research58).

Fig. 10 Summary of methodological considerations for robust children neuroimaging experiments.
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Second, to maximize the signal-to-noise ratio of the data, we chose block-designed tasks
rather than an event-related design as the latter requires a larger number of events and usually
elicits lower contrast hemodynamic responses above the noise level.59 Along these lines, block
designs typically include repeated rest periods to allow the slow hemodynamic response to go
back to baseline; however, it has been suggested that it is not fully appropriate to contrast the task
to the rest blocks as it is unknown what the participant is really doing during that rest time, and
hence it might not be a realistic baseline. It is instead recommended to use low-level control
conditions for experimental contrasts.59,60 Therefore, our task was designed such that mixed
blocks were contrasted to the lower-level go-only blocks. Short rest periods were added in
between to avoid the overlap of the various hemodynamic responses but were not used for
comparing conditions.

Finally, to help minimize the impact of physiological interferences especially in the VR task,
we avoided 10-s-long blocks,9 and the conditions (go-only and mixed) were planned in a way to
have the same level of physical activity. In this way, when contrasting the mixed blocks versus
go-only, some of the confounding effects may cancel out.60 In the VR task, both conditions
required the participants to stand and to move the arm in the same way; in the CB task, a button
press was always needed.

5.2 Methodological Considerations for Data Collection
To take into account task-evoked extracerebral changes, we suggest adding short separation
channels to the fNIRS array, even if the experiment is performed while sitting. We recommend
including at least one SSC although it has been previously demonstrated that scalp interference is
not homogenous and, based on hardware availability, a larger number of SSC scattered around
the head is advised.61

To account for between-subjects variability in the location of the channels, the co-registra-
tion of the fNIRS array onto a common brain template is typically recommended, in addition to
ensuring a reliable cap placement using anatomical landmarks as a reference. 3D magnetic digi-
tizers are generally used in fNIRS (and EEG) studies to gather the 3D coordinates of the optodes
and landmarks. However, these require the participant to stay still for several minutes and are also
susceptible to electromagnetic interference from the environment.60 Therefore, it may not be
feasible to have children stay still for long periods of time. To overcome this barrier, here,
we used a photogrammetry-based method (STORM-Net35 but others are available62–64) that
is compatible with children’s movements and does not require extra hardware except a smart-
phone camera.

5.3 Methodological Considerations for Data Analysis
In terms of the preprocessing of fNIRS data, as demonstrated by previous studies, we recommend
including motion artifact correction rather than trial rejection in the preprocessing pipeline;65–68

this ensures that a larger number of trials can be retained, which is particularly important when
working with developmental populations in which the number of good quality blocks might be
limited. Following the procedure described in Ref. 8, we recommend choosing a filter that is
appropriate for the timings of the task and, when possible, using a narrower low pass filter with
a cutoff frequency close to 0.1 Hz (the Mayer waves fundamental frequency) to help attenuate its
impact. Here, for example, we used a Butterworth band-pass filter within the range [0.01 0.1] Hz.
To improve the localization of functional brain activity by minimizing the effect of systemic
interferences, the regression of short separation channels from the long separation channels
seems to be an important step also in young children, and hence, we advise incorporating it
within the analysis pipeline. When allowed by the fNIRS instrumentation, the source–detector
separation for short channels should also be <1 cm to minimize sensitivity to the brain. Finally, to
further improve the robustness of the inferences about the task-evoked hemodynamic activity, it
is important to know the underlying anatomical location of the fNIRS channel. This allows for
the grouping of anatomically and functionally homogenous regions in the group-level analysis
and can be achieved by co-registering the 3D coordinates of the optodes/channels onto a common
brain template. Although co-registering the channels onto the subject-specific structural MRI
can better capture the individual variation in cortical anatomy,57 these are rarely available,
especially for children; therefore, we recommend using an averaged age-matched template
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that can be found available on open access repositories. For example, here, we have used the
Neurodevelopmental MRI Database of the University of South Carolina.32
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