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ABSTRACT. Significance: The increasing sample sizes and channel densities in functional
near-infrared spectroscopy (fNIRS) necessitate precise and scalable identification
of signals that do not permit reliable analysis to exclude them. Despite the relevance
of detecting these “bad channels,” little is known about the behavior of fNIRS detec-
tion methods, and the potential of unsupervised and semi-supervised machine
learning remains unexplored.

Aim: We developed three novel machine learning-based detectors, unsupervised,
semi-supervised, and hybrid NiReject, and compared them with existing
approaches.

Approach: We conducted a systematic literature search and demonstrated the in-
fluence of bad channel detection. Based on 29,924 signals from two independently
rated datasets and a simulated scenario space of diverse phenomena, we evaluated
the NiReject models, six of the most established detection methods in fNIRS, and 11
prominent methods from other domains.

Results: Although the results indicated that a lack of proper detection can strongly
bias findings, detection methods were reported in only 32% of the included studies.
Semi-supervised models, specifically semi-supervised NiReject, outperformed both
established thresholding-based and unsupervised detectors. Hybrid NiReject, utiliz-
ing a human feedback loop, addressed the practical challenges of semi-supervised
methods while maintaining precise detection and low rating effort.

Conclusions: This work contributes toward more automated and reliable fNIRS
signal quality control by comprehensively evaluating existing and introducing novel
machine learning-based techniques and outlining practical considerations for bad
channel detection.
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1 Introduction
Functional near-infrared spectroscopy (fNIRS) is an emerging, noninvasive, optical neuroimag-
ing technique that draws from the advantage of being applicable in a wide range of daily life
settings, across different clinical and non-clinical populations, as well as different age groups.
However, a primary challenge of using fNIRS is that the measured light intensity from source-
detector pairs, termed channels, can be strongly affected by various noise sources, complicating
the reliable analysis of neural activity.1,2

In fNIRS, noise typically originates from physiological, technical, or mechanical causes,
including participant movement. A broad range of processing techniques tailored to attenuate
noise has been developed.3–7 For example, filtering techniques aim to attenuate frequencies
related to physiological noise and noise resulting from the optical measurement system.4

Short-separation regression aims to separate the cerebral hemodynamic response from con-
founding factors such as systemic physiological noise using specific source-detector pairs with
short distances8,9 and multimodal approaches that utilize hardware such as acceleration sensors to
correct for motion artifacts.10,11 Moreover, machine learning-based denoising has been proposed
to learn representations that distinguish noise and the hemodynamic response within a signal.12,13

However, not all signals can be improved in their quality. Particularly technical and mechanical
sources of noise can pose challenging phenomena in fNIRS signals. For instance, mechanical
forces that cause a loss or reduction of contact between the optode and skull across a longer
period of time can degrade an entire recording. In such cases, when signal quality is substantially
diminished over long sequences or entire signals, reliable signal processing becomes very chal-
lenging or impossible. These channels that do not allow for reliable decomposition of brain and
noise-related signal components are called “noisy channels” or “bad channels.”14 Although the
effects of bad channels on subsequent analyses have, to the best of our knowledge, not been
systematically explored yet, it is generally assumed that they can introduce a bias in the sub-
sequent analysis, leading to potentially wrong scientific conclusions. Consequently, one of the
first and crucial steps in fNIRS analysis is a quality control aimed at identifying and rejecting (or
“pruning”) bad channels to avoid corruption of downstream analysis (see also Ref. 15).

Currently, one of the most prevailing approaches to identifying and excluding bad channels
is based on manual expert assessment through an ex-post visual inspection of signal character-
istics (“visual inspection,” e.g., Refs. 15 and 16). However, depending on the experience of
expert raters, their given instructions, and their individual perception of signal quality, ratings
may vary.17 Today, with an increasing number of optodes per device and growing sample sizes,
this subjective approach has rendered it a costly and no longer practicable task. Hence, there is a
pressing need in the field of fNIRS to develop practicable and precise methods for detecting bad
channels in a more automated manner. To date, there has been very limited work on automatic
bad channel detection for fNIRS, primarily focusing on thresholding-based approaches
(reviewed in Sec. 1.1). Only a few studies have explored supervised machine learning-based
detectors (reviewed in Sec. 1.2). In the following, we discuss their advantages and challenges
and outline the potential of machine learning-based bad channel detection for fNIRS.

1.1 Established Approaches to Bad Channel Detection
The limitations of visual inspection have motivated attempts to base fNIRS bad channel detection
on more automated, objective criteria.18 These methods are designed to detect bad channels using
statistics particularly tailored to the properties of fNIRS signals (see Sec. 2.4.1). By manually
specifying a fixed threshold for a single or multiple statistical metrics, a simple profile is created
to differentiate between acceptable and aberrant data, such as the coefficient of variation (CoV).19

fNIRS typically measures light intensity changes at two wavelengths corresponding to changes
in the concentration of oxyhemoglobin (HbO) and deoxyhemoglobin (HbR), thus some detection
methods, such as the scalp coupling index (SCI)20, assess the coupling of these signals between
wavelengths. Other metrics are based on the similarity of the signals across different brain
regions or subjects,21 or they assess each signal independently of the others, e.g., Refs. 22–
24. However, most metrics primarily capture a single or a few characteristics of the expected
signal, so one metric may not be sufficient to accommodate the various causes of bad channels
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(see Sec. 3.3). A few studies combined distinct metrics, such as the CoV and signal power, to
address this issue (e.g., Ref. 25). Similarly, the authors of Ref. 23 proposed the “placing headgear
optodes efficiently before experimentation” algorithm (Phoebe),23 which combines the SCI and
peak power. Other studies have extended this concept by combining metrics and expert ratings in
a rule-based workflow.26–28 Similarly, Ref. 29 derived the signal quality index (SQI), a rule-based
index based on thresholds calculated from previously rated data. However, all of these traditional
approaches bear constraints. In addition to meaningful upper or lower boundaries, the specific
choice of a fixed threshold remains arbitrary, depends on personal judgment, and may need to be
adapted to experimental settings. A step forward was made by an fNIRS reporting tool,30 which
visualizes the SCI and peak power23 across varying thresholds to increase researchers’ sensitivity
to the results produced by the favored threshold. To optimize the threshold for the dataset at hand,
the authors of Ref. 14 formulated an optimization problem that minimizes the loss between the
threshold-based metric and the expert rating. However, a challenge that pertains to thresholding is
often the high variance of detection performance and the high number of false positives, which
limits its practicability.31,32

1.2 Potential of Machine Learning for Bad Channel Detection
Remarkable improvements in machine learning and increasing datasets have made these tech-
niques an essential instrument for detecting aberrant data in medical imaging and beyond.33–35

These methods avoid manual thresholds and are more adaptive by capturing more complex pat-
terns of the data than traditional rule-based approaches, leading to outstanding detection perfor-
mances across various domains. To achieve this, machine learning-based detection methods aim
to learn in an unsupervised (no manual rated data needed), semi-supervised (partly rated data
needed), or supervised (high amount of rated data needed) fashion an effective representation
separating acceptable and aberrant data.36–38 Thus, a key difference between machine learning-
based detectors stems from the amount of “ground truth” data required, typically derived from
manual expert ratings of the signals.

Unsupervised machine learning-based detectors such as isolation forest (IFOREST)39 are the
predominant type of algorithms that have been developed in the machine learning community,
and they have been tested for a variety of applications such as disease diagnosis, speech rec-
ognition, object recognition in imaging, or financial fraud detection but so far not in fNIRS bad
channel detection.35,36 These detectors can be applied without any rating information, as is the
case for thresholding-based approaches. Although unsupervised detection clearly benefits from
low human effort, their performance is strongly determined by the extent to which their repre-
sentation exploits the data characteristics that truly separate signals of acceptable quality and
aberrant signals. This makes these detection methods fairly flexible in their application but may
leave performance reserves that could be leveraged from expert raters’ experience.

Semi-supervised machine learning-based detectors utilize information from partially labeled
datasets while maintaining the ability to detect unseen notions of signal anomalies, i.e., unrated
bad channel variations.36 These detectors often enrich the partially labeled input data with rep-
resentations or scores learned from unsupervised methods. For example, extreme gradient boost-
ing outlier detection (XGBOD)40 ensembles the scores of unsupervised detectors, such as
IFOREST, and feature encoding with autoencoders for weakly supervised anomaly detection
(FEAWAD),41 builds on the latent representation from autoencoders. By this, semi-supervised
detectors stem from the experience of expert raters to enhance the learned representations while
being sensitive to various notions of bad channels that are not being rated. As for unsupervised
ML-based detectors, the application of semi-supervised detectors remains an uncharted field
in fNIRS.

Supervised machine learning-based detectors are trained on a training set to predict a class
on an unseen test set, thus depending on a substantial proportion of labeled data. Importantly, this
approach necessitates the presence of all notions of bad channels in the training data. During the
past few years, two studies pioneered supervised machine learning approaches for fNIRS bad
channel detection. Reference 42 performed the first bad channel detection using a machine
learning-based classifier on an internally rated dataset (N ¼ 15). The authors trained a support
vector machine (SVM)43 based on the SQI and compared its classification performance with that
of SQI thresholding and a combined thresholding approach termed “placing headgear optodes
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efficiently before experimentation” (Phoebe),23 achieving superior performance. Reference 31
compared thresholding-based detection, using SCI, peak power (Sec. 2.4.1), and a version of
the CoV, with an SVM, random forest, and a convolutional neural network using data of N ¼
65 subjects. Both studies relied on a single, internally assessed dataset. Overall, the studies indi-
cated potential performance benefits of machine learning-based detectors compared with estab-
lished thresholding-based detection. However, because supervised methods require a large
amount of rated data, they are rarely applied in other domains (see Refs. 34 and 35). For instance,
the training of the supervised machine learning models depended on manually assessing 75% of
all data.31 Such an extensive rating procedure imposes significant demands on human effort,
making this approach expensive, strongly dependent on the decision of manual raters, and less
scalable.

1.3 Challenges in the Adaptation and Development of fNIRS Bad Channel
Detectors

Despite their potential for fNIRS, there are several challenges and limitations of machine-
learning-based detectors to consider. Semi-supervised or unsupervised machine learning meth-
ods are arguably of greater practical relevance compared with supervised methods due to less
required rating effort.35,44 However, most unsupervised, semi-supervised, and supervised
machine learning approaches from other domains do not, or only to a limited degree, allow for
the inclusion of prior knowledge, such as physically meaningful upper and lower boundaries, or
do not consider that some detected channels may be of unexpectedly good rather than bad qual-
ity. Furthermore, practitioners require discrete and interpretable detection scores to make
informed decisions, a demand unmet by current supervised detectors for fNIRS bad channel
detection (see Refs. 17, 31, and 45). Although semi-supervised detectors appear attractive as
a compromise between supervised and unsupervised methods, practical challenges of deciding
how many and which signals to rate remain. Thus, a system that efficiently suggests a subset of
signals for human feedback to subsequently perform semi-supervised detection, which is referred
to as a “hybrid model,” is needed.

In addition to such application-driven challenges, the systematic comparison and methodo-
logical development of detection methods are challenged by the fact that the ground truth of bad
channels is inherently unknown in real-world datasets. First attempts to assess a range of selected
thresholding approaches and supervised detection for fNIRS bad channel detection are based
solely on single in-house rated datasets serving as a ground truth, but a systematic evaluation
of bad channel detectors across independently rated datasets is lacking (Sec. 1.2). Apart from
expert ratings, synthetic generation mechanisms for bad channels may supplement real-world
data with an objective assessment that enables more fine-grained insights into the detection per-
formance under controlled conditions of various dataset characteristics, such as varying contami-
nation and different bad channel phenomena.

1.4 Interpretable Machine Learning Detector and Framework for Systematic
Bad Channel Detection in fNIRS

To fill these gaps, we developed NiReject, an interpretable machine learning method that detects
bad channels a posteriori based on tail probabilities of multivariate cumulative distribution func-
tions. The detector differs from existing approaches in its ability to account for prior information
on meaningful feature distributions, provide interpretable and discrete detection scores, and be
suitable for unsupervised and semi-supervised learning. We systematically assessed the perfor-
mance of NiReject by comparing it with six of the most established thresholding-based detectors
in fNIRS, five prominent distance- and density-based detectors, four unsupervised machine
learning, and two semi-supervised machine learning detectors. We evaluated their performance
first, using two independently rated, openly available fNIRS datasets and second, using simu-
lated fNIRS signals with major bad channel phenomena. We evaluated the detectors’ robustness
and stability under varying contamination rates, annotation errors of experts, and available rat-
ings. Finally, we developed and evaluated a hybrid method for NiReject that includes an unsu-
pervised step to identify specific channels for human feedback, followed by a semi-supervised
training phase. To summarize, we aimed to investigate the performance, cost-efficiency, and
practicability of different detection methods in the following questions:
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Q1: How do established, unsupervised, and semi-supervised methods for bad channel detection
perform across real-world datasets?

Q2: How do detection methods behave under different bad channel phenomena?
Q3: How do dataset characteristics, specifically contamination rate, rating effort, and rating

errors, affect the detectors’ performances?
Q4: Can a hybrid detection method that integrates a human feedback loop overcome the prac-

tical challenges of semi-supervised detection?

2 Methods and Experiments

2.1 Formal Task Definition
Conceptually, bad channel detection aims to assign each channel a value indicating whether a
particular channel should be considered for further analysis or rejected.

Thus, given a set of n spatio-temporal signals denoted by X ¼ fX 1; : : : ;Xng, the main
objective of a bad channel detector D is to generate a detection score S :¼ DðXÞ ∈ Rn, where
higher si indicates that the signal i is more likely to be a bad channel than a lower score.
Depending on the specific detection method, the detection score can either be continuous si ∈
½0; 1� or it can map X to a binary score with si ∈ f0; 1g, i.e., as in threshold-based approaches.46

Let Y ∈ Rn denote a binary vector of n labels, where yi ∈ f0; 1g indicates either an acceptable
(yi ¼ 0) or a bad channel (yi ¼ 1), and the detection performance ofD is assessed by comparing
the detection scores Stest from a test set X test ∈ Rm against the corresponding label-signal
pairs fX; Yg.

2.2 Datasets

2.2.1 Real-world datasets

Detection performance was evaluated based on two publicly available fNIRS datasets (R2226

and N2147) that contain an expert rating. R22 consists of Nsignals ¼ 5984 signals per wavelength
(λ1 ¼ 690 nm, λ2 ¼ 850 nm) measured over k ¼ 22 prefrontal channels. Raw intensity mea-
sures were obtained from 34 children (M ¼ 14.26� 2.206 years) and 68 adults
(M ¼ 33.22� 11.80 years) in two tasks with two runs per child and one run per adult, each
with a sampling rate of 10 Hz using a continuous-wave fNIRS device (ETG-4000,
Hitachi Medical Corporation, Japan). N21 consists of Nsignals ¼ 640 signals per wavelength
(λ1 ¼ 760 nm, λ2 ¼ 850 nm) measured over k ¼ 16 prefrontal and temporo-parietal channels.
The dataset includes 20 children (M ¼ 5.4� 0.125 years) and 20 adults (M ¼ 37.2� 3.51

years), recorded with a sampling rate of 7.81 Hz using a different continuous-wave system
(NIRSport, NIRx GmbH, Berlin, Germany). Records of both datasets include sequences of
task-related data (subject performs a task) and resting data (subject is relaxing). R22 and
N21 were independently rated by different research groups. N21 additionally used the average
signal level during the rating procedure (see Sec. S1.1 in the Supplementary Material). The
expert ratings Y code acceptable channels (y ¼ 0) and bad channels (y ¼ 1). The datasets vary
in their ratio between acceptable and bad channels (cR22 ¼ 4.22%, cN21 ¼ 9.38%). The contami-
nation per age group and dataset is depicted in Sec. S4.1 in the Supplementary Material. Notably,
signals consisting only of missing values or only of zero amplitude were excluded from the
datasets as their detection remains trivial.

2.2.2 Synthetic datasets

We generated 14 synthetic datasets (S1 to S14 in the Supplementary Material). S1 to S13
focused on one of five bad channel phenomena each: atypical physiological oscillations across
chromophores, temporal signal loss, and uni- and bidirectional shifts as well as spikes (see
Sec. 4.3), with varying intensity rates. S1 to S13 consist of Nsignals ¼ 1600 signals per wave-
length with a sampling rate of 10 Hz fromNsubjects ¼ 100 subjects using a common probe design
provided by the Brain AnalyzIR Toolbox (16 frontal channels, λ1 ¼ 690 nm, λ2 ¼ 830 nm; see
Ref. 48). In S14, we randomly composed each bad channel of multiple different bad channel
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phenomena instead of a single phenomenon and added nine additional short-distance channels
(Nsignals ¼ 2500). All 14 synthetic datasets consist of three rest and two task blocks with 20
stimuli each (as in real-world dataset R22, see Ref. 26). Further, each simulated dataset com-
prises 90% acceptable (y ¼ 0) and 10% bad channels (y ¼ 1), resulting in a contamination rate
of csynthetic ¼ 10%. The data generation mechanism will be described in the following subsec-
tion. An overview of the characteristics of the two real-world and 14 synthetic datasets is pro-
vided in Table 1.

2.3 Simulation of Acceptable fNIRS Signals and Bad Channel Phenomena
To gain insights into the performance variability of detection methods, we simulated fNIRS
signals composed of biophysiological oscillations, hemodynamic response, typical noise,
and, in the case of bad channels, bad channel phenomena (see Fig. 1). These simulations
are based on the functions of Refs. 48 and 49, with an adjusted generation mechanism
described below.

2.3.1 Signals of acceptable quality

For each subject, white noise was added as in the original implementation. The noise
was spatially (σ ¼ 0.33)48 as well as temporally correlated using an autoregressive model
(p ¼ 10), which falls between less (p ¼ 5)50 and more noisy settings (p ¼ 30).1 Further,
physiological oscillations were added: heart-rate [f ∈ N ∼ ð1.2 Hz; 0.2 HzÞ], respiration
[f ∈ N ∼ ð0.25 Hz; 0.05 HzÞ], and Mayer waves [f ∈ N ∼ ð0.1 Hz; 0.02 HzÞ] with randomized
phase [Δφ ∈ N ∼ ð0.4; 1Þ] (see also Refs. 49 and 51). Each signal was convolved with a canoni-
cal hemodynamic response function (as described in Ref. 48), encoding neural activation similar
to the experimental design used in R22.26 Thus, the resulting signals of acceptable quality contain

Table 1 Datasets.

Dataset Type Nsignals c Characteristic Experiment

R22 Real world 5984 4.22% — Q1, Q3

N21 Real world 640 9.38% — Q1

S1 Synthetic 1600 10% Spikes, 6n∕min Q2

S2 Synthetic 1600 10% Spikes, 36n∕min Q2

S3 Synthetic 1600 10% Spikes, 60n∕min Q2

S4 Synthetic 1600 10% Unidirectional shifts, 12n∕min Q2

S5 Synthetic 1600 10% Unidirectional shifts, 24n∕min Q2

S6 Synthetic 1600 10% Unidirectional shifts, 36n∕min Q2

S7 Synthetic 1600 10% Bidirectional shifts, 12n∕min Q2

S8 Synthetic 1600 10% Bidirectional shifts, 24n∕n Q2

S9 Synthetic 1600 10% Bidirectional shifts, 36n∕min Q2

S10 Synthetic 1600 10% Signal loss, 10n∕min Q2

S11 Synthetic 1600 10% Signal loss, 50n∕min Q2

S12 Synthetic 1600 10% Signal loss, 100n∕min Q2

S13 Synthetic 1600 10% Atypical physiological Q2

S14 Synthetic 2500 10% Heterogeneous mixed,
bad channel phenomena

Q4, preliminary

Nsignals, number of signals in the dataset; c, contamination rate; n/min, number per minute.
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typical noise compositions that can be addressed by artifact correction techniques and do not
require a rejection of the entire signal.

For a predefined proportion of signals (csynthetic ¼ 10%), the signal generation additionally
modeled the following bad channel phenomena (s.t. y ¼ 1). All scenario parameters are provided
in the artifact storage (see Sec. Code, Data, and Material).

2.3.2 Atypical physiological oscillations across chromophores
(dataset S13-S14)

Coupling mechanisms of the biophysiological systems, specifically the heart and brain, cause
cardiac-related oscillations across signals of both wavelengths ðΔφphysio ¼ −0.5Þ. Hence, an
ideal detection method should be sensitive to signals with anomalous characteristics in
cardiac-related frequencies. To test for this phenomenon, we varied the coupling between the
physiological oscillation of the fNIRS signals of both wavelengths (Δφphysio ¼ −0.7).

2.3.3 Temporal signal losses (dataset S10-S12, S14)

Various mechanical sources, such as vibrations or mechanical forces pulling the fNIRS cap, can
result in a displacement of the optodes, causing a change or total loss of optical coupling. Longer
signal losses cannot or can hardly be interpolated in a reliable manner. Here, we parametrized
signal loss with 0 Vamplitude by varying their duration (μ ¼ f1 s; 5 s; 10 sg, sd ¼ 0.2 s). Signal
losses were jittered temporally across channels.

Fig. 1 Bad channel phenomena in fNIRS: Four simulated bad channel phenomena are illustrated.
(a) Spikes, (b) shifts, and (c) signal loss are represented using line plots. (d) The atypical coupling
between wavelengths is visualized in the time-frequency space using wavelet coherence. Atypical
coupling exhibits low coherence in cardiac-related frequencies.
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2.3.4 Shifts (datasets S4-S9, S14)

In addition to signal loss, mechanical sources can also induce changes in optical coupling, lead-
ing to signal shifts. These shifts manifest as positive or negative amplitude changes. Although a
few short signal shifts or single trends can usually be corrected using preprocessing techniques, a
higher number of such shifts may distort the signal irreversibly. Shifts were simulated as instan-
taneous changes in the signal level that persist from the point of occurrence onward (see Ref. 49).
Shifts were parametrized with an amplitude distribution N ∼ ð4; 2Þ49 and were varied in their
occurrence ðr ¼ f12 n∕min; 24 n∕min; 36 n∕ming). Further, instantaneous changes were mod-
eled either bi-directionally, which included both increased and decreased amplitudes within one
signal, or unidirectionally, which included only increases or decreases in amplitude. All shifts
were jittered temporally and in their amplitude across channels.

2.3.5 Spikes (dataset S1-S13, S14)

Another phenomenon of mechanical causes is a sudden high-amplitude transient peak, also
termed a spike. These mostly spatially nonuniform distributed anomalies can often be corrected
during signal processing or in statistical downstream analysis.1 However, with an increasing
number of spikes and varying durations, the assumptions for reliable downstream models may
be violated, even after preprocessing. The amplitude of such spikes was parametrized with
N ∼ ð7; 2Þ49 and duration N ∼ ð0.2 s; 0.1 sÞ given a sampling frequency of 10 Hz. Further, spikes
were varied in their occurrence ðr ¼ f6 n∕min; 36 n∕min; 60 n∕ming) and jittered temporally
and in their amplitude across channels.

2.4 Detection Methods

2.4.1 Established detection methods in fNIRS

The most established detection methods in fNIRS typically employ a fixed threshold based on a
metric derived from either raw light intensity or its derivatives, including raw attenuation/optical
density, HbO, and HbR. The established thresholds that we used can be found in Table S4 in the
Supplementary Material and in the artifact storage. A comprehensive overview, including other
less frequently applied detectors, can be found in Sec. S1.1 in Supplementary Material.

Coefficient of variation (CoV). The CoV19 is a widely applied, scale-invariant metric,25,52

which is calculated as the ratio between standard deviation and mean amplitude. Hence, an
increasing CoV indicates a decreasing signal quality. A threshold is usually applied to the
CoVs of both wavelengths and to their difference (e.g., Refs. 25 and 27). By this, the metric
captures unexpected variability within the photo-detected signals and between both wavelengths.
It is typically calculated based on the raw light intensity, independently for each channel and
subject.53 In this study, the CoV was calculated independently for each channel based on raw
intensity. Utilized in toolbox: LIONirs53 and nirsLAB. 54

Signal-to-noise-ratio (SNR). The SNR22 has an inverse relationship with the CoV; thus, a
lower SNR indicates decreasing signal quality (SNR ∼ 1∕CoV). It is often calculated by dividing
the standard deviation of signals by their mean22 or median.48 Although the CoVand SNR might
be used interchangeably, implementations based on the SNR often capture only the unexpected
variability within photo-detected signals but not between signals of different wavelengths. Here,
we used the mean of raw light intensity. Utilized in toolbox: Homer2&322 and NIRS brain
AnalyzIR toolbox.48

Scalp coupling index (SCI). The SCI20 is defined as the zero-lag cross-correlation
between both wavelengths of the optical density in cardiac-related frequencies, whereby higher
values indicate better coupling. This is based on the assumption that synchronous cardiac pul-
sation of photo-detected signals is known to indicate good contact between optodes and
scalp.55,56 The SCI can be derived either directly from the entire signals or from the median
of windowed signals, which is less affected by the signal length. Therefore, we employed the
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latter implementation in this study. Utilized in toolbox: MNE-NIRS,57 NIRS brain AnalyzIR
toolbox, Phoebe, and QT-NIRS.30

Peak power. Peak power,23 also termed the “peak spectral power,” judges bad channels
based on the spectral power of the cross-correlated attenuation. Cardiac signals can be modeled
with two sinusoidal waves, so the peak power mainly addresses spikes or baseline shifts that
occur concurrently in both wavelengths in a predefined cardiac-related frequency spectrum.
Again, we calculated the peak power based on the median of the windowed signals. Utilized
in toolbox: MNE-NIRS, NIRS brain AnalyzIR toolbox, Phoebe, and QT-NIRS.

Placing headgear optodes efficiently before experimentation (Phoebe). Placing
headgear optodes efficiently before experimentation (Phoebe)23 is the name of a bad channel
criterion composed of SCI and peak power. It detects a bad channel if either the SCI or peak
power criterion is fulfilled. Thereby, it aims to prevent bias from unreasonably high SCI values,
which can result from motion artifacts leading to synchronous peaks across wavelengths, utilized
in the toolbox: Phoebe, NIRS brain AnalyzIR toolbox, and QT-NIRS.

Signal level, also termed the “average signal level” is a quality metric calculated from the
mean amplitude of raw light intensity or from HbO/HbR concentration changes. This thresh-
olding-based detection method rejects signals of low,53 high, or both low and high
intensity.22 Thereby, it assumes that low intensity, e.g., from insufficient light penetration or scat-
tering, and high light intensity, e.g., from ambient light sources, can affect fNIRS analysis. Here,
we applied thresholds for both low and high concentration changes. Utilized in toolbox:
Homer2&3, LIONirs,53 and NIRS brain AnalyzIR toolbox.

2.4.2 Domain agnostic detection methods

Considering the progress in detection methods originating from other research areas, we incor-
porated the following prominent domain-agnostic detectors into the assessment of bad channel
detection methods.

Distance- and density-based detectors (D&D). D&D have a long-standing tradition
as an effective detection technique. These detectors quantify the proximity of samples (here,
channels) in an unsupervised manner based on the distance or density of neighboring
samples.38,58 D&D are widely employed across research fields and are often considered precur-
sors to machine learning-based detectors, thus rendering them a natural competitor. Specifically,
we included the following prominent D&D: angle-based outlier detection59, k-nearest neigh-
bors,60 local outlier factor,61 histogram-based outlier detection (HBOS),62 and minimum covari-
ance determinant.63 For further methodological details and practical examples, see Refs. 38
and 58.

Unsupervised machine learning-based detectors. In the class of unsupervised
machine learning-based detectors, we included the following representative algorithms: principal
component analysis,64 cluster-based local outlier detection,65 one-class support vector machine,66

and IFOREST.39 Detailed descriptions of these algorithms can be found in Refs. 34, 38, and 67.

Semi-supervised machine learning-based detectors. Included prominent state-of-
the-art detectors of this type are XGBOD40 and FEAWAD.41 More details can be found
in Ref. 36.

2.5 Proposed Detectors: Unsupervised, Semi-Supervised, and Hybrid NiReject

2.5.1 Unsupervised NiReject

Unsupervised NiReject follows a probabilistic approach by utilizing an empirical copula on
given signal features to generate multivariate signatures of each neural signal without requir-
ing any labels/ratings. Using these signatures, we can quantify the extent to which a signal
deviates from the general distribution of signal characteristics. This methodology builds on
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previous work that stems from the idea that patterns characterizing aberrant data tend to
appear in lower-density regions of a representation.68,69 The copula’s tail probability describes
these lower-density regions. In other words, unsupervised NiReject assumes that patterns
characterizing bad channels stand out because they occur less frequently. The detector uses
informative priors to restrict the detection to relevant tails and subsequently discretize the
detection probabilities by the alignment between augmented and original detection scores.
In the following, we present step-by-step a more formal description of the detection method.
Each step is illustrated schematically in Fig. 2(a).

Step I: Estimation of tail probabilities. Let the input feature space Z ∈ Rnxd denote a set of d
features and n samples derived from the original signals X. We define the priors P ∈ Rd with
p ∈ f−1;0; 1g as input parameters of the detector D. According to Refs. 68 and 69, we

denote the j’th entry of the vector Zi ∈ Rn as ZðjÞ
i and the univariate cumulative distribution

function of a given feature j as FðjÞ∶R → ½0;1�. Following the approach of Refs. 68 and 69,
the proposed detector estimates the tails of F as described in Ref. 68:

Fig. 2 Illustration of the developed NiReject methods: For (a) unsupervised, (b) semi-supervised,
and (c) hybrid NiReject, a schematic illustration of each algorithmic step is depicted. (d) The exam-
ple of unsupervised NiReject’s quality indicators visualizes how NiReject provides insights into
detection certainty and the characteristics on which the detector based its decision for a specific
signal. The loading per characteristic can range between minus and plus one. Positive values
indicate bad channel phenomena, and negative values close to minus one indicate a perfect
behavior for a given characteristic.
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EQ-TARGET;temp:intralink-;e001;117;736F̂
ðjÞ
leftðzÞ ¼

1

n

Xn
i¼1

1fZðjÞ
i ≤ zg; (1)

EQ-TARGET;temp:intralink-;e002;117;689F̂ðjÞ
rightðzÞ ¼

1

n

Xn
i¼1

1fZðdÞ
i > zg with z ∈ R: (2)

The resulting left- and right-tail probabilities, F̂leftðZiÞ and F̂rightðZiÞ, can be derived

from the factorization of F̂ðdÞ
leftðZðdÞ

i Þ and F̂ðdÞ
rightðZðdÞ

i Þ over the d’th dimension of Z, respec-
tively, (see Sec. S2 in Supplementary Material). Often, it cannot be expected, or we have no
prior knowledge, that a feature d tends to lie only in the left or right tail if it is associated with
a bad channel. Therefore, in the work of Refs. 68 and 69, the coefficient of skewness is used
to calculate the skewness-corrected tail probability WðZiÞ.

Step II: Calculation of quality signatures from confined tail probabilities. The maximum across
these three-tail probabilities (WðZiÞ, F̂leftðZiÞ, and F̂rightðZiÞ) served as the detection scores
in previous work.68,69 However, not all extreme values in low-density regions may be mean-
ingful. To prevent the erroneous detection of exceptionally good signals, NiReject extends
previous approaches68,69 by confining the detection to a specific tail when prior knowledge is
available. Specifically, the detector considers the informative priors P ∈ Rd as input param-
eters, and p ∈ f−1;0; 1g describes the selection of left ðp ¼ −1Þ, right ðp ¼ 1Þ, or auto-
matically estimated ðp ¼ 0Þ probability. For p ¼ 0, the feature- and sample-specific scores
are determined by the detector as

EQ-TARGET;temp:intralink-;e003;117;463VðjÞðZðjÞ
i Þ ¼ maxð− logðF̂ðjÞ

leftðZðjÞ
i ÞÞ;− logðF̂ðjÞ

rightðZðjÞ
i ÞÞ;WðjÞðZðjÞ

i ÞÞ: (3)

From this, the feature-specific quality signatures H ∈ Rnxd can be generated and sub-
sequently aggregated to obtain the signal-specific signatures O ∈ Rn that characterize a bad
channel as
EQ-TARGET;temp:intralink-;e004;117;386

HðjÞðZðjÞ
i Þ ¼ −1fpd < 0g logðF̂ðjÞ

leftðZðjÞ
i ÞÞ − 1fpj ≥ 0g logðF̂ðjÞ

rightðZðjÞ
i ÞÞ

þ 1fpj ¼ 0gVðjÞðZðjÞ
i Þ; (4)

EQ-TARGET;temp:intralink-;e005;117;327OðZÞ ¼ T

�Xd
j¼1

HðjÞðZðjÞ
i Þ

�
: (5)

From Eq. (4), the detector provides interpretable insights for each signal i, delineating
the extent to which the j’th feature contributes toward a bad channel [see Fig. 2(d)]. The
transformation function T, as described in Ref. 70, is used to map H to a unified score
ranging from zero to one. Thereby, O indicates whether i is more likely to be a bad channel.

Step III: Augmented quality signatures. The detector repeats step I to II on the augmented fea-
ture space Z� ∈ Rnxd. This space is created by applying an augmentation function
(A∶R → R) to the original signals. The rationale is that an augmentation technique that
approximately preserves key characteristics of the original data allows for covering an unex-
plored input space while leading to similar detection outcomes (SðZÞ ¼ SðZ�Þ). Because Z
is specifically informed by the signal’s linear structure and amplitude distribution, the ampli-
tude-adjusted Fourier transform71 is employed as an augmentation function in NiReject.

Step IV: Deterministic detection scores. To provide a deterministic output, the percentileQ with
α ∈ ð0; 1Þ is used by the binary score function S; defined as

EQ-TARGET;temp:intralink-;e006;117;133SðOðZiÞ; αÞ ¼ 1fOðZiÞ ≥ QðOðZÞ; 100ð1 − αÞÞÞg: (6)

Because the actual contamination rate c ∈ ½0; 1� and consequently α are unknown in prac-
tice, the detector optionally employs the augmented signatures to determine α. Therefore, the
consistency loss L based on the weighted cross entropy between both models is employed as
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EQ-TARGET;temp:intralink-;e007;114;736L ¼
Xn
i¼1

1

α
SðOðZÞ; αÞOðZ�Þ −

�
1 − SðOðZÞ; αÞ

1 − α

�
� ð1 −OðZ�ÞÞ. (7)

By learning α̂ that minimizes L, the detector derives the consistency-based detection score
SðHðZÞ; α̂Þ with Si ∈ f0;1g.

2.5.2 Semi-supervised NiReject

Semi-supervised NiReject builds upon unsupervised NiReject [see Fig. 2(b)]. This detector is
trained on the entire set of signals X and a subset of labels Yl ⊆ Y. The partially available labels
Yl encode only some bad channels of the total dataset, as described by γ ¼ P

Yl∕
P

Y, and some
acceptable channels.

Step I: Unsupervised representation learning. In the first phase, the quality signatures H are
generated by applying steps I and II from unsupervised NiReject on the entire feature space
Z. Further, the detector enables annotating these with the spatial information (channel index)
C ∈ Nk, leading to a representation ½C;H� ∈ Rnxðdþ 1Þ. By this, the detector produces an
unsupervised representation of the original signals that aims to encode signatures indicative
of bad channels with respect to their location.

Step II: Detection of bad channels. Once the representation is learned, a semi-supervised detec-
tor D trains a decision model on this unsupervised representation along with the partially
available labels Yl, f½C;H�; Ylg. Similar to XGBOD,40 XGBoost72 is used as the default
decision-making backbone of NiReject. This is motivated by the highly imbalanced class
distribution that is typical for detection tasks and makes most classification methods imprac-
tical. Tree boosting algorithms, specifically XGBoost, provide a scalable approach that is
well suited for high dimensional tabular data and imbalanced settings.36,40 The trained detec-
tor outputs S ¼ DðZÞ.

2.5.3 Hybrid NiReject

The hybrid machine learning system integrates an expert feedback loop into the detection
process, as illustrated in Fig. 2(c).

Step I: Unsupervised detection. Initially, the implementation of unsupervised NiReject
computes O and the binary detection scores Sstep I on the entire feature space Z.

Step II: Human feedback loop. In step II, the detector suggests a signal i to a human expert to
retrieve rating information fXi; yig. Therefore, signals are sorted by high, medium, and
lower O and then presented in an alternating order. To prevent a rater from recognizing
this pattern, the sequence of these signals is randomly permuted within each batch
of 12 signals. The detector suggests signals until the ratio of signals rated as bad and
initially detected as bad reaches the predefined value t ∈ R, so that γh ≥ t with
γh ¼

P
h
i yi∕

P
n
i Sstep I;i. Through this mechanism, the detector efficiently acquires a rating

Yl of a fraction of signals to train in step II a decision-making classifier. It should be noted
that the choice of t can be guided by γ obtained in the AUC-PR findings in Sec. 3.4.2,
e.g., t≙30%.

Step III: Semi-supervised detection. In step III, semi-supervised NiReject is trained on Z
alongside the human ratings Yl final detection score.

2.6 Empirical Evaluation

2.6.1 Parameter setting and features

For all detection methods, their default parameters were used and reported in the artifact storage
accompanying this work. Although thresholding-based detectors directly operate on input signal
X, NiReject and domain-agnostic detectors consider a given input feature space Z. To ensure a
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fair comparison, we considered the following well-established signal metrics as input features (Z)
for NiReject and all domain-agnostic detectors.

Sinusoidal signal-to-noise and distortion ratio. Using a Kaiser window, we estimated
the sinusoidal signal-to-noise ratio and harmonic distortion based on the assumption that the
signal carries sinusoidal oscillations. These features are generic quality measures applied across
domains, e.g., Refs. 73 and 74.

Local peak ratio. To capture the signal’s variance within raw attenuation, we considered the
relative number of local peaks. Quadratic interpolation was applied to ensure a complete and
smoother signal with reduced high-frequency noise. Subsequently, local maxima of the signal’s
amplitude were identified. If a sample’s amplitude exceeded that of its neighboring samples, it
was considered a local peak. We used the relative instead of absolute number of local peaks as a
generic measure independent of the signal length.

CoV. The CoV and its difference between both wavelengths were included (Sec. 2.4.1).

Scalp coupling index. Scalp coupling was incorporated via the autocorrelation of the
windowed optical densities (Sec. 2.4.1).

Cardiac-oscillatory modeled peak power and center frequency. In addition to
established metrics, we incorporated the power spectrum of the periodic, cardiac-oscillatory
components in fNIRS signals accounting for the individual cardiac-related frequency. The tradi-
tional peak power metric is based on a narrowband analysis and thereby requires precise pre-
defined frequency bands for cardiac-related frequencies. However, heart-rate varies by task and
subject’s age, making the specification of a narrow frequency band challenging. To overcome
these limitations, we employed FOOOF.75 By this, we extracted the nearest peak power of the
oscillatory component as well as its corresponding center frequency without the need to prede-
fine a narrow frequency band.

2.6.2 Test sets

In line with previous work on detection benchmarks (e.g., Refs. 36, 68, 69, and 76), we employed
a stratified train-test split procedure to evaluate each detector on the test sets. Specifically, the
sampling procedure reserves 60% of each dataset for training and allocates 40% for testing while
preserving the proportion of bad channels to acceptable signals between the train and test data.
This stratification mitigates potential biases resulting from distribution drifts between the train
and test sets. We repeated each evaluation procedure 10 times with varying seeds and shuffled
inputs to account for further sources of potential variance. The train-test set procedure is com-
monly applied in benchmarking detection methods because it allows for consistent assessment
across learning regimes. It should be noted that we had to adjust this procedure to include a
human feedback loop in experiment Q4 (Sec. 2.6.7). For real-world datasets, the manual rating
decisions {0,1} of expert raters served as the “ground truth.” In simulated datasets, the ground
truth is a priori known.

2.6.3 Performance metrics

As each performance metric emphasizes different aspects of a model, we focused on metrics that
are aligned with the experiment-specific research question in the main text.77 As a high number of
false positives would demand manual reassessment, it is of high practical relevance to assess true
bad channels over perceived bad channels. Hence, precision served as the main performance
metric, emphasizing the importance of “being right” when identifying bad channels while penal-
izing for false positive detections. Precision is well suited for discrete detection scores and highly
imbalanced cases as is often the case in bad channel detection. In addition, we reported ROC-
AUC, another widely used metric for similar tasks, which balances the cost of false positives and
false negatives more equitably. However, this measure should be interpreted with caution as it
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can be biased in highly imbalanced settings and is less sensitive to variation in the number of true
bad channels.67 An ROC-AUC above the chance level indicates the general feasibility of a detec-
tion method to separate channels.

Precision and ROC-AUC, two widely applied and complementary performance metrics (see
Ref. 67), served as our main performance measures in all analyses except when varying the rating
information to assess the performance boundaries of the detectors in experiments of Q3 in
Sec. 2.6.6. Here, we assessed whether the precision-recall trade-off, measured by precision-recall
AUC (AUC-PR), reached an asymptotic behavior at a particular critical value; results for ROC-
AUC and precision can be found in the Supplementary Material. Such performance boundaries
may not be properly covered by precision or ROC-AUC, e.g., as it can be expected that precision
increases monotonically when more evaluation information is available, but it is not said that, at
the same time, the proportion of retrieved bad channels increases (Fig. S10 in the Supplementary
Material). The AUC-PR was implemented by calculating the weighted mean between precision
and recall, also termed the average precision score. This formulation is more conservative than
AUC-PR using the trapezoidal rule as it avoids linear interpolation that can be too overoptimistic.
For all other experiments, the AUC-PR is reported in the Supplementary Material.

2.6.4 Experiment Q1: performance on real-world data

Detection performances on the real-world datasets, R22 and N21, were systematically evaluated
based on the expert ratings made available by the public datasets.

For all performance metrics, the mean and standard deviations across 10 trials (sampling
repetitions) were reported in the main tables [Fig. 4(a); all detailed performance metrics are avail-
able in the artifact storage]. Following benchmarking studies that compare methods across data-
sets (e.g., Refs. 36 and 78), results were additionally illustrated in critical difference diagrams79

[Figs. 4(b) and 4(c)]. For this, we utilized a Bayesian signed-rank test that enables the consid-
eration of only performance differences of practical relevance as small differences may be evi-
dent but not necessarily meaningful.80 Specifically, a difference in performance metrics between
two detectors was considered evident if one detector’s metric surpasses that of another by more
than 0.01 (e.g., in precision) with a probability of 90% (credibility interval: CI = 90%, region of
practical equivalence: ROPE ¼ ½−0.01; 0.01�).

2.6.5 Experiment Q2: variations of bad channel phenomena

We assessed how detection methods behave under different bad channel phenomena using syn-
thetic datasets S1 to 13, each focusing on a single bad channel phenomenon with varying inten-
sity (see Table 1). It should be noted that this experiment is less suited for semi-supervised
detectors as they would be trained and tested on a single nuanced bad channel phenomenon,
which is a relatively simple task for this type of learning regime (see results in Sec. S5 in
Supplementary Material).

2.6.6 Experiment Q3: variations of dataset characteristics

Varying contamination rates. To assess the effects of varying contamination rates on the
detectors’ performances, we followed the procedure established in Refs. 36, 81, and 82 and var-
ied the number of bad channels by up- and down-sampling them in a real-world dataset. We used
R22 for all experiments of Q3 as it is larger in size than N21. This allowed us to estimate per-
formance profiles across a broad range of contamination rates (c ¼ f1; : : : ; 50g) on real-world
data including heterogeneous bad channels. This experiment focuses on NiReject and domain-
agnostic detectors as their performances can vary with the contamination rate, whereas the deci-
sion function of thresholding-based detectors is independent of the contamination rate.

Varying available rating information. Detection methods that incorporate rating
information during training, such as semi-supervised detectors, may be sensitive to the ratio
of rated bad channels available during training to all bad channels in the dataset (γ).36

Following the approach of Ref. 36, we varied γ within the range f∼0; : : : ; 60g in the training
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set of the larger real-world dataset R22. Thus, at γ ¼ 60%, the training set would include the
maximum number of rated bad channels possible because the stratified sampling procedure
(Sec. 2.6.2) reserves 60% of the data for training. By examining the AUC-PR curve across differ-
ent γ, this experiment determined the boundaries beyond which the amount of rating information
no longer substantially improves the detection performance of semi-supervised detectors. These
boundaries indicate the rating effort required to exploit the detection capacities of a given semi-
supervised detector and can be used to determine the threshold t of the hybrid detection system
described in Sec. 2.5.3.

Robustness against annotation errors. Because expert judgments are inherently
subjective and raters can make false decisions, this experiment investigated the impact of such
annotation errors on semi-supervised detectors. To this end, we shuffled ratings of acceptable and
bad channels in the larger real-world dataset R22 while maintaining the same contamination rate
(see Refs. 36, 81, and 82). Specifically, we assessed annotation errors within the range
f∼0; : : : ; 60g in the training set. The AUC-PR curve was used to determine the extent to which
annotation errors have no substantial impact on semi-supervised detectors.

2.6.7 Experiment Q4: assessment of the NiReject hybrid-detection system

Because a hybrid machine learning system is only relevant if it increases the performance of its
underlying unsupervised detector, we compared the detection performance of hybrid NiReject
against unsupervised NiReject, mainly using ROC-AUC and precision. Therefore, the experi-
ment employed the simulated dataset S14, which comprises various bad channel phenomena
occurring either individually or together within a signal. The evaluation procedure of
Sec. 2.6.2 was adjusted because the hybrid workflow requires a feedback loop within the evalu-
ation procedure. Based on the empirical results in Sec. 3.4.2, the human feedback loop of hybrid
NiReject (step II) was exercised until t ¼ 30% was reached. To account for performance vari-
ability between raters, we assessed hybrid NiReject twice, each time using the feedback of a
different expert rater.

3 Results

3.1 Preliminary: Current Practices and Impact of Bad Channel Detection on
Subsequent Statistical Analyses

To illustrate the pivotal role of bad channel detection, we first demonstrated its impact on both
individual and group-level effects using two widely applied statistical analysis methods: average
waveform analysis and general linear model (GLM). Furthermore, we provided a comprehensive
overview of the currently used detection approaches in fNIRS, which informed the selection of
detection methods used for the subsequent evaluation.

3.1.1 Impact

The simulated dataset S14, comprised of an inhomogeneous mixture of bad channel phenomena,
was utilized to illustrate the impact of bad channel detection. Both the average waveform analysis
and the GLM analysis were performed on the entire dataset and on a subset of S14 containing no
bad channels, which corresponds to an analysis with and without bad channel detection. The
average waveform analysis of a single subject, as depicted in Fig. 3(a), revealed that the epoched
task data follow the typical shape of a hemodynamic response function of HbO when a perfect
bad channel detection method is applied. By contrast, the average waveform of a subject without
effective bad channel detection is noticeably disturbed. An increased mean-square error (MSE)
between the estimated and ideal hemodynamic response function, obtained from the subject’s
signals without bad channel detection (80.04 � 10−12) compared with the subjects’ signals after
bad channel detection (1.05 � 10−12) confirmed this result. However, one might assume that the
impact of bad channels could be mitigated to some extent at the group level. Therefore, we
employed a GLM to fit an ideal response function to the epoched data for each of the 100 subjects
(see Ref. 83). The contrast between task and rest data on the group level was assessed using a
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linear mixed model for HbO. Results showed significant left lateral effects in frontal cortical
regions when a precise bad channel detection was conducted, but these were not significant
in the same analysis without bad channel detection. Specifically, among 16 long-distance chan-
nels, four no longer showed significance, two exhibited reduced significance, and one showed an
increased p-value when compared with analysis in which no bad channel detection was applied
(see Table S1 in the Supplementary Material). Importantly, the MSE across signals with and

Fig. 3 Bad channels detection in fNIRS: (a) Illustrates the effect of bad channel detection on aver-
age waveform analysis with a single subject (left, line chart) and group effects in GLM analysis of
HbO (right, cortical map) using simulated fNIRS signals of 100 subjects. In all analysis regimes,
state-of-the-art preprocessing techniques were applied. MSE between the fitted and simulated
hemodynamic response is additionally displayed to quantify the impact of bad channel detection
on subsequent analysis. Higher MSE implies lower alignment between ideal and estimated hemo-
dynamic response function. Results with bad channel detection (top) differ from those without bad
channel detection (bottom), as indicated by the MSE. (b) Shows the summary of the structured
literature search on employed detection methods in fNIRS signal quality control. (c) Depicts the
workflow for each class of detection methods and its dependence on required manual expert rat-
ings, increasing from left to right. Each type of bad channel detection results in an exclusion or
inclusion decision of an entire signal before subsequent processing techniques, such as artifact
correction, can be applied.
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without bad channel detection varied by magnitudes. Further methodological details, including
all statistical results, can be found in Sec. S2 in the Supplementary Material.

3.1.2 Current practices

To provide a comprehensive overview of the current state of signal quality control in fNIRS, we
conducted a structured literature search using the PRISMA-conform search engine SetYouFree.84

Consequently, we focused on the 100 most cited fNIRS studies published in 2022. The search
results, depicted in Fig. 3(b), revealed that 68% of the studies did not report any bad channel
detection. The most applied detection methods were visual inspection (12%), SNR (11%), and
the CoV (8%). No machine learning methods and no unsupervised and semi-supervised machine
learning were applied in the 100 most cited studies. An additional ex-post search found two
recent studies that applied supervised machine learning detectors.85,86 The detection method’s
parameters were reported in 20% of all publications. Only 7% reported the number of excluded
signals, 3% reported the number of excluded subjects, and one study provided detailed infor-
mation on the signals excluded (e.g., with respect to channel locations). The most often used
toolbox for bad channel detection was Homer2 [Fig. S1(c) in the Supplementary Material],
which utilizes the SNR and signal level (Sec. 2.4.1). Details of the search methodology and
detailed search results can be found in Sec. S1 in the Supplementary Material. An overview
of all detection methods is available in Tables S2 and S3 in the Supplementary Material.

3.2 Q1: Detection Performance on Real-World Datasets
Based on this literature search, we systematically assessed the performance of unsupervised and
semi-supervised NiReject compared with the most established thresholding-based detection in
fNIRS, distance- and density-based detectors as well as unsupervised and semi-supervised
machine learning detectors using the open datasets N21 and R22

As depicted in Figs. 4(a) and 4(b), the SCI, a thresholding-based approach, and semi-
supervised FEAWAD showed evidence for superior ROC-AUC, sharing rank 1.5 [Fig. 4(b)].

Fig. 4 Detection performance across two real-world fNIRS datasets. (a) The mean and standard
deviation of 10 repeated evaluation runs per dataset and performance metric (multiplied by 100).
(b), (c) The Bayesian difference diagram, including the average detector rank across datasets in
brackets (lower rank indicates better performance) and the results of the Bayesian test using hori-
zontal lines. Thick horizontal lines connect groups of detection methods with no statistical evidence
of practically relevant performance differences (CI = 90%, ROPE ¼ ½−1.0; 1.0� multiplied by 100).
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By contrast, NiReject substantially outperformed all unsupervised methods in their precision
(precision rank 4.0). The higher ROC-AUC of SCI results from a high proportion of correctly
detected bad channels (true positives), but this comes at the cost of increased false positives and
thereby lower precision, making the SCI less practically feasible. It should be noted that Phoebe
detected most channels as bad and peak power tended to detect none (see also Fig. S6 in the
Supplementary Material). The signal level was not considered for N21 as it was used in the
manual rating procedure of N21 (see Sec. 2.2). On R22, the signal level showed a low perfor-
mance in precision and ROC-AUC. Semi-supervised methods outperformed unsupervised meth-
ods in precision [see Fig. 4(c)]. Semi-supervised NiReject outperformed all other detectors in
precision with a caveat. Although the Bayesian difference plot indicates a higher rank (1.0) for
NiReject compared with XGBOD (2.0), the performance difference was not of practical rel-
evance. No strong evidence was found for improved precision of the semi-supervised detector
FEAWAD (rank 3.0) compared with the unsupervised NiReject implementation (rank 4.0).
Additional performance metrics can be found in Sec. S4.3 in the Supplementary Material.

Furthermore, we assessed the runtime required for training (train time) and for detection
(inference time) during Q1 (see Sec. S4.2 in the Supplementary Material). Comparing the run-
time on the entire train and test set showed that HBOS [μtrain (N21, R22): 0.18 s, 0.32 s; μinference
(N21, R22): <0.01 s, 0.06 s] exhibited the best runtime. Unsupervised NiReject [μtrain (N21,
R22): 0.27 s, 1.15 s; μinference (N21, R22): 1.08 s, 3.57 s] was among the four fastest detectors.
For semi-supervised detectors, semi-supervised NiReject [μtrain (N21, R22): 14.39 s,: 44.40 s;
μinference (N21, R22): 0.66 s, R22: 3.00 s] substantially outperformed the next best detector,
XGBOD [μtrain (N21, R22): 109.32 s, 946.85 s; μinference (N21, R22): 21.01 s, 392.49 s].

3.3 Q2: Detection Behavior under Variations of Bad Channel Phenomena
To investigate the detectors’ performance capacities under varying bad channel phenomena, we
employed synthetic datasets with either spikes, shifts, signal loss, or atypical physiological oscil-
lations across chromophores, as described in Sec. 2.6.5. For both ROC-AUC and precision, the
results suggest that established thresholding-based approaches, such as CoV, are good under
certain conditions (here shifts) but fail for other phenomena, such as atypical physiological oscil-
lations (see Fig. 5). Among this family of detectors, SCI and CoV showed sensitivity to three out
of five types of phenomena. Importantly, only NiReject was sensitive to all phenomena, which
might contribute to its superior performance on real-world datasets (Sec 3.2). Neither unsuper-
vised NiReject nor the established domain-specific metrics performed best in all scenarios.

Fig. 5 Performance profiles across bad channel phenomena. The figure shows (a) the ROC-AUC
and (b) precision of color-coded detectors on simulated datasets (S1–S13). The Y -axis depicts the
performance, and the X -axis encodes the different intensities for each bad channel phenomenon.
Error bars represent the standard errors. Only unsupervised NiReject showed sensitivity to all
phenomena.
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Additional results, including all other detectors, can be found in Sec. S5 in the Supplementary
Material.

3.4 Q3: Detection Behavior Under Variations of Dataset Characteristics
To guide the interpretation of detection results and explore the practical feasibility of detection
methods, we assessed their performance profiles under varying contamination rates, annotation
errors, and the quantity of available expert ratings in the real-world datasets (as described in
Sec 2.6.6).

3.4.1 Impact of varying contamination rates

Figure 5(a) depicts the ROC-AUC and precision for four detectors (SCI, XGBOD, semi-
supervised NiReject, and unsupervised NiReject) that demonstrated promising performance
in their respective class on real-world data (see Sec 3.2). The SCI showed a constant ROC-
AUC and uptrend in precision with an increasing contamination rate and low precision at low
contamination rates. This behavior can be expected because, generally, thresholding-based detec-
tors do not depend on the contamination rate. The increase in precision seems to indicate other-
wise but results from the fact that almost all bad channels and a significant proportion of signals
with acceptable signal quality surpassed the SCI threshold in R22 (see Fig. 4). Consequently, an
increased contamination rate led to a proportional increase in the number of true positives,
whereas false positives and false negatives remained relatively constant.

Among these detectors, the semi-supervised implementation of NiReject was the only
approach that scaled in its performance with an increasing contamination rate. By contrast,
XGBOD demonstrated a strong degradation in ROC-AUC from c > 5% onward. XGBOD’s
precision increased until c ¼ 10 but then decreased with a highly fluctuating detection perfor-
mance. A difference between XGBOD and NiReject is that XGBOD ensembles a latent repre-
sentation of various unsupervised detectors that are highly susceptible to an increasing
contamination rate and duplicate data (e.g., HBOS in Sec. S6.1 in the Supplementary Material).
Consequently, XGBOD’s number of true positives does not increase with higher contamination
rates, and its detection performance decreases, showing high variance. As the contamination rate
is a priori unknown in real-world datasets, these results suggest that training on partial rating
information using NiReject may provide the most reliable detection of bad channels. For results
of all detectors and additional performance metrics, see Sec. S6.1 in the Supplementary Material.

3.4.2 Varying available rating information

Both semi-supervised NiReject and XGBOD showed asymptotic performance behavior for
γ ≥ 30%, as depicted in Fig. 6(c). By contrast, FEAWAD required only 3% < γ < 6%; however,
it did not come close to the AUC-PR of semi-supervised NiReject and XGBOD. Further per-
formance metrics can be found in Sec. S6.2 in the Supplementary Material.

3.4.3 Robustness against annotation errors

As depicted in Fig. 6(d), all semi-supervised detectors demonstrated resilience to incorrectly
rated bad channels of up to 15% in the dataset with overall higher ROC-AUC and precision
for semi-supervised NiReject and XGBOD. Additional performance metrics on annotation errors
can be found in Sec. S6.2 in the Supplementary Material.

3.5 Q4: A NiReject Hybrid-Detection System
In a semi-supervised regime, signals to be rated are typically selected randomly in practice. In
cases of low contamination rates, this approach may result in only a few labeled nuances of bad
channels, thereby deteriorating the detector’s performance or leading to a high rating effort.
Thus, we assessed whether hybrid NiReject can address this challenge while outperforming
unsupervised NiReject (Sec. 2.6.7).

Initially, the detector assumed that 7% of the channels may be bad thereby underestimating
the true contamination rate (c ¼ 30%). In the human feedback loop of the first detector instance,
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the expert reviewed 533 (21.32%) signals, out of which 90 (true positives: 86) were rated as bad
channels. In the second detector instance, another expert reviewed 370 (14.8%) signals and
assumed that 90 (true positives: 70) of these channels were bad. Precision and ROC-AUC were
both high for the two raters [Fig. 7(b)]. Further details can be found in Sec. S7 in the
Supplementary Material. In line with results on real-world datasets (see Sec. 3.2), our findings
suggest that hybrid NiReject showed a performance increase compared with its unsupervised
implementation [Fig. 7(a)].

Of note, however, is that the precision of the expert raters outperformed both model variants.
Based on the results of this study, we qualitatively illustrated in Fig. 7(c) how such a hybrid
system is uniquely positioned compared with other detection methods.

4 Discussion

4.1 Machine Learning-Based Detectors Can Enable Reliable, Automated Signal
Quality Control for fNIRS

Although we have shown here that the detection of bad channels can influence subsequent analy-
sis and potentially lead to incorrect conclusions, we also observed that many recent studies do not

Fig. 6 Performance evaluation across varying dataset characteristics. The figure consists of four
line plots with error bars representing the standard errors. The detection performance of (a) ROC-
AUC and (b) precision is depicted across varying contamination rates. Semi-supervised NiReject
showed performant and robust behavior that scales with an increasing contamination rate. (c) To
determine the critical number of rated bad channels for semi-supervised detectors, the X -axis enc-
odes the ratio of rated bad channels to all bad channels in the dataset (γ), and the Y -axis shows the
AUC-PR. FEAWAD reached its performance maxima with γ ≥ 6%, and both NiReject and XGBOD
approximately reached an asymptotic behavior with γ ≥ 30% rated bad channels. (d) Depicts the
AUC-PR across varying rating errors. All semi-supervised detectors showed a strong performance
drop if more than 15% of rated bad channels were labeled incorrectly.
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report any bad channel detection (Sec. 3.1). Studies that applied bad channel detection often
relied on visual inspection. By asking experts to rate simulated fNIRS signals of acceptable and
poor quality, we showed that this is indeed a viable approach that can provide high precision
(Sec. 3.5). However, visual inspection also comes with several challenges, such as lower repro-
ducibility (Fig. 8).

Fig. 7 Performance evaluation of a hybrid detection system and expert ratings using synthetic
data consisting of known acceptable and bad channels. (a) Shows an increase in precision and
ROC-AUC of hybrid NiReject utilizing a human feedback loop compared with unsupervised
NiReject. For each detector, two instances, either based on sampling involving rater I (blue) or
rater II (green), are depicted. (b) Shows the rating performance of both raters. Performance to
detect synthetically generated bad channels was higher in manual expert ratings compared with
both hybrid and unsupervised detectors and varied between raters.

Fig. 8 Overview of detector characteristics: This figure illustrates the characteristics of the best-
performing detection methods (left) and competitive detection methods that demand low rating
effort (right). The radar chart demonstrates that detectors have different profiles, which may be
favored in different situations. As the distance from the center of the radar plot increases, the char-
acteristic becomes more pronounced. Performance: Higher values mean that a detector achieves
a higher detection precision. Cost efficiency: Higher values mean that fewer ratings are required for
the same or better performance. Robustness against annotation errors: Higher values mean that
the performance of a detector is robust against a higher percentage of rating errors before it
declines. Reproducibility: Higher values mean that it is more likely to obtain the same detection
results on the same dataset when detection is repeated. Interpretability: Higher values mean that
the detection results can be interpreted more easily. High contamination: Higher values mean that
the performance of the detector remains stable for datasets with a higher percentage of bad
channels.
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4.1.1 Q1: Performance on real-world data

In a comprehensive evaluation based on two independently rated real-world datasets, we dem-
onstrated that unsupervised and particularly semi-supervised machine learning-based detectors,
e.g., semi-supervised NiReject (precision rank: 1.0) and XGBOD (precision rank: 2.0), exhibit
strong evidence of increased detection performance compared with established thresholding-
based detectors (Q1, Sec. 3.2). The SCI showed respectable performance (precision rank:
9.5) and outperformed several domain-agnostic detectors, including some unsupervised machine
learning detectors. This makes the SCI the most reliable candidate among established
thresholding-based approaches in the current datasets. However, its high ROC-AUC was asso-
ciated with a high number of false positives. By contrast, HBOS, a classical D&D-based detector,
demonstrated superior precision (precision rank 5.5) but a lower ROC-AUC compared with the
SCI (Fig. S5 in the Supplementary Material). In line with Ref. 18, the CoV showed a higher
similarity to manual ratings than Phoebe. Unsupervised NiReject (precision rank: 4.0) exhibited
the best detection behavior across unsupervised and thresholding-based detectors, consistently
achieving higher precision close to the semi-supervised method FEAWAD (precision rank: 3.0,
see Fig. 4). One reason for this performance advantage results from NiReject’s lower number of
false positives compared with other domain-agnostic detectors. NiReject prevents the erroneous
detection of exceptionally good signals by confining its detection to a specific tail either auto-
matically or based on prior knowledge. For example, in NiReject, only low and not high SNR
values of input features contribute to identifying a bad channel. The resulting precision advance-
ments reduce the number of unnecessary pruned signals and thereby can prevent decreasing
statistical power of subsequent analyses (see also Ref. 87). These algorithmic components are
also used in NiReject to decrease the computational complexity, resulting in efficient implemen-
tations of unsupervised and semi-supervised NiReject that perform training and detection in a
few seconds on the larger R22 dataset (N ¼ 5922) and in milliseconds for 100 signals (details in
Table S7 and Fig. S4 in the Supplementary Material). Although the runtime is less critical for
ex-post bad channel detection, this should be factored in for the detector choice in future online
applications, such as brain-computer-interfaces.

Of note is also that we observed some variability in the detectors’ performances between
N21 and R22, which could be attributed to differences in raters, dataset characteristics, and
experimental settings, e.g., differences in age groups (N21: children and adults; R22: adolescents
and adults), the use of chin rests (in R22), dataset sizes, probe settings, and different fNIRS
devices from different vendors. As a result, detector precision varied between datasets; for exam-
ple, unsupervised NiReject (σ ¼ 0.030) and semi-supervised NiReject (σ ¼ 0.024) showed rel-
atively low variability, whereas SCI showed higher variability (σ ¼ 0.117). In addition, within-
dataset variability was significantly greater in N21, which is to be expected with a smaller sample
size compared with R22 (see also Sec. S4.2 in the Supplementary Material). This underscores the
importance of cross-dataset comparisons, which are currently lacking in the field.

4.1.2 Q2: Variations of bad channel phenomena

To disentangle the reasons for performance differences between detectors, we next investigated
the detectors under varying bad channel phenomena (Q2, Sec. 3.3). The results showed that
established thresholding-based approaches might be sensitive to certain phenomena but fail
to perform effectively on others (Fig. 5). These thresholding-based detectors are typically uni-
variate and constrained by fixed thresholds, relying heavily on a close alignment between ideal-
ized bad channel phenomena and the characteristics of the actual data. This not only explains the
lower performance of thresholding-based detectors on real-world datasets but also sheds light on
settings in which a given detector might be less feasible. For instance, the SCI exhibited the best
performance among established detectors in experiment Q1 and proved effective in capturing
uncoupled wavelength changes, such as those occurring when the cap is displaced.
However, the SCI did not perform reliably in signals with multiple spikes as a spike can appear
simultaneously in signals of both wavelengths and consequently can result in a high SCI. For the
same reason, unidirectional shifts were not detected, but bidirectional shifts, which can lead to
opposing changes in both wavelengths, were. The CoV, which assesses the signal variability for
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each wavelength separately, is consequently more sensitive to these phenomena but requires a
frequent occurrence of spikes for the overall signal variability to be affected. Moreover, the CoV
criterion additionally considers the difference between the CoVs of each wavelength, but this
does not necessarily capture coupling in cardiac-related frequencies. It only indicates whether
one signal shows more variability than the other. As expected, due to their related definitions, the
SNR and CoV demonstrated similar behavior. The signal level was only sensitive to unidirec-
tional shifts, which is plausible because unidirectional shifts more strongly affect the amplitude
in one direction. Phoebe and peak power, which is a component of Phoebe, showed no reliable
detection. Future studies may investigate whether this is related to the default thresholds as it is
expected that Phoebe can, to some degree, detect atypical couplings. This illustrates that the
interplay between multiple thresholds in rule-based detectors might not be trivial. By contrast,
NiReject and other domain-agnostic detectors demonstrated high precision across all phenomena
because they operate on a multivariate feature space Z. Yet, it is important to note that no single
detector outperformed all others in every phenomenon. Detectors specialized in a particular phe-
nomenon (e.g., SCI) tended to excel in their respective niche, surpassing more generalized detec-
tors. This supports the integration of complementary metrics, such as SCI and CoV, as features in
D&D and machine learning-based detection methods. This is also in line with results from
anomaly detection, which suggest that, by utilizing specific information about anomaly types
(as measured by the SCI), performance improvements in detection methods can be achieved
(see Ref. 36).

4.1.3 Q3: Varying contamination rates

To further investigate the reliability of detectors under different dataset characteristics, we per-
formed the experiments Q3 (Sec. 3.4). Specifically, the contamination may vary between more
standardized and naturalistic tasks, involving participant movement, different populations, such
as developmental and clinical cohorts and devices. Although a higher contamination rate does
not affect thresholding-based detectors (see Sec. 2.6.6), unsupervised machine learning-based
detectors tend to assume imbalanced settings in which bad channels represent the minority.
Consequently, they are more susceptible to increased contamination rates (see Fig. S9 in the
Supplementary Material) and showed to be sensitive to duplicate aberrant data (see Ref. 36).
One might assume that this does not hold for semi-supervised detectors as they consider rating
information. However, this only holds for semi-supervised NiReject and for the precision of
FEAWAD but not for XGBOD. A notable difference between XGBOD and NiReject is that
XGBOD ensembles various unsupervised detectors that are highly sensitive to increasing con-
tamination rates and duplicated data (e.g., HBOS, see Fig. 6 and Fig. S9 in the Supplementary
Material). Consequently, at higher contamination rates, XGBOD’s precision decreases with high
variance, whereas the number of true positives stagnates and false negatives increases [Figs. 6(a)
and 6(b) and Fig. S9 in the Supplementary Material]. Thus, the consideration of human expert
ratings and the careful choice of a robust detector seems to be even more important in settings
with high contamination rates. Because the contamination rate is typically unknown in practice,
training NiReject on partial rating information from human experts may offer reliable detection
of bad channels across varying contamination rates. Further, the SCI, a thresholding-based
approach, appears to be a suitable alternative that offers a more robust detection than most unsu-
pervised machine learning-based detectors for high contamination rates (Fig. 8).

4.1.4 Q4: Varying available rating information

Because semi-supervised methods depend on partially available rating data, we varied the
amount of available rating information. FEAWAD’s performance plateaus at γ ¼ 6% and the
asymptotic behavior of XBOD and semi-supervised NiReject starting at γ ¼ 30% suggest that
semi-supervised approaches demand only some rating information. FEAWAD’s lower demand
can result from its autoencoder-based architecture, which only “recalibrates” the encoder by a
few bad channels. Nevertheless, in a more conservative setting, a higher γ might be desirable,
whereas a lower γ may be sufficient in less conservative settings.
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4.1.5 Q5: Robustness against annotation errors

All semi-supervised detectors remained relatively robust against annotation errors of raters unless
more than 15% of the data was rated incorrectly. This suggests that semi-supervised detectors can
maintain a robust performance up to a certain level of annotation errors before these errors begin
to bias the detector toward a strongly reduced performance. This is in line with findings in
anomaly detection, which show that semi-supervised and supervised detectors are robust against
minor annotation errors (although with lower robustness for supervised).36 However, of note in
this study is that other semi-supervised detectors (e.g., GANomaly) were more robust than
FEAWAD and XGBOT. Nevertheless, the importance of accurate ratings for precise detection
of semi-supervised, hybrid, and supervised models should not be underestimated even when less
than 15% of annotation errors occur (see Sec. 3.5). Thus, to ensure a high rating quality, it may be
advisable to train human raters using simulations or available datasets and, in the case of multiple
raters, to measure their inter-rater variability. Further, providing clear rating instructions ideally
with examples and counterexamples can guide decisions and enhance rating performance (see
also Ref. 17). However, overall, the resilience of semi-supervised detectors to annotation errors
can be an advantage over visual inspection alone.36

4.1.6 Q6: Assessment of the NiReject hybrid-detection system

Although these findings highlight the efficiency and robustness of semi-supervised detectors, it
remains open for practitioners to decide which signals should be rated first. Because bad channels
are typically a minority, a substantial rating effort may be required before reaching a suitable
percentage of bad channels, which could offset the benefits of semi-supervised learning. Results
of Sec. 3.5 suggest that the proposed hybrid NiReject efficiently leveraged expert feedback in a
human feedback loop, yielding a substantial performance increase compared with pure unsuper-
vised detection while mitigating the challenges and high manual rating effort of supervised
machine-learning methods (proportion of rated data: 14.8% to 21.32% in hybrid NiReject com-
pared with 75% in supervised detection31). Furthermore, from Eq. (4) (Sec. 2.5.1), it follows that
the degree of feature d to which the signal i is expected to be a bad channel can be directly
obtained. Thereby, NiReject models provide a model intrinsic interpretability guiding
practitioners to understand the results [Fig. 2(d)]. Consequently, this hybrid system enables a
relatively interpretable and reproducible bad channel detection while remaining performant and
cost-efficient also in high contamination cases (Fig. 8).

4.2 Transparent Reporting of Bad Channels
Given the sparse reporting and the scarcity of studies on fNIRS bad channel detection, the
question of how to adequately report bad channels remains largely elusive. When bad channel
detection is reported, most studies tend to provide only basic information (parameters/thresholds:
20%, number of rejected channels: 7%, number of rejected subjects: 3%, see Sec. 3.1). Future
research should aim to provide at least a basic description of bad channel detection in the main
text, including the toolbox used, detection method, parameters, contamination rate, number of
rejected signals, and rejected subjects. The authors of Ref. 88 additionally visualized which long-
distance channels of which subjects were excluded. This can yield valuable information on the
channels that are of consistently poor quality, on subjects with particularly low data quality, and
on systematic quality differences between groups/conditions that might require additional con-
siderations in downstream analysis, as in Refs. 89 and 90.

To enhance the transparency and reproducibility of fNIRS studies, we suggest a systematic
bad channel reporting, as provided in Fig. 9. This reporting card is designed to provide details on
the employed detection methods and expert rating (if applicable), as well as a summary of the
detection details. This information not only may contribute to a more transparent reporting but
also can guide researchers in their analysis decisions, e.g., which signal and subjects to exclude
from downstream analysis. A template of the reporting card is provided alongside the publication
(see Sec. Code, Data, and Materials Availability) and can be used alongside previously published
guidelines for transparent reporting of fNIRS studies.15
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4.3 Limitations and Future Directions
Based on the current state of the field and the systematic assessment provided in this study, we
note several limitations of the study and deduce future directions for improved signal quality
control in fNIRS.

4.3.1 Choice of thresholds

Here, we evaluated thresholding-based detection methods using common default parameters. It is
important to note that other thresholds may lead to different results and that the best threshold
parametrizations are not known in practice.

4.3.2 Effects of age

Because physiology, anatomy, and behavior vary from age to age, the same preprocessing meth-
ods and parameterizations may not be equally suitable for all ages. To account for this, we
extended the peak power metric by applying the physiologically parametrized power spectrum
of neural signals (FOOOF).75 However, a systematic examination of age effects is beyond the

Fig. 9 Bad channel reporting card. The figure displays the template for the bad channel reporting
card that contains basic information about the detection method, statistics, and detection scores
across channels and subjects.
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scope of the current paper and may require larger datasets per age group of infants, children, and
adolescents (Sec. S4.1 in the Supplementary Material). This could help to determine whether
age-specific detection methods or adaptations are beneficial.

4.3.3 Bad short-distance channels

Bad channel detection often focuses on long-distance channels as these are primarily used in
subsequent analyses. A widely adopted and recommended approach to reduce the systematic
influence of physiological noise is short-channel separation, i.e., using short-distance channels
to regress out physiological noise from long-distance channels.91 Although this is a valuable
approach, it is important to note that a bad short-distance channel can also impact signals of
long-distance channels instead of improving their quality. To mitigate this corruption, measuring
multiple short channels and rejecting bad short channels is desirable. Specifically, semi-
supervised NiReject has the ability to differentiate between the detection of short- and long-
distance channels due to its annotation of spatial information (Sec. 2.5.2). However, particularly
for unsupervised and thresholding-based detectors a separate detection of long- and short-dis-
tance channels may be beneficial. Thus, future studies may investigate bad channel detection
methods and their features, such as their thresholds, specifically for long- and short-distance
bad channels.

4.3.4 Multimodal bad channel detection

As some modern signal enhancement methods have been shown to benefit from multimodal data
(see Sec. 1), future studies could aim to integrate additional data types, such as video or accel-
erator data, into detection models. This can help, for example, to better detect movement-related
artifacts or displacements in optodes and thus improve the detection of bad channels.

4.3.5 Online bad channel detection

It is also worth noting that NiReject and several of the other detection methods assessed in our
study are primarily designed for an ex-post application after data collection. Some of the detec-
tors, such as HBOS and NiReject, exhibited an efficient runtime that could be sufficient for
online detection, e.g., in online neurofeedback analysis (e.g., Refs. 92 and 93) or brain-computer
interfaces. Future studies may develop and empirically assess implementations that enable on-
line/batch processing of bad channels.

4.4 Conclusion
With an increasing number of channels per device, larger cohorts, and the pressing need for more
standardized processing procedures, thresholding-based detectors, such as the CoV or SCI, are
increasingly employed in fNIRS. However, despite their advantages, unsupervised and semi-
supervised detectors have not yet been used. In the present study, we performed a comprehensive
and systematic assessment across a landscape of 19 established, unsupervised, and semi-
supervised approaches for detecting bad channels in fNIRS. We provided an overview of the
current state of signal quality control, demonstrated the pivotal role of bad channel detection
in subsequent analysis, and investigated how the nuanced behavior of detection methods deter-
mines their practicability and reliability. The probed key characteristics revealed how detectors
differ in their performance capacities, cost-efficiency, and robustness under varying conditions.
When fully automated detection without any manual rating is desired, unsupervised NiReject
demonstrated overall a more precise detection than all other approaches. Generally, machine
learning detectors that leverage partially rated data, particularly NiReject, achieved superior
detection performance compared with established thresholding-based and unsupervised detec-
tors. Among these methods, the semi-supervised NiReject stood out due to not only the best
runtime but also providing the most robust performance under challenging settings in which
a higher number of bad channels can be expected and, as the other semi-supervised detectors,
was relatively robust against annotation error. In addition, hybrid NiReject extends semi-super-
vised methods by suggesting which signals to rate. This may come with a high precision but at a
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lower rating effort compared with semi-supervised detection. Our work may motivate future
artificial intelligence-based developments in offline and online data quality control and correc-
tion, applicable across a wide range of populations and environments to ensure robust and high-
quality neuroimaging findings.
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