
Analysis methods for measuring passive auditory fNIRS
responses generated by a block-design paradigm

Robert Luke ,a,b,* Eric Larson ,c Maureen J. Shader ,b,d

Hamish Innes-Brown ,d,e Lindsey Van Yper ,a Adrian K. C. Lee ,c,f

Paul F. Sowman ,g and David McAlpine a

aMacquarie University, Macquarie University Hearing & Department of Linguistics,
Australian Hearing Hub, Sydney, New South Wales, Australia

bThe Bionics Institute, Melbourne, Victoria, Australia
cUniversity of Washington, Institute for Learning & Brain Sciences, Seattle, Washington,

United States
dThe University of Melbourne, Department of Medical Bionics, Melbourne, Victoria, Australia

eEriksholm Research Centre, Oticon A/S, Snekkersten, Denmark
fUniversity of Washington, Department of Speech & Hearing Sciences and Institute for

Learning & Brain Sciences, Seattle, Washington, United States
gMacquarie University, Department of Cognitive Science, Faculty of Medicine,

Health and Human Sciences, Sydney, New South Wales, Australia

Abstract

Significance: Functional near-infrared spectroscopy (fNIRS) is an increasingly popular tool in
auditory research, but the range of analysis procedures employed across studies may complicate
the interpretation of data.

Aim:We aim to assess the impact of different analysis procedures on the morphology, detection,
and lateralization of auditory responses in fNIRS. Specifically, we determine whether averaging
or generalized linear model (GLM)-based analysis generates different experimental conclusions
when applied to a block-protocol design. The impact of parameter selection of GLMs on
detecting auditory-evoked responses was also quantified.

Approach: 17 listeners were exposed to three commonly employed auditory stimuli: noise,
speech, and silence. A block design, comprising sounds of 5 s duration and 10 to 20 s silent
intervals, was employed.

Results: Both analysis procedures generated similar response morphologies and amplitude
estimates, and both indicated that responses to speech were significantly greater than to noise
or silence. Neither approach indicated a significant effect of brain hemisphere on responses to
speech. Methods to correct for systemic hemodynamic responses using short channels improved
detection at the individual level.

Conclusions: Consistent with theoretical considerations, simulations, and other experimental
domains, GLM and averaging analyses generate the same group-level experimental conclusions.
We release this dataset publicly for use in future development and optimization of algorithms.

© The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License.
Distribution or reproduction of this work in whole or in part requires full attribution of the original pub-
lication, including its DOI. [DOI: 10.1117/1.NPh.8.2.025008]

Keywords: auditory responses; block-design paradigm; analysis methods; speech; passive task.

Paper 20093RR received Dec. 22, 2020; accepted for publication Apr. 28, 2021; published
online May 22, 2021.

1 Introduction

Functional near-infrared spectroscopy (fNIRS) is an increasingly popular technique1 employed
to investigate auditory-cortical function, and provides a unique set of qualities that make it ideal
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for auditory research. fNIRS devices are typically very quiet compared with functional magnetic
resonance imaging (fMRI) with which it shares a similar biologically generated signal. fNIRS is
unaffected by electrical or magnetic interference from hearing devices such as cochlear implants
or hearing aids, all of which are either contra-indicated or generate large artifacts in fMRI and in
electro- and magneto-encephalography (EEG and MEG, respectively). fNIRS devices are gen-
erally relatively portable and do not require participants or patients to be isolated in a shielded
chamber or to have their head-position fixed, making it well suited for use in low- or non-
compliant groups, including children, the elderly, and the cognitively impaired. Therefore,
it provides an ideal imaging modality for clinical applications.

fNIRS has been used to investigate a variety of auditory research questions and applications.
A primary use has been the investigation of cortical processing of physical qualities of sound,
such as intensity, amplitude and frequency modulations, and auditory-spatial cues.2–4 fNIRS
has also been employed to evaluate the perceptual qualities of speech and listening effort
and language development in normal-hearing and hearing-impaired populations.5–14 Research
questions relating to the development of auditory cortical function15 and cortical reorganization
following impaired sensory input and subsequent rehabilitation16,17 have been investigated using
fNIRS, as have outcomes related to cochlear implantation5 and auditory pathologies such as
tinnitus.18,19

Of particular clinical relevance within the auditory research community is the field of objec-
tive measures. Objective measures utilize passive experimental designs—in which the partici-
pant is not required to perform any tasks throughout the measurement—and are routinely utilized
to evaluate hearing performance in populations who are unable to provide reliable behavioral
responses. Specifically, EEG-based objective measures are used clinically to evaluate frequency-
specific hearing thresholds in newborn children;20–22 in research environments to evaluate audi-
tory function including modulation sensitivity,23 binaural sensitivity,24 speech reception,25 and
auditory pathway development;26 and to evaluate the interface between cochlear implant electro-
des and neural tissue.27 Due to its favorable qualities for studying auditory function, fNIRS has
been indicated as a promising neuroimaging technique for auditory objective measures.
However, the existing literature evaluating fNIRS analysis methodologies and artifact rejection
techniques has primarily focused on active experimental designs in which the participant per-
forms a task. As such, in this paper, we investigate analysis procedures when applied to a passive
auditory task, as would be utilized in auditory objective measures.

Despite the utility of fNIRS for investigating auditory function, however, relative to other
neuroimaging modalities such as fMRI, EEG, and MEG, fNIRS has been employed only
recently by hearing scientists, and considerable variability exists in the experimental designs
and analysis techniques used by different researchers. This variability can make it difficult
to interpret data sets or to replicate or compare findings across studies or between research teams.
The experimental designs most commonly employed by auditory fNIRS researchers are block
and event-related designs. When selecting an experimental design, researchers must consider a
range of factors, including the statistical power of the protocol, the duration of the experiment,
and whether the design provides the flexibility to study the effect of interest.28–31 For example, an
event-related design may enable an investigator to examine the response to individual words in
an ongoing sentence, something not possible when employing a block design. Here, we compare
two common analysis procedures that can be applied in experiments employing a block design
with a passive-auditory paradigm.

Block-design experiments present a single stimulus continuously for an extended time inter-
val (e.g. 5 s), followed by an inter-stimulus interval (i.e., in which no stimulus is presented) of
sufficient duration for the hemodynamic response to return to an approximate basal level.32,33,34

Although commonly employed, no consensus exists as to the most appropriate analysis proce-
dures for this type of experimental design; new algorithms and procedures are regularly pub-
lished without cross-validation or theoretical consideration.

Analysis procedures for block designs typically lie in one of two categories: averaging analy-
sis, in which the fNIRS measurement is segmented and averaged relative to the onset of the
stimulus,35 and general linear model (GLM) analysis, in which one or more model hemodynamic
responses are fitted to the entirety of the measured fNIRS signal [Ref. 36; for a recent overview
in the context of fNIRS, see Ref. 37]. The signal-averaging approach assumes that the noise
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component of the measured fNIRS signal is a random process with zero mean and is unrelated to
the biological signal of interest. In contrast, the GLM is capable of accounting for a more com-
plex model of signal noise.38 Although for non-overlapping responses such as those assumed in
a block design, the GLM model is reduced to a block average, suggesting that both analyses
should generate similar outcomes;39,40 due to the statistical properties of the fNIRS signal,
GLM analysis may be a more appropriate method with which to analyze fNIRS data.37

These two analysis methods have been described and evaluated for different fNIRS analysis
parameters in computer simulations and behavioral motor experiments,39,41 but a direct compari-
son has yet to be made for research investigating audition.

In general, auditory-cortical responses in fNIRS have been shown to be reliable at a group
level.42 Many investigations of auditory-cortical function target relatively deep (relative to the
skull) cortical regions such as Heschl’s gyrus, of which a typical fNIRS device might generate
<1% specificity.43 This low specificity makes individual-level measurements unreliable, largely
due to the poor signal-to-noise ratio; the measured stimulus-evoked hemodynamic response is
small compared with all other sources of bio-generated changes in the fNIRS signal. This chal-
lenge has motivated the need for a comparison of averaging and GLM analysis specifically for
auditory fNIRS signals to understand the influence of analysis choices when analyzing such a
small signal-of-interest. Here, we investigate whether averaging and GLM analysis applied to
the same dataset generate results that support the same experimental conclusions.

This study focuses specifically on a passive experimental paradigm. In addition to being of
important clinical relevance to the auditory community, this type of study provides several ben-
efits when interpreting the resulting neuroimaging data. First, a passive task reduces the con-
tribution of systemic components (changes in the measured fNIRS signal that are not due to the
effect of neurovascular coupling) to the fNIRS signal. Active tasks such as mental arithmetic,
inner speech, and arm movements can evoke task-related changes in respiration and mean
arterial blood pressure,44 which may mask the neural effect of interest. Second, limiting the
actions of the participant reduces the number of confounding neural processes that must be
disentangled to study the effect of interest. For example, if participants are required to provide
a verbal response, the act of speech production will increase neural activity in the superior
temporal gyrus,45 and even if the verbal response is delayed relative to the event of interest,
the act of speech planning may also induce additional neural activity.46 A common alternative
task in auditory experiments is to have the participant press a button; however, this is undesirable
as motor movements may modulate auditory cortical activity.47 In studies that require active
participation from the listeners, modifications to experimental design, such as jittering the
response window and additional signal processing, can be used to mitigate undesired systemic
and neural components.

Due to the statistical properties of the noise within fNIRS signals, GLM-style analysis has
been suggested to be a more appropriate method with which to analyze fNIRS data.37 As such,
we also investigated the influence of the parameters employed in GLM analysis on the true and
false detection rates of sound-generated fNIRS responses. Of particular importance in fNIRS
experiments is the separation (and possible reduction) of systemic contributions to the measured
signal when estimating neural responses.44 This has particular relevance for auditory experi-
ments as systemic components of fNIRS measurements have been shown to be related to the
characteristics of acoustic stimuli.48

Many approaches have been proposed to remove the influence of systemic components on
the estimation of the neural response.49–53 Most use specialized channels designed to measure the
systemic response only, and not neural activity. These channels typically have a source-detector
separation of <1 cm and are often referred to as “short” channels. Recently, Santosa et al.51

concluded that including short-channel information as a regressor of no interest within a
GLM analysis resulted in the most accurate estimation of the underlying neural response com-
pared with spatial and temporal filtering, regression, and component analysis.

We, therefore, investigated the effect of including information from short channels on the
detection of auditory fNIRS responses. Algorithms that remove systemic components have
previously been evaluated and contrasted,51–53 but we apply these methods specifically in the
context of a passive task with two commonly used auditory stimuli: speech and bandpass
noise.
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Speech is the primary mode for auditory communication and is therefore widely employed in
auditory experiments. Noise signals are often used to investigate basic auditory processing as the
statistical properties of the signal can be precisely controlled. These two stimuli are often con-
trasted to investigate language-specific processing or combined to investigate speech processing
in challenging listening environments. Both stimuli can hold an infinite number of forms; speech
may contain prosodic cues or be spectrally degraded, and noise may comprise different fre-
quency ranges, contain modulations in amplitude or frequency, or transition over time. Here,
we employed two different stimuli: speech comprising three concatenated sentences in quiet
and a 400-Hz band of noise centered at 500 Hz.

We first describe the methods used to produce and present stimuli and to generate data. We
then undertake qualitative analysis examining the morphology of fNIRS responses to auditory
stimuli using averaging and GLM analyses, and we assess the influence of different analysis
parameters on the detection of auditory fNIRS responses and on the rate of false positives.
Finally, we investigate whether the averaging and GLM approaches provide similar experimental
conclusions when applied to the same dataset. Both approaches were used to investigate two
common questions in auditory neuroscience. First, do two different stimulus conditions generate
a different response amplitude? Second, are cortical-hemispheric differences apparent in evoked
responses?

One challenge when developing an experimental protocol for fNIRS is to understand the
effects of different analysis choices and to optimize the signal-processing procedure. Further,
it is important not to optimize a specific analysis pipeline using the same data from which
scientific conclusions will be drawn.54 The dataset that we report here will be released publicly
to assist in the development of future auditory fNIRS pipelines and algorithm development.
In a similar vein, we note that we are not endeavoring to generate scientific conclusions
concerning the relative cortical processing of speech and noise. Rather, our intention is to pro-
vide an understanding of the choice of parameters on conclusions reached by statistical analysis
of auditory-generated fNIRS responses generated using averaging and GLM techniques.

2 Methods

2.1 Experimental Design

Seventeen participants volunteered for this project. All participants indicated no history of hear-
ing concerns. Participants were aged between 22 and 40 years. Data were collected under the
Macquarie University Ethics Application Reference 52020640814625.

Participants were seated in a sound-attenuating booth in a comfortable chair for the duration
of the experiment, which lasted approximately 25 min. Participants were instructed not to pay
attention to the sounds and were offered the choice of watching a silent, subtitled film during
the experiment; seven participants accepted this option. NIRS data were recorded using a NIRx
NIRScoutX device with APD detectors. The data were saved to disk with a sample rate of 5.2 Hz.
12 source channels and 12 detector channels were employed in the fNIRS optode-cap configu-
ration, with eight additional short detectors distributed across the head. Sources were placed
at the positions AF7, F3, F7, FC5, T7, CP5, O1, POz, O2, Iz, CP6, and T8. Detectors
were placed at the positions F5, C5, TP7, CP3, P5, PO3, P04, Oz, P6, CP4, TP8, and C6.
Short detectors were placed at AF7, F7, T7, CP5, O1, O2, CP6, and T8 (Fig. 1). These optodes
were selected to target four regions of interest (ROI) using the fOLD toolbox,43 including the
left inferior frontal gyrus (IFG), which consisted of channel pairs AF7-F5, F3-F5, F7-F5, and
FC5-F5; the left and right superior temporal gyri (STG), which consisted of channel pairs T7-C5,
T7-TP7, CP5-C5, CP5-TP7, CP5-CP3, and CP5-P5 and CP6-P6, CP6-TP8, CP6-CP4, CP6-C6,
T8-TP8, and T8-C6, respectively; and the occipital lobe, which consisted of channel pairs O1-
P03, O1-Oz, POz-PO3, POz-Oz, POz-PO4, Iz-Oz, O2-Oz, and O2-PO4. This montage resulted
in a total of 24 source-detector pairs (channels). The left IFG is indicated in speech and language
processing, while the STG is indicated in auditory processing. The occipital lobe is indicated
in visual processing and as a possible additional site for speech processing, particularly in
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cross-modal plasticity studies, but this region was not expected to show significant responses in
the current study.

Participants listened to auditory stimuli presented diotically (i.e., the same sound to both ears)
via Etymotic Research ER-2 insert-phones connected to an RME Fireface UCX soundcard
(16 bits, 44.1 kHz sampling rate). Speech was presented at 80 dB SPL and noise (separately)
at 85 dB SPL. Stimuli were calibrated to a Casella Cel-110/2 sound source using a Norsonic
sound-level meter (Norsonic SA, Norway) and an ear simulator (RA0045 G.R.A.S., Denmark).

Participants were exposed to three stimulus conditions: speech, noise, and silence. The
speech stimulus consisted of three concatenated sentences from the AusTIN speech corpus55

with a total duration of 5.25 s. The noise stimulus consisted of a uniform distribution of fre-
quency content between 300 and 700 Hz and was of 5 s duration. Five seconds of silence was
used as the control condition. Stimuli were presented in a random order with an inter-stimulus
interval (defined as the time between the offset of one stimulus to the onset of the following
stimulus) selected randomly for each trial from a uniform distribution in the range of 10 to
20 s. Twenty trials were presented for each condition, resulting in a total of 60 trials per par-
ticipant. This is a relatively large number of trials compared with typical group-level fNIRS
auditory studies and was selected to ensure an accurate estimation of the response morphology.
For both averaging and GLM analysis, more trials will result in a more powerful estimation of
the hemodynamic response, and the number of trials must be balanced against the increase in
experiment test time.

2.2 Analysis

All analyses were performed using MNE (version 0.21.2)56,57 and MNE-NIRS (version 0.0.1),58

which makes extensive use of the Nilearn package (version 0.70)59 for GLM analysis. First,
a qualitative analysis was performed to understand the morphology of the measured signal,
followed by a quantitative analysis to evaluate the influence of different parameters on the detec-
tion of auditory responses. Finally, both the averaging and GLM analysis techniques were used
to compare the response amplitude to speech versus noise and for relative activation in the left
versus right cortical hemispheres. All analyses were applied to the same dataset described in
Sec. 2.1. This analysis predominantly focuses on the ROI covering the STG. This brain region
is expected to be activated by both speech and noise stimuli, whereas expectations of how the
occipital and inferior frontal regions will respond to these stimuli is still an active area of
research9,14,60 and is beyond the scope of this article

2.2.1 Morphology of auditory responses

Hemodynamic responses vary with location on the scalp and experimental conditions.61,62 As
such, morphology of fNIRS responses to speech and noise stimuli was investigated qualitatively
using two independent procedures. The first procedure was an averaging style analysis, and the

Fig. 1 Location of sources and detectors. Four ROI were created to cover the left IFG, the left and
right STG, and the occipital lobe. Sources are shown as red dots, detectors are shown as black
dots, and channels are shown as white lines with an orange dot representing the midpoint. The
montage is shown from the (a) left; (b) back; and (c) right views of the brain.

Luke et al.: Analysis methods for measuring passive auditory fNIRS responses. . .

Neurophotonics 025008-5 Apr–Jun 2021 • Vol. 8(2)



second was a finite impulse response (FIR) GLM approach. Each analysis was performed on
each of the three experimental conditions.

Averaging analysis. The averaging analysis consisted of several steps, starting with down-
sampling the data to 3 Hz and conversion to optical density. The scalp-coupling index8

was calculated for each channel between 0.7 and 1.45 Hz (corresponding to heart rates between
42 and 87 beats per second, consistent with the range expected for a relaxed adult). Channels
with a scalp-coupling-index value below 0.8 were removed, resulting in different numbers of
channels being removed for different participants. Data from each channel were then further
cleaned by applying temporal-derivative distribution repair63 and short-channel regression based
on the nearest short channel.50,52 Briefly, this approach to short-channel regression subtracts a
scaled version of the signal obtained from the nearest short channel from the signal obtained
from the long channel. The modified Beer–Lambert law was then applied, with a partial path-
length factor of 0.1,64–66 converting the optical-density measurements to changes in hemoglobin
concentration. Next, channels with source-detector separations outside the range of 20 to 40 mm
were excluded, followed by application of the signal-improvement algorithm based on the neg-
ative correlation between oxygenated and deoxygenated hemoglobin dynamics.67 A bandpass
filter was then applied between 0.01 and 0.7 Hz with a transition bandwidth of 0.005 and 0.3 Hz
for the low- and high-pass edges, respectively. The data were cut into epochs from 3 s before
stimulus onset to 14 s after (ensuring no conflict with the onset of the next stimulus presentation,
which may occur as early as 15 s after the previous stimulus onset), and a linear detrend was
applied to each epoch. Epochs with a peak-to-peak difference in any channel exceeding 100 μM
were then excluded. The average response per participant for each channel and for each con-
dition was exported. Then the channels within a region of interest were averaged to create an ROI
average waveform for each participant. Due to the channel removal based on the scalp coupling
index above, there may be a different number of channels included within this average for each
participant and ROI. To summarize the group-level averaging analysis results, the ROI average
waveforms were used to create a time series visualization displaying the average signal across
participants and a bootstrapped 95% confidence band around the mean for each condition
and ROI.

Finite impulse response model analysis. In a second, independent analysis, data was
entered into a GLM analysis using a deconvolution FIR model. This method makes no assump-
tions as to the shape of the hemodynamic response. Instead, a series of impulses following the
onset of the stimulus are used as regressors to model the neural response. The morphology of
the response can then be estimated by summing all of the FIR components after multiplication by
each component’s weight as estimated by the GLM. See Huppert37 and Santosa et al.66 for
a summary of FIR and canonical approaches within the fNIRS context.

Prior to the GLM analysis, data were downsampled to 1 Hz and then converted to optical
density. A lower sample rate was employed as the scalp-coupling index was not computed, and
therefore, higher frequencies were not required. Next, channels with a source-detector separation
outside the range of 20 to 40 mm were excluded, and the modified Beer–Lambert law was
applied to the data, as performed in the averaging analysis. A GLM was then applied using
a FIR model with 14 components (i.e., 14 s); this number of components was selected to ensure
parity with the epoching-window approach employed in the averaging analysis. Channels were
then combined into a ROI by averaging the estimates with an inverse weighting by the standard
error of the GLM fit. The individual-level FIR results were then entered into a linear mixed-
effects (LME) model to extract the effect of FIR delay, condition, and chromophore, while
accounting for the random effect of subject. Santosa et al.66 provides for a description of these
second-level statistical models.

2.2.2 Canonical model analysis: effect of parameters on response detection

Next, the effect of several analysis parameters on the detection rate for auditory responses was
investigated. In contrast to the FIR approach (Sec. 2.2.1), this analysis used a predefined canoni-
cal model of the evoked hemodynamic response function (HRF), specifically the canonical SPM
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HRF, which is generated from a linear combination of two Gamma functions.68 The effect of
sampling rate, correction for systemic responses, and boxcar duration on the true- and false-
positive detection rates was explored. For simplicity, we visualized only the data for oxyhemo-
globin, and not deoxyhemoglobin, as the effects of different parameters were similar for both.
Only responses from optodes placed over the STG were analyzed.

Specific analysis parameters were varied in this section, but each analysis consisted of the
same general procedure—re-sampling the data, followed by conversion to optical density and
hemoglobin concentration. Next, channels with source-detector separation outside the 20- to 40-
mm range were excluded, as were any channels outside the STG ROI. A design matrix was then
constructed by creating a boxcar function based on the trigger timing and convolving this with
the SPM HRF. Drift factors up to 0.01 Hz were also included in the GLM as a regressor to model
the low-frequency oscillations in the data. An alternative approach may be to prefilter the data.69

A GLM was performed on the data with this design matrix, including the use of a fourth-order
auto-regressive noise model, generating channel-level data that were used to construct a receiver
operating characteristic (ROC) curve. Channel-level data were then combined into a ROI by
applying a weighted-average procedure to the estimated coefficients, in which each channel was
weighted by the inverse of the standard error of the GLM fit for individual channels. This pro-
cedure was termed the “no correction” analysis.

A false positive was defined as a response detected in the (control) condition of silence. A true
positive was defined as a response detected in the speech and noise conditions. Using these def-
initions, a ROC curve was generated by varying the threshold applied to the p value to determine
detection of a response (either a false positive or a true positive). The ROC was defined for each
analysis procedure, and the area under the curve was extracted to quantify the analysis performance
at an individual level. We also extracted the true-positive rate (TPR) resulting from a false-positive
rate (FPR) of 5%, as commonly employed in clinical studies.

To analyze the effect of different choices of processing, several modifications were made to the
procedure outlined above. Different short-channel approaches were applied to correct for systemic
response, including adding the mean of the short channels as a regressor to the GLM, adding the
individual short channels as regressors to the GLM, and adding the principal components (PCs) of
the short channels as regressors to the GLM (adding either a subset or all of the components was
investigated). These procedures were termed the “systemic corrected” analysis. Similarly, the effect
of sample rate was investigated by downsampling the raw signal using different rates.

2.2.3 Comparison of conditions and response lateralization

Finally, a group-level analysis was performed to determine if the averaging and GLM analyses
provided the same conclusion to two research questions. First, is there a difference in response
amplitude between the speech and noise stimuli? Second, is there a hemispheric difference in the
response to speech stimuli? We focus on group-level analysis as this has been demonstrated to be
reliable in auditory fNIRS experiments.42 We also investigate whether including the approach to
correcting for the systemic response correction deemed most effective (see Sec. 2.3) modifies
the experimental conclusions.

Averaging analysis. For the averaging analysis, the same approach was made as in
Sec. 2.2.1, after which, the mean value between 5 and 7 s of the average waveform for each
participant was exported for analysis by statistical testing. fNIRS responses to relatively short
sentences have been shown to peak within this time range.12

Canonical model analysis. For the canonical-model GLM analysis, two procedures were
used: the no correction approach and the systemic corrected approach, the latter of which
included all PCs as regressors in the GLM to compensate for systemic responses. Both analyses
(as described in Sec. 2.2.2) downsampled the data to 0.6 Hz and used a 3 s duration for the
boxcar function.

Statistical analysis. To summarize the dataset, results from the systemic corrected
approach were entered into a LME model that accounted for condition, ROI, and chromophore
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with the participant as a random variable. In Roger–Wilkinson notation, this would be described
as β ∼ −1 + Condition:ROI:Chroma + (1|ID).

For each of the three analyses described above (averaging, GLM No Correction, GLM
Systemic Corrected), a response estimate was exported for each participant, each condition,
and each ROI. These data were then used to address two issues. First, using all channels
over both left and right STG as a single ROI, a LME model was used to determine if the
response to speech was different from that to noise. The participant was included as a
random effect. In Roger–Wilkinson notation, this is described as β ∼ Conditionþ ð1jIDÞ.
Second, a LME model was used to determine if the left STG shows a different response
amplitude than the right in the speech condition, described as β ∼ ROIþ ð1jIDÞ. Two separate
models were applied, one for the oxyhemoglobin values and one for the deoxyhemoglobin
values.

3 Results and Discussion

To ensure that the bandpass filter applied in the averaging procedure was parameterized
correctly, as to remove unwanted components of the measurements and retain the frequency
content of interest, the spectrum of the raw fNIRS data extracted from an example data file
is plotted along with the expected hemodynamic response (Fig. 2). The spectral content of
the model boxcar function of the experiment convolved with a model neural response
(Fig. 2, red curve) indicates that the majority of the signal content is around 0.05 Hz, consistent
with the average presentation rate of the experiment. The spectral content of an example meas-
urement (Fig. 2, black curve) indicates a clear signal generated by the systemic pulse rate of
around 1 Hz. The filter-frequency response (Fig. 2, blue) clearly retains the peak of the
expected response, but it excludes the low-frequency drift and high-frequency (pulse-rate)
components.

3.1 Morphology of fNIRS Responses to Speech and Noise

Two approaches were applied to investigate the morphology of responses to auditory stimuli in
each ROI. Here, we provide a qualitative description of morphology.

Fig. 2 Summary of frequency information. The frequency content of the expected neural response
based on trigger information and model HRF is shown in red (arbitrary scaling). The applied filter is
shown in blue. Raw data from an example file are shown in black, with the solid line indicating the
mean value across all channels and the shading representing 95% confidence intervals across
channels. It is worth noting that the filter retains most of the experimental frequency content
while removing high-frequency heart rate content (around 1 Hz) and low frequency content in the
measured data.
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3.1.1 Averaging analysis

To summarize the group-level averaging analysis results, a time series visualizes the average
signal across participants and a bootstrapped 95% confidence band around the mean for each
condition and ROI (Fig. 3). Responses were observed in the STG regions for both noise and
speech stimuli, but not for the silent conditions. For the silence condition, relatively flat mea-
surements were observed over the entire waveform in all ROIs. For both speech and noise con-
ditions, the largest responses were measured from optodes placed over the left and right STG.
These responses show a canonical hemodynamic response, with a peak response around 5 to 7 s
after stimulus onset, consistent with the duration of the stimulus.12 As such, only channels over
the left and right STG were used subsequently to quantify response morphology.

3.1.2 Finite impulse response model analysis

A FIR GLM analysis was also used to examine the morphology of the hemodynamic response,
using only optodes situated over the STG. A comparison of the estimated response morphology
using the averaging and the FIR (GLM) techniques (Fig. 4) indicates broad agreement between
the methods with regard to the timing and amplitude of hemodynamic responses, although the
FIR approach generates an estimate of the response to speech greater than that suggested by
averaging. The morphology of the responses demonstrated in Figs. 3 and 4 are specific to the
stimuli used in this study, and response morphology may vary in a nonlinear fashion for stimuli
of different content or duration70 and for study populations with different ages.71 As such, it is
important to report the response morphology and verify that an appropriate canonical model is
fitted to the data for any GLM analysis.

3.2 Canonical Model Analysis: Effect of Parameters on Response Detection

We next examined the effect of different analysis parameters on the detection of responses in
individual participants. ROC curves for both ROIs [Fig. 5(a)] and individual channels [Fig. 5(b)]
indicate that ROIs show greater sensitivity to true positives than individual channels, likely due
to noisy channels being inversely weighted. Subsequently, we focus on the channel-level results
[Fig. 5(c)].

Two summary metrics extracted from the ROC curves are reported. First is the traditional
area under the curve (AUC) measure. A larger value indicates better performance across the

Fig. 3 Morphology of auditory fNIRS responses using the averaging approach for all ROI and
conditions. Each column represents a different region of interest as illustrated in the top-down
head view inset. Each row represents a different stimulus condition. Red represents oxyhemo-
globin, and blue represents deoxyhemoglobin. Shaded lines indicate 95% confidence intervals.
Responses were observed over the left and right STG for both speech and noise conditions, but
not for silence.
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entire range of false-positive values. Also reported is the TPR occurring at the 5% false-positive
rate (FPR). We chose to focus on the metric at 5% FPR, as opposed to the AUC metric, because
this tends to be more relevant for clinical purposes.72,73 Many of the differences in the ROC occur
at a high FPR at and above 50%; however, this FPR would be considered unacceptable in a
clinical setting.

3.2.1 Effect of short channel regression on detection of auditory responses

We first examined the effect of different short-channel based methods on reducing systemic
responses from the estimated neural responses. The effect of adding different representations
of the short channels as regressors in the GLM is explored. These representations include a
limited number of PCs, all PCs, the individual short channels, or the mean of the short channels
per each chromophore.

Without short-channel correction, responses were detected in <20% of individual channel
measurements for an FPR of 5%. As expected, applying the short-channel method to remove

Fig. 5 The effect of systemic response correction on auditory fNIRS response estimates. (a) ROC
curves for the STG region of interest and (b) individual channels over the STG. (c) Summary sta-
tistics from the individual channel ROC with area under the curve (circle) and TPR at 5% F
(square) metrics for each method. Analysis with no systemic correction is included as a reference
(green), analysis with 1, 2, 4, or all PC of the short channels as regressors in the GLM is shown
(orange, blue, light green, yellow, respectively), and all short channels included as individual
regressors (brown) or averaged per chromophore (gray). Note that all systemic response correc-
tion approaches provide improved detection over no correction. Including all PCs, the mean of the
short channels, or all individual channels provides best auditory response detection.

Fig. 4 Morphology of auditory fNIRS responses over the STG. Each column represents a different
stimulus condition. Responses are illustrated for both oxy- and deoxyhemoglobin in red and blue,
respectively. The shaded areas and solid line represent the mean and 95% confidence intervals
for the averaging approach. The dashed lines illustrate the estimates for the FIR GLM approach.
It is worth noting that the averaging and FIR GLM fits are quite similar, except for a larger estimate
for the FIR approach in the speech condition.
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systemic components resulted in a substantial improvement in the detection rate.41,51–53 Although
it is common to use just the first or second PCs as regressors,2 we observed that including
all components resulted in the best performance, consistent with Huppert.74 Including either
all PCA components, the mean, or all individual short channels simplifies analysis as these
approaches do not require a specific selection criterion, making them easy to implement,
describe, and replicate.

We also observed that including all of the individual short channels or the mean of the short
channels as regressors, instead of the PCs, also results in detection rates equally as good as the
PCA approach. Recent reports utilizing active tasks has suggested that including all PCs is
the most effective method for compensating for systemic components;74 however, this was not
the case in the current dataset. This suggests that meaningful comparisons can be made across
studies that include different short-channel regressor methods in their GLM analysis in passive-
auditory studies on an individual-level analysis. For the remainder of this study, we selected to
use all the PCs as regressors for subsequent analysis as this is suggested to be the most effective
method for compensating for systemic components in the estimation of neural responses.74

3.2.2 Effect of sample rate on the detection of auditory responses

fNIRS devices often require a trade-off between the number of channels and the acquisition
sample rate, and understanding the effect of this trade-off is of practical concern when designing
auditory experiments; performance generally decreases with lower sample rates (Fig. 6).
Analysis of data with a higher sample rate requires more memory and computational resources,
so we selected 0.6 Hz as a sample rate that balances computational cost with accuracy.

3.2.3 Effect of boxcar duration on the detection of auditory responses

The fNIRS response to our 5 s block stimuli peaks around 6 to 7 s after stimulus onset (Fig. 4).
GLM analyses fit an expected neural response to the data, in which the expected neural response
is generated by convolving a model HRF with a boxcar function generated from the onset times
of the stimuli. The length of the boxcar function can be varied to account for the duration of the
neural response, and it is typically set to the duration of the stimulus. However, response mor-
phology can change with stimuli and brain location. As such, we investigated the effect of boxcar
length on response detection to auditory stimuli, and we find that the 3 s boxcar function pro-
vides the greatest TPR for a pre-determined 5% FPR (Fig. 7). Note, however, that the reduction
in performance that comes from swapping out the 3 s boxcar function for one of 1 or 5 s duration
is smaller than the reduction in performance that results from not employing systemic correction
or when too low a sample rate is used. An alternative approach to account for differences

Fig. 6 The effect of sample rate on auditory fNIRS response estimates. (a) ROC curves for the
STG region of interest and (b) individual channels over the STG. (c) Summary statistics from the
individual channel ROC with area under the curve (circle) and TPR at 5% FPR (square) metrics for
data sampled at different rates. Analysis indicates improved performance with increasing sample
rate, but with limited improvement above ∼0.6 Hz.
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between the model and the measured response is to include a derivative term in the design
matrix.13,75 However, since we observed good correspondence between the response morphol-
ogy and the expected canonical response, we did not include derivative terms in our analysis.
The response morphology, and appropriate boxcar length, may vary with stimulus duration,
characteristics, and brain structure of interest.70,71

Additional analysis parameters beyond the scope of the current study include effects arising
from selection of the specific auto-regressive model37 or alternate canonical functions.76 Based
on the data thus far, we maintained a sample rate of 0.6 Hz in future analyses and included all
PCs of the short channels as regressors, employing a 3 s boxcar function to model the hemo-
dynamic response.

3.3 Comparison of Conditions and Response Lateralization

Finally, we investigated whether, when applied at a group level, the averaging and GLM
approaches to fNIRS analysis provide the same experimental conclusions. Two common ques-
tions in auditory experiments were explored. First, could we detect a difference in response
amplitude between two conditions, in this example: speech and noise? Second, within one con-
dition, is a difference in response amplitudes apparent across brain hemispheres, often termed
“lateralization of responses”?

We first summarized the dataset (GLM analog of Fig. 3) by modelling the response amplitude
as a factor of ROI, condition, and chromophore in a LME model, with the participant as a ran-
dom factor (Fig. 8). Consistent with the observed average waveforms (Fig. 3), no significant
responses were observed in either the left IFG or occipital lobe, and the silent, control condition
generated no responses in any ROI. Significant responses were observed to both speech and
noise in the two ROIs of the STG. The lack of any detectable response to speech stimuli in
the left IFG may be due to the passive nature of the experimental task; this cortical region has
been indicated in the processing of speech, particularly in active tasks with more challenging
acoustic conditions.9,14

3.3.1 Does speech elicit a greater neural response than noise?

We next addressed the questions of whether responses to speech are larger than responses to
noise over the STG ROI and whether inter-hemispheric differences in activation are observed.

Comparison of averaging and GLM result. Using the Systemic Corrected GLM with a
LME model, which examined the effect of condition with participant as a random effect, we
observed that the speech-evoked oxyhemoglobin response was 2.043 μM larger than that evoked
by noise (p < :001) and the speech-evoked deoxyhemoglobin response was −1.1 μM larger than

Fig. 7 The effect of boxcar function duration on auditory fNIRS response estimates. (a) ROC
curves for the STG region of interest and (b) individual channels over the STG. (c) Summary sta-
tistics from the individual channel ROC with area under the curve (circle) and TPR at 5% FPR
(square) metrics for different boxcar durations. Analysis indicates optimal detection rates for a
3 s boxcar function; note that the stimulus duration was 5 s.
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that evoked by noise (p < 0.001). Using the average waveform amplitude 5 to 7 s post stimulus
onset, we observed that the estimated oxyhemoglobin response to speech was 1 μM larger than
to the noise (p < :01) and the deoxyhemoglobin response to speech was −0.45 μM larger than to
the noise (p < :01). From this, we conclude that both analysis methods generate the same exper-
imental conclusion, consistent with visual inspection of the averaging and FIR GLM analyses
(Fig. 3). The estimated response amplitude difference was larger for the GLM approach, possibly
due to this approach better accounting for the statistical nature of the fNIRS noise.37 The time
window used in the averaging approach may also reduce the estimated response amplitude,
whereas a peak picking approach may result in a slightly larger estimate of the response.
However, automated peak-picking approaches are prone to error, particularly when the signal-
to-noise ratio is low, while manual methods of peak-picking reduce the repeatability of an
analysis.

Effect of systemic component rejection. Analyzing the data using the GLM approach,
with no correction for systemic responses—the No Correction analysis—indicates that the
speech response was 2.306 μM larger than that to the noise stimulus (p ¼ :025). Not including
corrections for systemic responses generated a similar effect size to the Systemic Corrected
analysis. This correspondence between methods of analysis may be due to the systemic response
being relatively small or the systemic response being similar across conditions. Our experiment
was a passive listening-task, and participants were asked not to pay attention to the stimuli.
Studies that have observed an event-locked systemic component to auditory stimuli required
participants to generate a response, for example, by means of a button press.48 These more active
experimental paradigms may generate a larger systemic component and therefore elicit greater
differences between analyses corrected or uncorrected for systemic effects. This differs from the
individual-level findings in Sec. 3.2.1 in which the detection rate obtained from single channels
increased when short channel systemic correction was applied. This suggests that inclusion of
short channels for GLM analysis of passive auditory tasks is more important for studies inves-
tigating individual-participant effects rather than studies investigating group-level effects.

Fig. 8 Estimates of response per condition and region of interest using the GLM analysis.
Oxy- and deoxyhemoglobin responses are shown in red and blue, respectively. The presence of
a response (statistical difference to zero) is indicated by a triangle. Error bars represent the 95%
confidence intervals of the mean.
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3.3.2 Does speech elicit a larger response in left or right hemisphere?

Comparison of averaging and GLM result. Finally, to address whether a difference in
response amplitude exists between the left and right cortical hemispheres to speech stimuli,
results from the Systemic Corrected GLM were used in an LME model examining the effect
of ROI, with participant as a random effect. The model reported that the estimated amplitude of
the oxyhemoglobin fNIRS response in the right hemisphere was not significantly different from
that in the left (β ¼ −0.21, p ¼ 0.73), nor was there a difference for the deoxyhemoglobin
(β ¼ 0.38, p ¼ 0.36). Similarly, the same LME model reported no significant lateralization
of the oxyhemoglobin response amplitude across hemispheres when the averaging analysis was
employed (β ¼ 1, p ¼ :13), and similarly, the deoxyhemglobin showed no significant effect of
hemisphere (β ¼ −0.33, p ¼ 0.15).

Effect of systemic-component rejection. When assessing the No Correction GLM data
at a group level, no significant effect of lateralization was observed (β ¼ 0.18, p ¼ 0.87), indi-
cating that not compensating for systemic components does not generate aberrant lateralization
effects. However, we cannot conclude from these data that, if a lateralization effect were present,
it would be detectable without systemic correction.

3.3.3 Discussion

Despite the limitations of the averaging approach compared with the GLM,37,38 both analyses
resulted in the same experimental conclusion when applied to this dataset. When applied to both
the comparison of conditions (speech versus noise) and comparison of cortical hemispheres
(left versus right) research questions, the two analyses both resulted in the same conclusions.
Thus, in the case of passive auditory experiments, meaningful comparisons can be made across
studies applying either a GLM or averaging analysis.

4 Conclusion

A reference block-design auditory fNIRS dataset was created with two common acoustic
stimuli. Using this dataset, it was determined that both an averaging approach and an FIR
GLM analysis resulted in similar response morphology. The effect of correcting for systemic
hemodynamic responses using short optical channels was evaluated on the response detection
of the GLM approach; it was determined that including the individual short channels,
or the PCs of the short channels, resulted in similar practical improvements in detection.
At a group level, it was observed that both the averaging and GLM approaches produced
the same experimental conclusions to two common research questions. Not including short-
channel corrections did not change the group-level conclusions, which may be due to the
task being passive in nature and may not hold for experiments requiring active participation.
We conclude that, when appropriate averaging or GLM approaches are applied to passive
auditory group-level data, both analysis pipelines generate similar results. This suggests that
meaningful comparisons can be made across research groups that use different analysis
approaches.
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Code, Data, and Materials Availability

The fNIRS data reported in this article will be released on OSF.io and github.com in the BIDS
data format to allow for ease of reuse.78 All code functions used in this analysis are available at
mne.tools/mne-nirs and the associated GitHub page, along with example analysis tutorials.
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