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Abstract

Significance: Functional brain imaging in awake animal models is a popular and powerful
technique that allows the investigation of neurovascular coupling (NVC) under physiological
conditions. However, ubiquitous facial and body motions (fidgeting) are prime drivers of spon-
taneous fluctuations in neural and hemodynamic signals. During periods without movement,
animals can rapidly transition into sleep, and the hemodynamic signals tied to arousal state
changes can be several times larger than sensory-evoked responses. Given the outsized influence
of facial and body motions and arousal signals in neural and hemodynamic signals, it is imper-
ative to detect and monitor these events in experiments with un-anesthetized animals.

Aim: To cover the importance of monitoring behavioral state in imaging experiments using un-
anesthetized rodents, and describe how to incorporate detailed behavioral and physiological
measurements in imaging experiments.

Approach:We review the effects of movements and sleep-related signals (heart rate, respiration
rate, electromyography, intracranial pressure, whisking, and other body movements) on brain
hemodynamics and electrophysiological signals, with a focus on head-fixed experimental setup.
We summarize the measurement methods currently used in animal models for detection of those
behaviors and arousal changes. We then provide a guide on how to incorporate this measure-
ments with functional brain imaging and electrophysiology measurements.

Results: We provide a how-to guide on monitoring and interpreting a variety of physiological
signals and their applications to NVC experiments in awake behaving mice.

Conclusion: This guide facilitates the application of neuroimaging in awake animal models and
provides neuroscientists with a standard approach for monitoring behavior and other associated
physiological parameters in head-fixed animals.
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1 Introduction

Although physiological studies using anesthetized animal preparations have advanced our
understanding of brain function remarkably, there has been a push in the neuroscience commu-
nity to utilize un-anesthetized animal models in neurophysiological experiments, given the
disruption of normal physiology by anesthetics.1–3 Un-anesthetized approaches are particularly
valuable to the neurovascular coupling (NVC) and functional neuroimaging communities,
because the interpretation of both task-evoked and resting-state functional brain imaging data
collected in un-anesthetized humans depend on our understanding of NVC under normal physio-
logical conditions. In this paper, we will cover the importance of monitoring behavioral state
in imaging experiments using rodents, drawing from examples in rodent literature, and then
describe how to incorporate detailed behavioral and physiological measurements in imaging
experiments.

Head-fixed preparations are invaluable for many physiological approaches,4,5 and offer the
ability to limit behavioral complexity, which simplifies experimental design and data analysis,
allowing researchers to focus on the behaviors of interest, such as locomotion,6–8 whisking,9 or
licking.10 Head-fixed preparations also minimize motion artifacts and allow monitoring of neural
activity and brain hemodynamics with two-photon laser scanning microscopy,11–13 functional
ultrasound imaging,14 and high-density electrode arrays.15–17 In recent years, the availability
of inexpensive, high-speed cameras, combined with powerful image processing algorithms, have
enabled comparable advances in behavioral monitoring.18 Combining these techniques will
provide more insights in understanding brain hemodynamics.

Recent studies have highlighted the importance of behavior and arousal levels in neural activ-
ity and the hemodynamics response. Fidgeting behaviors,19 including whisking and body
motion, drive much of the spontaneous hemodynamics signal,9 and a re-analysis of “vasomo-
tion” signals20 has shown a large component of spontaneous vascular signals are driven by body
motions.21 These vascular dynamics are not due to changes in heart rate or other peripheral
factors, as movement-driven arterial vasodilations are correlated with neural activity and blocked
by local infusion of muscimol, indicating a local neural control.7 These movement-driven hemo-
dynamic responses are not just an issue for studies in the somatosensory cortex. Large scale
neural recordings have shown that whisking, and facial and body movements are robustly linked
to brain wide changes in neural activity.22,23 In task-based studies, stimuli can introduce behavior
changes locked to the stimulus. For example, visual stimulation in mice induces body motion
that is highly correlated with the stimulus contrast,24 and auditory stimulation robustly induces
whisking.9 Many other behaviors (blinking, sighing, and swallowing) can cause functional acti-
vation in multiple brain regions, and the frequency of these behaviors can be altered by arousal
levels, age, and disease (see Ref. 19 for review). Behavior does not only drive vasodilation, it can
also impact systemic blood oxygenation. Changes in respiration rate and phase are correlated
with body movements,25,26 and increases in respiration rate drive increases arterial blood
oxygenation that can increase tissue oxygenation independent of local vasodilation.8 As these
changes in respiration are tied to arousal states,27–29 sensory stimulation,28,30,31 and motion,32

they can confound oxygen-sensitive measurements if not monitored.
In addition to fidgeting/movement-related brain dynamics, changes in arousal can cause large

hemodynamic changes. In primates, decreases in arousal are associated with large increases in
blood volume,33 and arousal transitions are associated with brain-wide hemodynamic sig-
nals.34,35 Sleep drives large, brain-wide increases in blood flow and volume,36,37 and the blood
volume increase during rapid eye movement (REM) sleep can be several times larger than sen-
sory-evoked response.37 In the absence of sensory stimulation, well-habituated mice frequently
fall asleep,37 and head-fixed mice keep their eyes open during sleep,37–39 making detection of
sleep more complicated than simply monitoring whether the eyes are open or closed. A careful
monitoring of cortical state in experiments using “awake” animals is needed to elucidate poten-
tial confound in brain imaging studies.

Without monitoring behavior and arousal state, motion and arousal state signals will
contribute to noise and variability in the physiological responses measured in experiments with
un-anesthetized animals. The behavioral and arousal-liked changes can be much larger than
any stimulus-evoked changes. Furthermore, as movement and sleep drive bilaterally symmetric
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signals that show substantially higher correlations than during rest,36,37,40,41 they will also con-
tribute to “resting state” functional connectivity measures. Because of this, variations in the
amount of a behavior will influence functional connectivity measures, and putative difference
in connections across individuals or imaging sessions may simply due to differences in time
asleep or moving.33–35,42

In this paper, we provide background for monitoring behavior and physiological signals from
mice and other animals. Addition of behavior tracking and physiological measures of arousal
state to neuroimaging experiments will help contextualize and classify brain imaging signals.
This guide facilitates application of neuroimaging in awake animals and provides neuroscientists
with a standard approach for monitoring the behavior and other physiological signals in head-
fixed mice (Fig. 1). We believe that routine monitoring of these signals is essential for rigorous
NVC research, to facilitate comparisons across laboratories, and to understand the physiological
origins of neural and vascular signals.
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Fig. 1 Overview of the relationship between movement, arousal, and neurovascular signals in
rodents. (a) Schematic showing how the movement-related signals modulate the relationship
between neural activity and brain hemodynamics. (b) Selected studies showing the obligation
to monitor movement related signals. Data and figure are adapted from (1) Ref. 22, (2) Ref. 144,
(3) Ref. 38, and (4) Ref. 19.
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2 Overview of the Procedures Described in this Tutorial

Here, we provide a how-to guide for monitoring and interpreting a variety of physiological
signals [heart rate, respiration rate, electromyography (EMG), intracranial pressure (ICP), whisk-
ing, and other body movements] and their applications to NVC experiments in awake-behaving
mice. For each physiological signal, we first provide a brief review of its effects (if any) on
hemodynamics and electrophysiological signals, and summarize the measurement methods cur-
rently used in animal models, and then provide a step-by-step guide on how to incorporate these
measurements with functional brain imaging and electrophysiology measurements. For data
analysis, we supply example data sets and software for demonstration.

Note: the following tutorial is for a head-fixed mouse setup. Procedures involving live ani-
mals must be performed by trained experimenters and follow institutional guidelines, and local
and national regulations. To ensure efficient neurophysiological measurements or successful
behavior measurements under awake conditions, we recommend undertaking head-fixation
habituation prior to the imaging session for a minimum of three days. We refer the readers
to previously published descriptions of the surgical procedures for implanting headbars, win-
dows, electrodes, and head-fixation in rodent models.43–47 Detailed plans for our head-fixation
setup can be found here (https://github.com/DrewLab/Mouse-Head-Fixation), and the major
parts and equipment used to build our optical imaging setups can be found here (Table S1
in the Supplemental Material). For measuring electrophysiological signals, we have found that
battery-powered amplifiers (e.g., DAM80, World Precision Instruments) minimize power-line
noise contamination of electrophysiological signals. In addition, as different signals come with
drastically different temporal resolutions, when incorporate behavioral monitoring using vide-
ography, using cameras with transistor–transistor logic (TTL) ports able to trigger frame capture
is essential. Moreover, due to the nature of data collection, some equipment may interact with
the animal, such as the thermocouple used for respiration measurement. A steel protection tube,
in combination with a compact manipulator, will provide precise positioning of the thermocou-
ple and a stable signal over a long period.

3 Monitoring Large Bodily Motions in Awake, Head-Fixed Mice

Awake animals move, both spontaneously8,9,19,41 and in response to sensory stimuli.9,24 These
movements (during which the animal is able to move its limbs and that we colloquially refer to as
locomotion), generate complex changes in neural activity in many brain regions,48 not just soma-
tosensory and motor regions8,41,49–55 [Figs. 2(d)–2(f)]. In some brain areas, the increases in neural
activity is accompanied by increase in blood flow,8,40,41,51,56 but decrease in blood flow in other
cortical regions.8,41 In somatosensory areas, the changes induced by locomotion and movement
are comparable to those generated by sensory stimulation.9 Locomotion drives increases in blood
flow and volume in the cerebellum,56 somatosensory8,41,51 and visual cortex,8,41 and hippocam-
pus.40,57 These increase in flow are not driven by increase in heart rate or blood pressure,8,51 as
they are blocked when local spiking activity is blocked.7–9 Even short movements (twitches or
brief postural adjustments) can drive robust hemodynamic signals [Fig. 2(b)]. If these ubiquitous
movements are not monitored, the changes in hemodynamic signals accompanying them may be
erroneously interpreted as “noise” or vasomotion.

For imaging experiments, mice can be either head-fixed on a spherical treadmill7,8,19,41,50–52,58–76

[ Fig. S1(b) in the Supplemental Material] or a rotating disk77–80 which allows them to freely loco-
mote. Alternatively, mice can be head-fixed with their body in a tube [Fig. S2(b) in the Supple-
mental Material], which is compatible with fMRI measures,3 whisker-based tactile behaviors9,45

and the study of sleep.37,81 The techniques for monitoring large bodily motions are different in
each paradigm, and we describe them in turn.

3.1 Detection of Movement on a Spherical Treadmill

The standard spherical treadmill in our lab is made from a plastic ball 6 cm in radius (Kaytee
clear run-about exercise ball, 5 in.). To give the mouse better traction, we wrap the path of the
mouse on the ball with grip tape (3M 310 Safety-walk, S-16032, McMaster-Carr). The mouse
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Fig. 2 Locomotion drives global neural activity increase and cortical region specific hemodynamic
responses. (a) Experimental setup for IOS imaging. Reflectance images are collected during periods
of green LED light illumination at 530 nm (equally absorbed by oxygenated and deoxygenated
hemoglobin, M530L3, Thorlabs). For these experiments, a CCD camera (Dalsa 1M60) is operated
at 30 Hz with 4 × 4 binning (256 × 256 pixels), mounted with a VZM300i optical zoom lens (Edmund
Optics). (b) Example showing cerebral blood volume (CBV) change during voluntary locomotion.
Top left, an image of thin-skull window and corresponding anatomical reconstruction; scale bar =
1 mm . Top right, reflectance map before (1 s), during (49 s), and after (94 s) a voluntary locomotion
event. Bottom, percentage change in reflectance (−ΔR∕R0) during locomotion events for each brain
region. Reflectance is inversely related to blood volume, and has been inverted for clarity. FC, frontal
cortex; FL/HL, forelimb/hindlimb representation of the somatosensory cortex; Wh, vibrissae cortex;
V1, visual cortex. (c) Population average of locomotion-triggered average of CBV (n ¼ 11 mice)
responses in both FL/HL (green) and FC (blue). Data are shown as mean ± SD. (d) Experi-
mental setup for neural activity measurements using multi-channel laminar electrodes. Neural
activity signals are recorded using two linear microelectrode arrays (A1 × 16-3 mm-100-703-A16,
NeuroNexus Technologies). The electrode array consists of a single shank with 16 individual elec-
trodes with 100-μm interelectrode spacing. The signals are digitalized and streamed to SmartBox™
via a SmartLink headstage (NeuroNexus Technologies). The arrays are positioned perpendicular to
the cortical surface, one is in FL/HL and the other one is in FC on the contralateral side. (e) Example
trial showing the large increase in gamma-band LFP power (top), raw signal (middle), and spike
raster (bottom) during locomotion from a site 800 μm below the pia in FL/HL. Shaded area indicates
the time of locomotion. (f) As in (e) but for FC. (g) Identifying grooming events from analog signals
from rotary encoder. Subpanels (a)–(f) are adapted from Ref. 8.
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and the headbar holder are positioned so that the back of the mouse’s head is ∼1.5 cm forward
and 2 cm above the highest point of the ball. This positioning allows the mouse to easily stand,
walk, or groom, but may need to be adjusted depending on the size of the mouse. A metal shaft
(1/4 in. in diameter and cut to 7 in. in length, 1327K113, McMaster-Carr) is inserted through the
ball and attached to a rotational encoder (E7PD-720-118, US Digital) to monitor rotational
velocity. The position of the ball is secured with a shaft collar (9414T6, McMaster-Carr) on
each side. The encoder and the other end of the shaft are attached to an optical breadboard
(12 × 12 × 1∕2 in:, MB12, or 8 × 8 × 1∕2 in:, MB8, Thorlabs). Mounting the entire apparatus
on a breadboard facilitates movement and adjustment of the head-fixation setup, and this appa-
ratus can be easily inserted under two-photon microscope or other optical imaging systems
(Fig. S2 in the Supplemental Material).

The rotatory encoder outputs an analog signal, which is proportional to the angular velocity
of rotation [Fig. 2(b)]. Using analog motion detectors has some advantages over video mon-
itoring as the data takes up much less space and the analysis is much simpler. We acquire the
analog signal and filter it offline with 10-Hz zero-lag low-pass filtering (fifth-order Butterworth
filter) in software. To detect movements of the mouse, we use an acceleration threshold.
Acceleration is calculated as the first derivative of the filtered velocity signal. The absolute
value of the acceleration is then categorized as locomotion if the absolute value of the accel-
eration is above a threshold of 0.03 m∕s2, and resting if the absolute value of acceleration is less
than this threshold. To align the locomotion signal with other measurements, such as functional
brain imaging signal, which has different temporal resolutions, we characterize that the image
frame is collected during locomotion if at least 10% of the instantaneous acceleration is above
the threshold within the time spanned by continuous imaging frames. Also, if two consecutive
locomotion events occur within 1 s of each other, the time elapsed in between is considered as a
continuous locomotion period.6–8,41,51,59–61 We have found that this heuristic allows us to detect
both long walking bouts and short “twitches” accurately [Fig. 2(b)], as both kinds of move-
ments are associated with robust vasodilation in the somatosensory cortex [Fig. 2(b)]. In our
experience,8,41,51 the absolute velocity of the locomotion does not impact neural or hemo-
dynamic activity, only the state of motion itself. Neural and hemodynamic responses evoked
by motion can be aligned to motion onset to generate a “locomotion-evoked average” or “loco-
motion-triggered average,” just as is done with stimulus-evoked responses. These locomotion-
evoked averages, at least in the somatosensory cortex, are highly repeatable across locomotion
events of comparable duration [Fig. 2(c)], and are stable over months of imaging.59 Notably,
brief body motions (twitches) can drive robust changes in blood volume [Fig. 2(b)]. While the
amplitude of the hemodynamic responses increases with increasing event duration, this is
largely due to vasodilation of veins which dilate slowly over tens of seconds,82 as the arterial
dilation reaches its maximum within a few seconds.59 Lastly, grooming events can be distin-
guished from locomotion by the oscillatory signal in ball velocity with no net directed
motion [Fig. 2(g)].

3.2 Detection of Large Bodily Movements in Restrained Mice

For experiments where locomotion is not wanted, mice can be placed in a plastic cylinder
for imaging [Fig. S2(b) in the Supplemental Material]. The mouse is inserted into an acrylic
tube (5 in. long, 1.5 in. outer diameter, 1.375 in. inner diameter, McMaster-Carr,8585K207),
with the mouse head extending out, allowing the mouse to use its front paws to grip the tube
edge [Fig. S2(b) in the Supplemental Material]. The tube is attached to the customized holder via
Velcro tape. Typically, the head bar is about 3 cm above the bottom of the body tube. After head-
fixation, the mouse should be crouching in a natural position in the body tube, with its paws
resting on the edge of the tube. To measure body movement while the mouse is head-fixed in a
plastic tube, a force sensor (Flexiforce A201 sensor, Tekscan, Boston, Massachusetts) is placed
below the plastic tube to detect body movement.9,37 The signal is amplified 1000× (Model 440,
Brownlee Precision), zero-lag low-pass filtered (<20 Hz, second-order Butterworth filter), and
digitized at 20 kHz. Similar to the detection of locomotion, changes in force that exceeded a
threshold were flagged as body movements by the animal.
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4 Video Monitoring of Behavior

4.1 Monitoring Whisker Movement

The rodent vibrissae system is an extensively studied experimental model of sensorimotor
processing.83,84 Whisker sensory processing occurs in a highly distributed manner in the mouse
brain. Even a brief deflection of a single whisker can evoke signals in many brain regions down-
stream of somatosensory cortex.85 The rodent whisker-to-barrel cortex also is a well-established
sensory system to investigate NVC. Movement of whiskers in awake9,86 and anesthetized
rodents82,87–93 cause corresponding changes in neural activity and hemodynamic signals (Fig. 3),
and these signals will not be restricted to the somatosensory cortex, but will be present through-
out the brain.22,94

Not only is whisker movement of interest to the researcher who wishes to understand whisker
sensory processing (and sensory system in general), but these movements provide data about the
internal state of the animal.95 Although the whiskers are held still while the mouse is at rest, the
mice do volitionally whisk. Volitional whisking will bilaterally increase firing rates in brainstem,
thalamic, and cortical motor somatosensory region.96–99 Whisking can also be evoked by sensory
stimulation, even if the stimuli are not directed at the whiskers, such as auditory stimulation.9

While whisker movement can be detected with video monitoring of the face,22 more precise
quantification of whisker movement requires short exposure time, higher frame rate cameras. In
our lab, whisker movements [Figs. 3(a) and 4(e), and Fig. S2(d) in the Supplemental Material] of
un-anesthetized mice are captured at 150 frames∕s with a Basler A602f camera with an 18-mm
DG series FFL lens (#54-857, Edmund Optics). The whiskers are diffusely illuminated from
below with 625-nm light (Edmund Optics, #66-833) or 780-nm light (for two-photon laser scan-
ning microscopy, 2PLSM; M780L3, Thorlabs). Either a ground glass diffuser or several sheets of
paper can be used to make the illumination of the whiskers more homogenous [Fig. 4(b) and
Fig. S2(b) in the Supplemental Material]. We capture a small region of interest (ROI), typically
30 × 350 pixels, corresponding to a∼2-mm × ∼24-mm field of view, which is adequate to detect
whisker angle [Fig. 4(e)]. The ROI needs to not contain the face, and should be homogenously
illuminated. The average angle of all the whiskers is then quantified using an algorithm that
makes use of the Radon transform to detect the overall angle of the whiskers (https://github
.com/DrewLab/Whisker-Tracking), as can be done with line scans of single capillaries to deter-
mine red blood cell velocity.100 The peaks of the sinogram correspond to the position and the
angle of the whiskers in the image. The average whisker angle is extracted as the angle of the
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the head. Other cameras track the whiskers (illuminated by 660-nm LEDs beneath the animal), the
eye (illuminated by 780-nm LEDs), and changes in animal behavior. A piezo sensor to record
changes in body motion is located beneath the animal, which rests head-fixed in a cylindrical tube.
Tubes direct air to the distal part of the whiskers (but not the face), and do not interfere with voli-
tional whisking. Changes of (c) pupil size, (d) EMG, (e) whisker angle and motion, (f) heart rate,
(g) total hemoglobin, and (h) spectrogram of cortical (LH Cort LFP and RH Cort LFP) and hippo-
campal local field potential (CA1 Hip LFP) during cortical state transitions. It is noteworthy that
the blood volume during sleep is greater than during awake, and the fluctuations during NREM
are much larger than when the mouse is awake. Adapted from Ref. 37.
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sinogram with the largest variance in the position dimension. For tracking the entire length of the
whisker and its dynamic interactions with objects, more sophisticated software is needed.101–103

Vibrissae angles from any dropped camera frames are filled by linear interpolation between
the nearest valid points. Whisker angle is low-pass filtered (<20 Hz) using a second-order
Butterworth filter. To align with functional brain imaging measurements, whisker angle data
are then resampled down to the imaging frame rate (for our experiments, 30 Hz). To identify
periods of whisking, whisker acceleration is obtained from the second derivative of the position
and binarized with an empirically chosen acceleration threshold for a whisking event. Accel-
eration events that occur within 0.1 s of each other are considered as a single whisking bout.
As with locomotion-triggered average, the hemodynamic responses induced by whisking can be
visualized by aligning the hemodynamic signals to whisk onset to generate a whisking-triggered
average9,37 [Fig. 3(c)].

4.2 Video Monitoring Body Motions and Postural Adjustments

Optical imaging studies and fMRI studies in awake animals rely on head and/or body restraint1

to minimize head motion. With this setup, rodents are often imaged on top of a treadmill or in
a tube, which allows a great deal of body motion. If only ball motion or pressure sensor signals are
monitored, other movements (i.e., stomping, grooming, and twitching)19,104 may not be detected
unless they drive appreciable change of ball rotation (as shown in Fig. 2) or pressure sensor signals
(as shown in Fig. 4). These relatively small motions are accompanied by robust motor cortex
activation and drives neural activity signal and brain hemodynamics signal change.9,19,105–109

In addition to fidgeting- or stimulus-evoked movements, head-fixed mice rest their body
at different postures, especially on the setups which allow more body motion. At rest, some
mice bring feet close together and arch their back, or twist their body to maintain certain posture,
resulting in a change of curvature of spine column (Fig. 5). As in pathological conditions, the
cervical curvature change significantly affects the vertebral artery blood flow, the normal
change of spine column may also contribute to the brain hemodynamics regulation. Animal body
posture may also affect brain hemodynamics through multiple mechanisms, e.g., the ICP
changes110,111. Also, different static body posture will set a distribution of tonic muscle activity
and proprioceptive input.

Advances in computer vision and deep learning18,112 have made the detection and quanti-
fication of these body motions easier. Combining high-speed cameras with those advanced
algorithms allows very sensitive body and limb movements tracking.9,76,113 Here, we provided
a simple example of body position and spine/tail curvature tracking using DeepLabCut.18,112 For
behavior imaging, we use a camera (FLIR blackfly USB camera) running at 30 frames∕s. The
camera can be placed in the front or over the head of the setup, based on the experimental setup.
To capture the entire body of the mouse (front view, top view, side view, and back view), instead
of using multiple cameras (which dramatically increases the amount of data and complexity), we
use mirrors placed at different angles to reflect different body parts and use one single camera
with a wide-angle lens to capture the reflected images [Fig. 5(a)]. The infrared light is diffused to
ensure an evenly distributed illumination. A shorter exposure duration combined with brighter
illumination ensures videos without blur. Before analyzing the videos in DeepLabCut,18,112 we
crop the videos to include only the ROI, making it easier to produce better tracking performance
with fewer training images. By combining movement velocity, movement direction with brain
hemodynamics and electrophysiological signals [Fig. 5(b)], we can better understand move-
ment-specific brain functions, and quantitatively understand the fidgeting contribution to brain
signals.

Note: Since image segmentation and image analysis rely on high-contrast image sequence,
the choice of colors for background and the mouse strain can affect image quality. Behavioral
illumination should occur with infrared light so as not interfere with any acquired fluorescence/
intrinsic optical signals (IOSs), and because rodents are blind to it. The animal may move
perpendicular to the focal plane, e.g., the hips and tail are different distances from the camera.
To maintain image focus, a lens with an adjustable f-stop should be used to maximize the focal
depth by reducing the aperture size. However, this increased focal depth comes at the expense of
light gathered. If the camera exposure time is not short enough, frames in the image sequences
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will have blurry objects, e.g., the whiskers, as they move very rapidly. This combination of
increased depth of field and short exposure time requires sufficient ambient lighting to generate
quality images. No matter how good the computer vision algorithm is, it will be difficult for it to
identify certain body parts from blurry images. We also recommend the use of high-resolution
video for better spatial resolutions (high-definition is recommended for fast-moving body parts).
But for whole-body assessment while the mouse is resting, low and medium-quality videos
are adequate.

4.3 Monitoring Pupil Diameter

Pupil diameter has been widely applied to monitor cortical state during locomotion,65,114–116 or
other small movement,117 tactile detection task,118 and sleep transition,38 as changes in pupil
diameter are thought to correlate with the activity of neuromodulators, including noradrenaline
(NA) and acetylcholine (ACh) [see Ref. 119 for review]. We monitor the pupil using video
monitoring. A Basler A602f camera with a fixed focal length lens (#67-714, Edmund Optics)
or a telecentric lens (#58-430, Edmund Optics) is used to image the pupil at 30 frames∕s
(200 × 200 pixels). The camera is positioned 30 cm away from the mouse. The eye is illumi-
nated with 780-nm light (M780L3, Thorlabs). Illumination was done at an angle of 60 deg rel-
ative to the axial midline of the mouse so that the reflection of the light off the cornea does
not interfere with pupil visualization. We segment the images of a black pupil on a gray iris
background with a sequence of image processing manipulations done with a custom-made
MATLAB script (https://github.com/DrewLab/Pupil-Tracking). For other protocols for perform-
ing pupilometry, see Ref. 120.
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Fig. 5 Monitoring of small body movements using high-speed camera and computer vision.
(a) Experimental setup. Different body parts can be monitored from different angle (front, side,
and top views) with one single camera using reflected images from mirrors. To monitor the trunk
movements, a top view mirror can be placed above the mouse and tilted at a 45-deg angle.
To monitor the forepaw, hindpaw and tail movements, a side view mirror can be placed on the
side of the mouse and slightly rotated to ensure the image of these body parts captured by the
camera. (b) Track body positions with DeepLabCut. (b1) Ball velocity from the optical encoder.
(b2) CBV changes in response to locomotion recorded with fiberphotometry. (b3) Spine curvature
changes during rest and locomotion. It is noteworthy that the spine curvature changes when the
mouse makes any movement regardless of the ball velocity. (b4) Displacement of each marker
between consecutive frames. The displacement is calculated as the Euclidian distance of a dot in
two subsequent frames, which reflects the body movement. (b5) Position of the spine at different
times during the experimental session. Subpanel A shows the spine position during rest. Subpanel
B shows the spine position when the mouse adjusts the posture with minimal treadmill movement.
Subpanel C shows the spine position when the mouse is running. Subpanel D shows the calcu-
lation of the spine curvature.

Zhang et al.: Behavioral and physiological monitoring for awake neurovascular coupling experiments. . .

Neurophotonics 021905-10 Apr–Jun 2022 • Vol. 9(2)

https://github.com/DrewLab/Pupil-Tracking
https://github.com/DrewLab/Pupil-Tracking


During wakefulness, pupil dilation is correlated with whisker and body movements, and
increase in cerebral blood volume (CBV) (Figs. 4 and 6). Pupil diameter is qualitatively different
during sleep. During REM sleep, it remains mostly constricted, while during non-rapid eye
movement (NREM) sleep, the pupil’s diameter fluctuates, though the diameter is smaller than
awake states (Fig. 4).38

5 Electromyography for Monitoring Muscle Tone

Not all body motions are detectable with video. For example, head-fixed animals do not move
their head, but they can exert force on the headbar.121 Preceding, accompanying, or following
gross motor movements or small posture changes, multiple muscle groups become engaged,
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(g) Spectrogram of cortical LFP signal. It is noteworthy that the increase in gamma-band (40 to
100 Hz) power and decrease in low frequency (<10 Hz) power during movement.
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e.g., the neck muscle.122,123 Electrical monitoring of muscle activity (EMG) allows measure-
ments of the activity of single muscles with high temporal resolution. Immediately before and
during locomotion and other movements, EMG increases in head-fixed adult mice73 and neonate
rodents.124 EMG increases in muscle groups precede locomotion initiation. In humans, visual
stimuli produce stimulus-locked responses in limb skeletal muscle EMG.125,126 Aside from
stimulus-evoked responses, during rest, muscle tone also changes in association with arousal
state [Figs. 4(d), 7(b), and Fig. S2(c) in the Supplemental Material]. EMG also allows mea-
surement of muscle tone, which is a key component of sleep scoring in animal models, and
can be used to differentiate stages of sleep (such as NREM and REM) from periods of awake
quiescence. For example, during active sleep, the nuchal muscle and forelimb muscle become
atonic, and EMG power recorded from nuchal muscles decreases in both adult37 and neonatal
rodents.81,124,127

For detailed theoretical, technical, and practical aspects of EMG recordings, we direct the
reader to the excellent tome by Loeb and Gans.128 While the advances in microelectronics that
have driven large scale electrophysiology in the brain have been applied to EMG technology,129

here we focus on using more conventional EMG techniques to detect muscle activity and arousal
state, and provide examples of measuring EMG from nuchal muscle for monitoring muscle tone
during sleep-wake transitions. We make recordings of nuchal muscles as they are accessible and
close to the headbar, facilitating an easy mounting of the connector.

5.1 Electrode Fabrication

For EMG recording in nuchal muscle, stereotrodes [Fig. 7(a)] are constructed with PFA-coated
7-strand stainless-steel microwires (#793200, A-M systems, Sequim, Washington). EMG stain-
less-steel microwires are threaded through polyimide tubing (#822200, A-M Systems, Sequim,
Washington) giving an interelectrode spacing of several millimeters. The stainless steel micro-
wires are crimped to gold pin connectors (#520200, A-M Systems), with impedances typically
between 70 and 120 kΩ at 1 kHz. About 3 mm of the coating at the tip of the EMG electrodes is
stripped off with sharp forceps before implantation.

5.2 Monitoring Neck Muscle EMG

The skin above the neck is resected and the electrodes are implanted by inserting the EMG wires
into each nuchal muscle for EMG recording. The skin is then re-attached to the edge of the
occipital bone (VetBond, 3M, St. Paul, Minnesota), and the entire area is sealed with dental
cement [Fig. 7(a)]. Electrical activity from the nuchal (neck) muscles is amplified and digitally
bandpass filtered (300 to 3000 Hz) using a third-order Butterworth filter. To obtain the power of
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the EMG [Figs. 4(d), 7(b), and Fig. S2(c) in the Supplemental Material], the signal is squared and
then convolved with a Gaussian kernel (0.5 s standard deviation).

5.3 Interpreting EMG Activity

EMG power will vary over several orders of magnitude during transition from awake to different
sleep states. For visualization, it is helpful to plot the EMG power (300 to 3000 Hz) on a log
scale. In awake animals, there is always tonic muscle tone, which decrease approximately
20-fold during NREM sleep in mice, and almost completely suppressed during REM sleep
[Figs. 4(d), 7(b), and Fig. S2(c) in the Supplemental Material].

6 Other Physiological Signal Monitoring

An efficient, fine-tuned interplay between the brain and body (central and peripheral nervous
systems) via neuronal, vascular, and humoral mechanisms is essential to maintain bodily func-
tions and homeostasis. A disturbance of brain-body interactions is a major contributor to many
diseases affecting the brain, heart, liver, and metabolism. The changes in posture, small behavior,
or brain states (e.g., sleep) will cause changes in physiological signals, such as heart rate,
respiration, muscle tone, and ICP, which will directly/indirectly cause changes/fluctuations
in electrophysiological or hemodynamic signals.

6.1 Monitoring Heart Rate Changes during Behavior

The heart rate is not static, and it is increased by exercise [Fig. 6(f)], stress, and sensory stimu-
lation, and decreases during immobility and sleep [Fig. 4(f)]. In mice, telemetric recordings in
the home cage over the course of the day have shown that heart rate averages ∼12 beats∕s.130

This includes periods of rest and movement, so heart rates above and below 12 Hz are well
within the normal range. There are also strain and age-dependent differences across mice that
can be substantial.131 The potential impact of systemic variables needs careful consideration in
brain imaging studies. For some imaging modalities, such as BOLD fMRI, heart-rate fluctua-
tions can be a significant source of noise,132 as the fluctuations are near the sampling frequency,
leading to aliasing. For others, such as IOS imaging, the heart rate-induced fluctuations in the
signals are orders of magnitude smaller than sensory-evoked ones.9 Heart rate, and the associated
changes in blood pressure affect various vessel types differently. As arteries have active auto-
regulatory responses, while veins passively change their diameters in response to pressure
changes, arteries and veins will be affected by blood pressure differently. Pharmacologically
disrupting normal cardiovascular changes accompanying voluntary locomotion significantly
affects the hemodynamic responses in veins, but not arterioles.51 This suggests that normal
venous distention accompanying locomotion requires normal heart rate modulations. To an even
finer scale, the pulsation of the heart cause pulsations in brain tissue, leading to image distortion
and loss of resolution,133 which may limit our ability to study both physiological responses and
pathological changes in the intact central nervous system. Heart rate can be invasively monitored
using electrodes.133,134 However, in many cases, heart rate can be extracted from IOS images8,9,51

or line scans from capillaries.43,135

Heart rate information can be extracted from intrinsic optical signals. We direct the reader to
the following references for details on how to implant cranial46 or thin-skull windows.43,44 To
avoid aliasing of the heart rate signal, images must be acquired at greater than twice the highest
heart rate. We use a 30 frames∕s acquisition rate with isobestic (530 or 570 nm) illumination.
An ROI avoiding large draining veins is drawn for further time-frequency analysis [Fig. 8(b)].
While the amplitude of the heart rate-related pulsations is small (they typically have a peak to
peak ΔR∕R0 of 0.02% to 0.1%), and much smaller than sensory- or locomotion-evoked changes
[Fig. 2(c)] that can be 1% to 5% or even more, they have a high signal to noise. To extract heart
rate-related information, we first take the temporal derivative of the median window reflectance
to remove the prominent low-frequency oscillations in the IOS. We then calculate the spectro-
gram using Chronux Toolbox136,137 with a sliding window of 2 s on the median window
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reflectance. In the 5 to 15 Hz frequency band, the heart rate driven oscillations show up as a
prominent peak [Fig. 8(b)], which can be detected by finding the frequency with the maximum
power in a given time window. Under normal physiological conditions, the heart rate will vary
with time. This is known as heart rate variability, and is indicative of normal fluctuations in
sympathetic and parasympathetic drive. Heart rate increases (up to ∼12 Hz) when the animals
locomote [Figs. 6(f) and 8(b)], and is substantially lower in NREM sleep than in the awake
state [Fig. 4(f)].

Heart rate information can also be extracted from capillary line scans. The velocity of red
blood cells in capillaries is significantly affected by the heart beat oscillations, and show oscil-
lations at the heart rate frequency. Power spectral analysis of the red blood cell velocity of brain
capillaries show a significant peak around heart beat frequencies43,135 [also see Fig. 8(d), inset 2].
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Therefore, applying spectrogram analysis using Chronux Toolbox136,137 used for IOS, we can
also extract heart rate information from capillary blood flow velocity signals [Fig. 8(d)]. As
capillary blood flow is affected by local regulation138,139 and intravascular factors,140 when
extracting heart rate information, one should take caution to make sure the blood flow is free
of any obvious stall events,6,141,142 which is mainly driven by leukocyte adhesion.143

6.2 Monitoring Respiration during Behavior

Like heart rate, the respiration rate varies dynamically depending on the arousal state of the
animals. Respiration rate plays an important role in determining oxygenation of brain tissue,
as respiration rate can explain about as much variance in oxygenation as neural activity
does.6,8 Cognitive tasks have been shown to drive stimulus-locked respiration in humans.31

Respiration-entrained local field potential (LFP) oscillations are observed brain-wide and in
many species.29 Early fMRI studies revealed that the global signal recorded through fMRI is
affected by breathing,144–146 and the signal is also affected by variations in respiration during
resting-state studies.32,147,148 Recent studies have also shown that brain tissue oxygenation is
greatly affected by respiration during voluntary locomotion in mice.8,149 Moreover, as an impor-
tant waste clearance pathway, cerebrospinal fluid (CSF) flow in the brain and spinal cord is
dramatically affected by respiration.150–152 Breathing rapidly is often associated with fear or
alertness, and it may also serve an important role in stimulating brain areas responsible for
information processing, which facilitates faster responses to environmental stimuli. There are
reciprocal connections between the respiratory nuclei and the locus coeruleus27 and other brain
regions involved in arousal.25 Because of this, respiration can be used as an important signal
for cortical state segregation.153

In studies involving humans or anesthetized animals, monitoring respiration usually uses an
elastic belt or bioimpedance, with a calibration using spirometer. Monitoring respiration in
awake animals is not an easy task, especially with additional simultaneous measurements, which
makes plethysmography154 incompatible. As respiration is the result of volume changes in the
lungs, resulting from respiratory muscle activity, which is the consequence of neuronal activity
conveyed through nerves from the brain, we can monitor breathing using the neuronal activity
of breathing circuit,25 the breathing muscle, and the air movement [see Ref. 154 for review].
Measuring the electromyography (EMG) of the diaphragm,155 the main inspiratory muscle,
provides a good measurement of respiration, but is invasive and technically challenging.
Measurement of respiration can be performed by measuring the cooling and warming of air
arising from breathing using thermocouples.6,8,156 Although junction potentials and positioning
differences mean the temperatures recorded are not quantitative indicators of airflow, the timing
of inhalations and exhalations can be readily determined from the cooling-warming patterns
[Fig. 9(a)]. In addition to the methods mentioned above, which are either invasive or require
close contact with the animal, video monitoring is entirely noninvasive and contactless.157,158

However, the cost for this is significantly higher than previously mentioned methods. With the
advance of high-speed cameras and the computer vision algorithms, video-based breath tracking
should be cheap and easier in the future.

We use a small, externally positioned, temporally responsive thermocouple (40-gauge K-
type thermocouple, TC-TT-K-40-36, Omega Engineering) to measure respiration rate6,8

(Fig. 9). The thermocouple is positioned ∼2 mm in front of and slightly inferior to the nostrils
to maximize the temperature change in the thermocouple during expiration. The voltage
changes generated by the temperature are amplified 2000×, filtered below 30 Hz (Model
440, Brownlee Precision), and sampled at 1000 Hz. Downward and upward deflections in res-
piration recordings correspond to inspiratory and expiratory phases of the respiratory cycle,
respectively [Fig. 9(a)]. The time of each expiratory peak in the signal can be identified as
the zero-crossing point of the first derivative of the thermocouple signal. One should take cau-
tion to make sure the thermocouple does not contact with the mouse whiskers or nostrils. It is
noteworthy that the ambient temperature can significantly affect the amplitude of the signal
from the thermocouple. The warmer the ambient air temperature, the smaller the amplitude
of the voltage excursions caused by respiration. Mice move their nostrils during active sensing,
and the amplitude of the voltage change during exhalation will depend on the direction the
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nostrils are pointed.26 Because of these effects, the absolute amplitude of the voltage change
cannot be used to infer respiration depth.159

6.3 Monitoring Intracranial Pressure Changes during Behavior

The supply of blood to the brain depends on the cerebral perfusion pressure, i.e., the difference
between the blood pressure and the ICP. Natural behaviors, such as locomotion,61 coughing,160

and sleep,161 all are accompanied by substantial increase in ICP. During voluntary locomotion,
ICP increases in head-fixed mice61,62 and freely moving rats,162 and the increase of ICP precedes
locomotion onset.61 Not only do these large movement cause significant increase of ICP, small
movements, such as twitching and changes in body position,111 can increase ICP dramatically. It
is important to understand the ICP change and its relation with different behaviors, because ICP
elevation alters CSF clearance pathways,163,164 affects venous outflow dynamics165 and deter-
mines sympathetic activity.166,167 Increases in ICP are also associated with pathology. How
ICP influences regulation of brain hemodynamics regulation and NVC is still debated. In anes-
thetized rats and baboons, moderate ICP elevation increases baseline CBF,168 while larger ICP
elevations decrease baseline CBF.169 In response to somatosensory stimulation, post-stimulus
deoxy-hemoglobin responses are attenuated by elevated ICP.168 Capillary RBC velocity in anes-
thetized rats does not change during ICP elevation.170 These differences are partially attributed
to the method used to elevate ICP,171,172 which will change perfusion pressure and outflow
resistance differently.

ICP can be measured at different sites within the brain, with intraventricular and intrapar-
enchymal measurements being most common.173,174 Here, we introduce our intraparenchymal
ICP measurement protocol in awake, head-fixed mice61,62 (Fig. 10). Before the ICP measure-
ment, we implant a head-bar, and habituate the mouse running on a spherical treadmill for at least
three days. Before each experiment, the pressure sensor (model SPR1000; diameter, 0.33 mm;
Millar, Houston, Texas) is stabilized by soaking the sensor in room-temperature sterile water
overnight, and is calibrated using the built-in function of the pressure control unit. On the day
of ICP measurements, the mouse was anesthetized and a hole 0.5 mm in diameter is drilled in the
skull above the left parietal lobe. The pressure sensor is inserted through the hole perpendicularly
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Fig. 9 Respiration drives changes in cerebral tissue oxygenation. (a) Measuring respiration using
a thermocouple. Measurements of breathing can be taken using thermocouples placed near the
mouse’s nose (∼1 mm), with care taken to not contact the whiskers. Downward and upward
deflections in respiration recordings correspond to inspiratory and expiratory phases of the res-
piratory cycle, respectively. The time of each expiratory peak in the entire record can be identified
as the zero-crossing point of the first derivative of the thermocouple signal. During voluntary loco-
motion, respiratory rate increases. (b) Cross-correlation between brain tissue oxygenation (PtO2)
and respiratory rate during rest (top) and periods including rest and locomotion (bottom). (c) As
(b) but for correlation between PtO2 and gamma-band LFP power. Data are shown as mean SEM
in (b) and (c). Blue shaded region in (b) and (c) ~95 confidence interval of cross-correlation.
Adapted from Ref. 8.

Zhang et al.: Behavioral and physiological monitoring for awake neurovascular coupling experiments. . .

Neurophotonics 021905-16 Apr–Jun 2022 • Vol. 9(2)



into the cortex to a depth of 1 mm. The probe is sealed in place with Kwik-Cast (World Precision
Instruments). Placing the probe perpendicularly into the brain, rather than between the skull and
pia, reduces damage to the pial vascular network that supplies the cortex.175 Control experiments,
in which the ICP probe was vibrated in water, showed that rapid motion does not cause detect-
able pressure changes, and an ICP probe implanted in a dead mouse did not register any ICP
changes when the ball was rotated.61

7 Cortical State Monitoring: Detecting Sleep

Head-fixed mice will fall asleep, and because sleep in mice can be highly fragmented, sleep
periods lasting tens of seconds to minutes can be interspersed with wake periods of comparable
duration.176,177 Examples of sleep-related changes in CBVare shown in Fig. 4. In a single-vessel
scale (Fig. S2 in the Supplemental Material), during NREM sleep, arteriole diameter follows a
low-frequency dilation/constriction with peak dilations that can exceed those seen during mod-
erate whisking (Fig. 3). During REM sleep, the arterioles slowly dilate over tens of seconds, and
the dilation is substantially larger than anything that occurs in the awake animal37 (Fig. S2 in the
Supplemental Material). Therefore, if sleep is present, it will greatly impact or even dominate
any neurovascular signals.

The large impact of sleep on neurovascular signals means that periods of sleep need to be
detected to avoid contamination. This can be done by “sleep scoring,” in which physiological
and behavioral signals are used to determine if the mouse is awake, or in NREM or REM sleep.
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Fig. 10 Monitoring ICP during locomotion and exposure to the vasodilator isoflurane.
(a) Experimental setup. One week before the ICP measurement, a titanium head-bar is attached
to the skull with cyanoacrylate glue and dental cement and the skull is covered with a thin layer of
cyanoacrylate glue. After two days of recovery, the animal is habituated to head fixation on a
spherical treadmill for one day (for three 30-min sessions, separated by 1 h in home cage with
unrestricted access to food and water). On the day of the ICP experiment (one day after the
habituation), the mouse is anesthetized with isoflurane and a small craniotomy (∼1-mm diameter)
is made over the somatosensory cortex. A pressure measuring catheter (SPR-1000, Millar) is
inserted into the cortex (1.0 mm caudal, 1-mm lateral from bregma), and a tight seal is made using
Kwik-Cast (world precision instruments). This surgical procedure takes ∼10 min. Following the
surgical procedure, the animal is allowed to wake from anesthesia and to freely locomote on the
spherical treadmill for 2 h, during which both ICP and locomotion are recorded simultaneously at
1 kHz (NI USB-6003). To minimize any residual effect of anesthesia on ICP, we only analyze data
collected more than 1 h after the cessation of anesthesia. (b) Example trace showing ICP dynam-
ics during voluntary locomotion. Magenta trace shows the ICP changes, and black tick marks show
locomotion events. (c) Averaged ICP changes in response to 5 s locomotion (gray shaded area).
The thin lines show data from individual animals, and the thick line shows the group average. It is
noteworthy that ICP rises before locomotion onset. (d) Example trace showing ICP dynamics
before (pre-ISO), during (ISO) and after (post-ISO) isoflurane exposure. Isoflurane increases
ICP immediately, and ICP recovers to baseline ∼2 min after isoflurane removal. Black tick marks
show locomotion events. The ICP increases during isoflurane are smaller than those accompany-
ing locomotion. (e) Isoflurane exposure significantly increases ICP. Adapted from Ref. 61.

Zhang et al.: Behavioral and physiological monitoring for awake neurovascular coupling experiments. . .

Neurophotonics 021905-17 Apr–Jun 2022 • Vol. 9(2)

https://doi.org/10.1117/1.NPh.9.2.021905.s01
https://doi.org/10.1117/1.NPh.9.2.021905.s01


Sleep scoring153,178 has been extensively used on both humans and animals, and the criteria will
differ from species to species. While a detailed presentation of sleep scoring methodology is
beyond the scope of this review, using the behavioral and physiological observation techniques
here can help to determine if sleep is occurring during functional brain imaging. In general, mice
do not make any bodily motions during sleep, though they sometimes do on arousal. There is
essentially no whisker movement during NREM sleep (Fig. 4 and Fig. S2 in the Supplemental
Material), so it is highly probable that the mouse has fallen asleep after >20 s of whisker immo-
bility. The whiskers do move during REM sleep (Fig. 4 and Fig. S2 in the Supplemental
Material), but REM sleep is almost always preceded by periods of NREM sleep. During
NREM sleep there is a broadband increase in the cortical37,179,180 and hippocampal37,181,182

LFP power, which is particularly large in the lower (∼1 to 4 Hz) frequency bands (Figs. 4 and
7). This is in contrast to the cortical LFP changes during locomotion and other movements,
where power in the lower frequencies of the LFP (1 to 4 Hz) goes down (Fig. 6). The heart
rate is low during NREM sleep (∼6 Hz), somewhat higher during REM (∼7 to 8 Hz), and
is highest on average (but more variable), in the awake state (Fig. 4). Pupil diameter is quali-
tatively different during different sleep states. During REM sleep, the pupil is very constricted,
while during NREM sleep, the pupil’s diameter fluctuates, though the diameter is smaller than in
the awake states38 (Fig. 4). Finally, during sleep there are large changes in arterial diameter and
blood volume (Fig. 4 and Fig. S2 in the Supplemental Material). During NREM sleep, arteriole
diameter undergoes low frequency (0.01 to 0.1 Hz) oscillations with peak dilations of up to 30%
above baseline. During REM sleep, the arterioles slowly dilate up to 50%.37 In general, arterial
dilations of more than 10% in the absence of sensory stimulation that are not accompanied by
body/whisker movement are hallmarks of the mouse falling asleep. Anecdotally, we very rarely
see sleep with mice on spherical treadmills (Fig. S1 in the Supplemental Material), but it is much
more common when mice are head-fixed and restrained in a tube (Fig. 4 and Fig. S2 in the
Supplemental Material). Lighting matters as well. Because mice are nocturnal, they are more
likely to sleep with visible light present, e.g., during IOS imaging.

8 Discussion

Behavior is an important determinant of neural activity and hemodynamic changes in un-
anesthetized animals. Under many conditions, spontaneous movements and arousal changes can
account for most of the noise or spontaneous fluctuations in neural and vascular responses.
Without monitoring behavior and arousal state, any evoked signals may be swamped, and
differences in arousal level and spontaneous motion (e.g., due to age, drug treatment, or other
manipulation) could confound comparisons of neurovascular responses across groups. However,
tools to address behavioral confounds are inexpensive and readily available. We believe that the
adoption of routine monitoring of body position and physiological manifestations of arousal will
increase the rigor of research, help comparisons across laboratories, and to give a better under-
standing of the origins of neural and vascular signals.
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