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Abstract

Significance: A long-standing challenge of the blood vessel tail artifacts along the axial
direction prevents optical coherence tomography angiography (OCTA) for a comprehensive
three-dimensional (3D) vascular mapping. Addressing the blood vessel tail artifacts issue will
make OCTA to be a real 3D blood vessel structural imaging technique, which in combination
with OCT-based blood flow velocity measurements will pave the way for a simpler and robust
3D imaging of the capillary transit time, one important parameter for the evaluation of micro
circulation.

Approach: We first described the basic principles of OCTA imaging, discussed the origin of
blood vessel tail artifacts in an OCTA image, then reviewed the existing OCTA techniques for
tail artifacts suppression, and at last we envisioned the potential solutions for effective OCTA tail
artifacts suppression.

Results: The origin of blood vessel tail artifacts is due to the multiple scattering of photons with
flowing red blood cells, which elongates the light path of the dynamic signal from vessel lumen
to the tail regions. High numerical aperture implementation, subtraction-based post-data process-
ing, Hessian filtering, and high acquisition rate-based dynamic analysis methods have been
proposed to address the blood vessel tail artifacts issue in OCTA.

Conclusions: High acquisition rate-based dynamic analysis in combination with Hessian filter-
ing have the potential to effectively suppress the blood vessel tail artifacts and in the meantime
preserve flows in small vessels within the tail region, providing real 3D OCTA imaging of blood
vessel structures.
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1 Introduction

Blood circulation is so important that one of the vital signs of death is the stop of blood flow.
Blood vessel is composed of big vessels, such as arteries and veins, and small vessels of arterials,
venules, and around 40 billion capillaries that deliver most oxygen and nutrients to cells in the
body.1 The blood vessels have diameters ranging from centimeters to the finest ones of several
micrometers that are close to the size of red blood cells (RBCs). The 3D geometry of the vascular
network is optimized to ensure rapid blood flow support at speed of up to meters per second in
large arteries as well as slow nutrition and oxygen delivery down to <1 millimeter per second in
the capillary networks.2 Such an amazing mechanism ensures timely and efficient feeding of the
vast territory of organs in our body.
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The vascular morphology of the microcirculation extends to an even higher level of complex-
ity that the small vessels are densely and intimately connected forming a complex capillary
network.3 Recently, the mechanism and dysfunction of small vessels have attracted wide atten-
tion as the microvasculature interacts directly with cells that the signature of pathologies may
first present in the small vessels before they become detectable in the blood circulation.4

However, our understanding of the structural and functional information of small vessels is quite
limited, mainly due to the lack of imaging techniques that can provide high spatiotemporal
resolution image and functional information.

Optical coherence tomography angiography (OCTA) has emerged as a powerful tool for
blood vessel imaging, especially for microvascular networks.5–9 In 2006, OCTAwas first intro-
duced to image the blood vessel in the posterior part of human eye,9 and in 2007, Wang et al.8

described a 3D optical angiography method (OAG) that realized 3D mapping of the cerebral
vascular of an adult mouse brain. In principle, OCTA maps blood vessels using the signal
dynamic contrast that signals blood vessels are changing over time due to the moving of
RBCs, whereas signals from surrounding tissues are relative stable. 10–12 Thus, OCTA has the
advantage of using an intrinsic contrast agent (i.e., RBCs) to differentiate blood vessels from
surrounding tissues. With three dimensional (3D) and high-spatial resolution imaging ability of
small vessels, OCTA has been widely used in a variety of studies, such as angiography of retina
vessels in ophthalmology,13–19 cerebrovascular perfusions in neuroscience,20,21 cancer biology,22,23

and skin diseases.24–27

Despite the fast adoption in a variety of applications, OCTA is still facing several challenges,
such as realizing quantitative detection of the blood flow28 and the tail artifacts beneath big
vessels. In general, OCTA is regarded as a qualitative structural imaging technique of blood
vessels. The tail artifacts beneath big vessels prevent OCTA to realize real 3D structural imaging
of the blood vessel networks.29–31 As an example, Fig. 1(a) shows the en facemaximum intensity
projection (MIP) of cerebral blood vessels along the axial direction, which presents an elegant
microvasculature image; however, the transverse-axial cross-sectional image shown in Fig. 1(b)
shows notable tail artifacts beneath large vessels as indicated by the red arrows, which affects
the identification of the lower boundary of large vessels and the detectability of small vessels
beneath the large vessels that may be buried in the tail artifacts.

To suppress the tail artifacts in OCTA image, a variety of methods have been proposed and
tested. In this paper, we will first describe the basic principles of OCTA imaging, discuss the
origin of blood vessel tail artifacts in an OCTA image, then review the existing OCTA techniques
for tail artifacts suppression, and at last, we envision the potential solutions for effective OCTA
tail artifacts suppression.

2 Principle of OCTA

Doppler OCT was the first OCT-based technique to extract the velocity information from the
dynamic signal of blood flow.32–36 However, Doppler OCT-based axial velocity detection relies

Fig. 1 (a) OCTA en-face MIP image of cerebral blood vessels and (b) tail artifacts under big
vessels challenge OCTA to realize 3D blood vessel imaging.
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on the Doppler angle that the blood flow must have a rather small angle (usually <60 deg)
related to the incident light beam. Such requirement prevents Doppler OCT from detecting blood
vessels that flow in nearly perpendicular direction to the light beam. In contrast to Doppler OCT
that requires stable phase shift to detect axial blood flow velocity, OCTA relies on the dynamic
contrast of signal variation, which can be either the phase change or intensity signal fluctuation.
Thus, OCTA is able to image blood flows at any directions as long as there is signal variation.

Figure 2 shows the principle of OCTA imaging. Basically, the OCT signal from tissue is
relatively stable compared to the signals detected within blood vessels, where the move of
RBCs induces signal fluctuation. By acquiring signal from the same location at different time
points the signal change within blood vessels is larger than that in the tissue, providing the
dynamic contrast for OCTA imaging. Further, depending on the type of signal used for data
processing, OCTA can be classified as amplitude-based,37–39 phase based,40 and complex signal-
based20,41 techniques.

3 Blood Vessel Tail Artifacts in OCTA

OCT imaging relies on the light path match between the reference arm and the sample arm.42,43

The depth location of a scatterer within the sample is determined by the light path length of the
photon that hits and be reflected by the scatterer.11 Figure 3 shows the potential interactions of an
incident photon when it enters the blood vessel and in the tissue. RBCs are the main scatters
within blood vessels, whose interaction with incident photons results in dynamic contrast for

Fig. 2 The principle of OCTA imaging. OCT signal within blood vessels (location 2) is fluctuating
over time while signal from static tissue (location 1) is more stable. Location 3 is beneath the blood
vessel lower boundary where mixed static and dynamic signals are presented.

Fig. 3 (a) Single and multiple scattering and (b) photon path length reconstruction from (a). Blue
line illustrates photon experiences multiple scattering event and is collected by the objective as
blood vessel signal from beneath the vessel lumen. Green line represents true blood vessel signal
that photon only occurs single interaction.
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OCTA imaging.44,45 The interactions between the RBCs and photons could be classified into two
types: single interaction of sole backward scattering (green line in Fig. 3) and multiple inter-
actions of forward and backward scatterings (blue line in Fig. 3). In the former backward scatter-
ing scenario, the incident photon is reflected when it hits the RBC. Thus, the light path length of
the photon has traveled represents the exact location of the RBC within the blood vessel. While
for the latter scenario of mixed forward and backward scatterings, the incident photon would
experience multiple scatterings before it being backward reflected by another RBC or static
tissue and finally collected by the objective.47–49 In this case, the light path length of the photon
has traveled is elongated, which may extend beyond the equivalent light path of the blood vessel
lower boundary, resulting in dynamic signal beneath the vessel. As OCTA imaging relies on
dynamic contrast,46 such dynamic signal under the blood vessels will be preserved during
OCTA data processing, leading to the blood vessel tail artifacts in an OCTA image. Thus, the
blood vessel tail artifacts in an OCTA image are due to the elongated light path length caused by
the multiple scattering of photons that carry the dynamic information after interacted with the
flowing RBCs in the vessels.

4 Suppress the Blood Vessel Tail Artifacts in OCTA

To realize real 3D OCTA imaging of blood vasculatures, a series of methods have been proposed
to suppress the blood vessel tail artifacts in OCTA, including using high numerical aperture (NA)
objectives50,51 to reject signals from deeper layers and many data processing algorithm-based
approaches.15,16,52–60 Here, we review the existing methods used for blood vessel tail artifacts
suppression in OCTA and the advantage and limitations of each approach.

4.1 Hardware-Based OCTA

A high NA objective has a short depth of focus, and it mainly collects signal reflected from the
focusing layer. Optical coherence microscopy (OCM) employs a high NA objective in the sam-
ple arm so that signal from the out-of-focus layers would be rejected. Based on this idea, Leahy
et al.50 used a high NA objective with a depth of focus of 15.1 μm in their OCT system to per-
form OCTA data acquisition, giving a very thin layer of detection. Thus, photons experiencing
multiple scattering and finally reflected at the out-of-focus region would not be collected by the
objective, realizing the suppression of tail artifacts under the blood vessels, as shown in Fig. 4(a).
Compared to the traditional low NA objective-based OCTA, this approach can largely suppress
the tail artifacts [magenta bracket indicated in Fig. 4(b)] and small blood vessels underneath
the large vessels were successfully detected [marked with red arrows in Fig. 4(b)]. However,
the high NA objective-based OCM method needs multiple scanning at different depths to realize

Fig. 4 (a) Compared to the low NA objective, the high NA objective-based detection is less sen-
sitive to multiple scattering events. (b) With high NA objective, OCM-based angiography can sup-
press the blood vessel tail artifacts and detect small vessels that may be buried in the tail artifacts
with low NA objective-based detection. Reproduced with permission, courtesy of C. Leahy et al.
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a 3D imaging of the vessels, resulting in extended data acquisition time. In addition, the high NA
objective gives very high lateral resolution, which makes this method more sensitive to bulk
motion, deteriorating the image quality.

Adaptive optics (AO)-based OCT was applied to suppress the blood vessel tail artifacts as
well.51 AO-OCTA was first described in 2012.61 With the advantage of high NA, Salas et al.
demonstrated that AO-OCTA has the ability to suppress the tail artifacts beneath large vessels,
providing a high-resolution and high signal-to-background contrast angiogram.51 As shown in
Fig. 5, the blood vessel tail artifacts were greatly suppressed in deeper layers [Figs. 5(g) and 5(h)]
with enhanced signal-to-noise ratio (SNR), suggesting the combination of AO and OCTA has the
ability of reducing tail artifacts from the top layer large vessels and enhancing the contrast of
blood flow in deeper layers.

4.2 Axial Subtraction-Based Approaches for Blood Vessel Tail Artifacts
Removal

As shown in Fig. 6(a), the MIP of the outer retina blood vessel angiogram is composed of blood
flows in the outer retina layer and the blood flow artifacts projected from the inner retina layer.

Fig. 5 Comparison of AO-OCT and AO-OCTA. (a) and (b) B-scan images generated from AO-
OCT and AO-OCTA. (c)–(h) en face MIP images in three different depths below the topmost layer
marked in (a) and (b). Red arrows indicate tail artifacts from (f) are suppressed.
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To quantify choroidal neovascularization (CNV) in age-related macular degeneration, Jia et al.15

introduced the slab-subtraction (SS) method to remove the projected tail flows of inner retina in
the outer retina layers. In Jia et al.’s work, a binary mask of large vessels in the inner retina layer
was first obtained [Fig. 6(b1)] and then subtracted from the deep layers [Fig. 6(c1)]. This method
can remove the projection tail artifacts of large vessels but still be affected by the small vessel
projections. Liu et al.53 further created a blood vessel mask of the inner retina layer [Fig. 6(b2)]
and obtained a clearer blood vessel angiogram in the outer retina [Fig. 6(c2)].

The SS algorithm removes the blood vessel tail artifacts in deep layers by directly subtracting
blood flow signal in the superficial layers, which, however, leads to broken flows in deep layers
[Fig. 6(c)]. Zhang et al.54 considered the in situ pathological information to improve the blood
flow continuity of the CNV.

EQ-TARGET;temp:intralink-;e001;116;277

log½ATðx; yÞ� ¼ log½Asðx; yÞ� · f1 − Norm hlog½ARðx; yÞ�i ·
f1 − normh log½ISðx; yÞ�igg; (1)

where ATðx; yÞ is the true signal of interest, Asðx; yÞ is the detected projection image from outer
retinal avascular space (ORAS), ARðx; yÞ is the projection image obtained from retina, Nmh: : : i
represents normalization operation, and ISðx; yÞ is the structural projection image from the
ORAS. Figure 7 shows that this improved SS method can remove the blood flow projection
tail artifacts that may mislead diagnosis, and preserve the neovascular indicated by the yellow
circles [Fig. 7(b)].

Choi et al.57 further proposed a mean-subtraction method using a weighted mean value of all
pixels of each A-line to suppress the signal in the subluminal area of the large blood vessel.
Mathematically, this mean-subtraction method is expressed as

EQ-TARGET;temp:intralink-;e002;116;119OCTADSðiÞ ¼ OCTAðiÞ − ω ×
1

N

XN
k¼1

OCTAði; kÞ: (2)

Fig. 6 (a) Original outer retinal angiogram with CNV. (b1) and (c1) Comparison of Jia’s work and
(b2) and (c2) Liu’s work. (b1) Inner retinal large vessel mask generated from binary operation. (b2)
Filtered inner retina mask. (c1) Outer retina with larger vessel artifacts removed. (c2) Outer retina
with artifacts removed. Reproduced with permission, courtesy of Liu et al.
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where OCTADSðiÞ and OCTAðiÞ represent the i’th A-lines of the de-shadowed and original
image, respectively; OCTAði; kÞ is the magnitude at the k’th pixel point of the i’th A-line of
the original image; k is equal to the number of all pixel points of the A-line; ω is a weighted
average, which was set to 2.

Compared to the step-down exponential filtering method, which obscured small vessels
underneath the large vessels,23 the mean-subtraction method showed higher signal-to-back-
ground ratio (Fig. 8). However, similar to the aforementioned subtraction-based methods, the
mean-subtraction approach is able to remove the blood vessel tail artifacts projection in deep
layers but still at the cost of broken flows. This method works fine for qualitative evaluation
and manual assessment, but it’s challenge for quantitative analysis of the blood flow structure
in deep layers.

Fig. 8 (a) Depth-specific comparison of original and artifacts-removal en face OCTA images used
the mean-subtraction method and the step-down method. (b) Taken along horizontal white lines
on the OCTA images at the bottom of (c). (c) Normalized OCTA cross-sections of mouse cortex:
original (left), processed with the mean-subtraction method (middle) and the step-down method
(right). (d) Depth profiles taken along the dashed lines in (c) showing largely reduced tails for
both methods. Inserts in the graph are regions of interest indicated as boxes in (c), and arrows
represented underlying vessel, which is brighter and easily identified with the proposed method.
Reproduced with permission, courtesy of Choi et al.

Fig. 7 OCTA of the Type 1 CNV case indicated by the yellow circles. (a) Original OCTA of the
entire outer retina. (b) OCTA of the entire outer retina after tail artifacts removed. Reproduced with
permission, courtesy of Zhang et al.
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4.3 Projection-Resolved-OCTA and Reflectance-Based PR-OCTA

To minimize the broken flow issue in axial subtraction-based method, Zhang et al.55 further
proposed a projection-resolved (PR)-OCTA approach that finds local peaks along an OCTA
A-line to subtract projection tails (Fig. 9). In principle, the tail artifacts signal is always weaker
than the signal from vessel lumen. Thus, by searching for peaks from the normalized signal F on
each A-line and set the tail region to 0, the PR-OCTA can preserve more flow voxels under larger
vessels, which may be removed by the SS method. The PR-OCTA method can be described as
Eq. (3).

EQ-TARGET;temp:intralink-;e003;116;358Cn ¼
�
Dn; if Fn > ð1þ αÞmaxðFiÞ; 1 ≤ i ≤ n − 1

0; otherwise
; (3)

where i and n are the index of a voxel in A-line from the top beginning (n ¼ 512 in this method).
C is the corrected decorrelation value after PR algorithm processed. D is the normalizing decor-
relation. In this operation, α is included to account for noise and it was set to 0.1. Figure 10
compares the results obtained with the SS method and PR-OCTA.

The PR-OCTA preserved more blood vessel structures under the superficial large vessels, but
still faced the problem of discontinued flows in deep layers [Fig. 10(c3)]. Wang et al.56 proposed
a reflectance-based PR (rbPR)-OCTA algorithm to further improve the blood flow continuity by
taking the OCT structural reflectance signals into account. The rbPR-OCTA uses the information
from both OCT structure image and OCTA result to more accurately determine and remove the
blood vessel tail artifacts. As shown in Fig. 11(b), in the deep layers of OCT structure images,
there exist shadows of superficial blood vessels that have lower reflectance compared to sur-
rounding tissues. In contrast, in the OCTA images [Fig. 11(f)] those shadow regions are brighter
than the surrounding tissue regions. Hence it is feasible to obtain the reflectance information
from OCT structure image to enhance the contrast of true vessel structure and suppress tail
artifacts in OCTA images. The rbPR-OCTA approach was first to segment the scan volume into
sub-volumes of above and below inner/outer segments (IS/OS). The sub-volume above IS/OS
was then scaled by normalized reflectance-based vessel contrast map (obtained from a K-means
clustering method) to suppress tail artifacts, and the sub-volume below IS/OS was scaled by
vessel probability distribution map (obtained from a fuzzy C-means method) to enhance the
vasculature. Compared to PR-OCTA, the rbPR-OCTA showed a better neovascularization con-
tinuity visualization (Fig. 12). It distinguishes blood flow signals and projection artifacts by

Fig. 9 Illustration of PR-OCTA for blood vessel tail artifacts suppression. (a) Original cross-sec-
tional image before artifacts suppression. (b) Original decorrelation and log amplitude values of the
A-line pointed to by the green arrow in (a). (c) Decorrelation normalized by log amplitude according
to data shown in (b). Four highest peaks (green arrows) in this curve were identified as blood
vessels. (d) Decorrelations plot after cleaning up by the PR algorithm–decorrelation values
besides vessels were set to zero. (e) Cross-sectional OCTA image after PR-OCTA processing.
Four vessels are identified with green arrow, as shown in (c) and (d). Reproduced with permission,
courtesy of Zhang et al.
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analyzing en face images slice by slice rather than processing each A-line. This method improves
the blood flow continuity in the outer retina.

4.4 Shape Filtering-Based Blood Vessel Tail Artifacts Suppression

Shape filtering-based methods such as the Hessian filtering also show the ability to suppress the
blood vessel tail artifacts in OCTA.60,62,63 To image capillary and analyze its network flux, Lee
et al.62 first resampled the axial pixels so that the OCT image voxel has the same size in both axial
and transverse directions. Then Hessian filtering was applied on the more circular-like vessels
instead of the original teardrop-like vessel cross sections. However, the depth-compression
method led to the loss of details of small vessels. In the same year, Yousefi et al.63 combined
3D-based Hessian filtering and intensity-based segmentation with a morphological segmentation
technique to achieve the goals of slab segmentation and 2D angiography.5 This 3D-based

Fig. 10 OCTA en face images with original, SS method and PR method in superficial vascular
plexus (a1)–(a3), intermediate capillary plexus (b1)–(b3), deep capillary plexus (c1)–(c3), and
outer retinal region (d1)–(d3). individually. Reproduced with permission, courtesy of Zhang et al.
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Hessian filtering applied a 2D Hessian filtering to each depth-specific en face image that
resampled from the 3D angiograms. This method can minimize the tail artifacts but the 2D
Hessian analysis is less sensitive to the 3D structure due to the lack of 3D information.

In 2017, Li et al.60 introduced a 3D Hessian analysis-based method for OCTA data process-
ing. This method adaptively applied different thresholds to depth-specific slices. In each slice,
OCTA signals follow Rayleigh distribution.64 By analyzing the number distribution of static and
dynamic voxels, the motion threshold was first determined, then the 3D adaptive threshold was

Fig. 11 Illustration of the relationship between vessels, shadow artifacts, and the projection arti-
facts. (a) Cross-sectional structural OCT (gray) overlaid with OCTA (red). (b) OCT reflectance in
deep plexus slab, highlighted by yellow dotted line in (a). (c1) and (c2) Enlarged regions in (b) to
show the vessels shadows artifacts with low reflectance (green-dashed square) and the capillary
with high reflectance. (d) OCT reflectance in outer retinal slab, highlighted by green dotted line in
(a). (e) The MIP of OCTA in superficial plexus slab, horizontal white dashed line indicates the
location of panel (a). (f) OCTA in deep plexus slab. (g1) and (g2) Enlarged regions in (f) to show
the real capillaries interfered by projection artifacts. (h) OCTA in outer retinal slab. Reproduced
with permission, courtesy of Wang et al.

Fig. 12 A comparison of retinal OCTA images from a normal eye processed with tail artifacts
suppressed by the PR method (a1)–(d1) and the proposed rbPR method (a2)–(d2) in three distinct
layers. Reproduced with permission, courtesy of Wang et al.
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obtained by fitting the distribution curves [Figs. 13(a)–13(d)]. After discriminating dynamic
regions, the blood vessel structure could be obtained but containing blurred vessel information
in deep depth due to tail artifacts. A shape filtering based on eigenvalues and eigenvectors of the
Hessian matrix was then applied to detect the tubular-like structures. The modified vessel func-
tion was defined as

EQ-TARGET;temp:intralink-;e004;116;322ν0ðsÞ ¼
(
0; if λ3 > 0;

exp
�
− R2

A
2α2

�
exp

�
− R2

B
2β2

�h
1 − exp

�
− R2

c

2θ2

�i
; others

; (4)

where RA ¼ jλ2j∕jλ3j, and RB ¼ jλ2j∕
ffiffiffiffiffiffiffiffiffiffiffijλ2λ3j

p
. λk is denoted as the eigenvalue with the k’th

smallest magnitude of the Hessian matrix. The Frobenius matrix norm RC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

k≤D λ2k

q
is used

to eliminate the effect of background noise. α, β, and θ are the corresponding thresholds and 0.5,
0.5, and 0.2, respectively. In addition, a Gaussian probe kernel was used in vertical direction to
detect vessels with elongated tails and preserve vessels with short tail artifacts. Compared to the
uniform motion threshold method of the 3D OCTA technique [Fig. 13(e)] and depth-threshold
method without 3D Hessian filtering [Fig. 13(g)], the proposed method [Fig. 13(h)] distinguishes
dynamic and static signals and preserves the details of deep vascular networks.

4.5 Deep Learning-Based OCTA

Recently, Stefan et al. proposed a deep learning-based OCTA (EnhVess)52 to suppress the blood
vessel tail artifacts and enhance the vessel connectivity, as shown in Fig. 14. The ground truth of
the vessel structures was first manually labeled to train the network using a mean-squared loss
function. Figure 14(a) shows how the encoder–decoder is used in EnhVess network to enhance
blood vessel network while minimizing tail artifacts. Basically, a 32 × 32 × 32 3D patch of volu-
metric image were input to the encoder with three 3D convolutional layers followed by a max

Fig. 13 Adaptive OCTA classifier using a histogram-based motion threshold and 3D Hessian
analysis-based shape filtering. (a) Representative original OCTA cross-sectional angiogram.
For the convenience of analysis, three representative depth positions (depth1, depth2, and
depth3, marked by the dotted lines) were selected. (b) Histogram of en-face OCTA angiogram
at Depth1. The voxel populations of static tissue and dynamic flow can be identified by fitting the
histogram analysis. (d) Depth dependence of the OCTA statistics and the motion threshold. MIPs
of the 3D OCTA angiogram using the uniform motion threshold of (e) depth1 and (f) depth3, and
(g) the depth-adaptive threshold. (h) OCTA angiogram using depth-an adaptive threshold and 3D
Hessian-based shape filtering. The scale bar ¼ 400 μm. Reproduced with permission, courtesy of
Li et al.
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pool layer, and then the down-sampled output from encoder is decoded by three transposed
convolution layers and up-sampled to a size of 32 × 32 × 32. After applying the EnhVess to a
new OCTA dataset, the vessel tail artifacts are greatly suppressed, as shown in Figs. 14(b)–14(d).

This deep learning-based OCTA data processing shows the ability to suppress tail artifacts
and enhance the blood flow SNR. But the main limitation of deep learning-based OCTA tech-
nique is the dependence of ground truth.65,66 Inaccuracy of manual segmentation and the large
variation of blood vessel structures usually lead to degraded performance.

4.6 Normalized First-Order Field Autocorrelation Function (g1)-OCTA

The aforementioned methods are essentially image post-processing approaches. Tang et al.59

proposed a repeat A-scan acquisition in combination with a dynamic analysis method (g1-
OCTA) to address the blood vessel tail artifacts in OCTA imaging. Compared to the repeat
B-scan data acquisition used in traditional OCTA, the repeat A-scan acquisition can realize much
shorter data acquisition interval (higher acquisition rate) at the same location, providing the
potential to resolve fast dynamics within the vessel lumen and in the tail region. From the decor-
relation curves of jg1j shown in Fig. 15(a), one can note that the pixel within the blood vessel
(red) has the fastest decorrelation rate, the pixel in the tail region (magenta) has moderate

Fig. 14 (a) Schematic description of encoder–decoder architecture in EnhVess. (b1)–(d2)
Comparison of tail artifacts suppression with the original. (b) OCTA, (c) EnhVess, and overlaid
result from (b) and (c). (b1)– (d1) Single B-scan images, and (b2) –(d2) MIP over 10 B-scan
images. Scale bar, 0.1 mm.
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decorrelation rate, and the pixel from the tissue region (black) has merely little decorrelation. It
can be also noted that both the pixels within and beneath the blood vessel will have comparable
decorrelation if the decorrelation time is long enough. For traditional OCTA acquisition using
repeat B-scan acquisition, the time interval (decorrelation time) is usually 4 to 6 ms, therefore,
resulting in strong tail artifacts. So, the g1-OCTA employed a shorter decorrelation time that
leads to a much smaller decorrelation in the tail region and a similar decorrelation in the vessel
region, thus realizing blood vessel tail artifacts suppression. In addition, to address the issue of
insufficient decorrelation in small vessels due slow blood flows in the small vessel, intralipid was
injected in the circulation to enhance the dynamic contrast. the autocorrelation function g1ðτÞ for
each voxel was calculated via

EQ-TARGET;temp:intralink-;e005;116;327g1ðτÞ ¼
hR�ðtÞRðtþ τÞit
hR�ðtÞRðtÞit

; (5)

where RðtÞ is the complex OCT signal at time t, R�ðtÞ is the complex conjugate, τ is the time lag,
and h i represents ensemble averaging. Dynamic contrast index Id, was calculated for each voxel
in this method. Id was defined as the maximum decay of the correlation function since the first
time lag as

EQ-TARGET;temp:intralink-;e006;116;234Idðx;y;zÞ ¼ jg1ð1Þðx;y;zÞj −min jg1ðτÞðx;y;zÞj: (6)

Compared to regular OCTA, g1-OCTA realized blood vessel artifacts suppression with
enhanced blood flow signals and without broken flows in deep layers that suffered by the sub-
traction-based methods. In addition, g1-OCTA can also improve the depth-of-field because of
noise suppression [in Figs. 15(b) and 15(c)]. Further, the descending vessels could also be iden-
tified in the axial direction by analyzing the phase change, as shown in Fig. 15(d). However,
compared to the acquisition time of a few seconds for 3D-volume imaging with regular OCTA,
g1-OCTA needs 3 to 4 min to acquire data, making it unsuitable for scenarios where long data
acquisition is not applicable, such as an eye examine. Nevertheless, g1-OCTA has a good poten-
tial in blood flow mechanism study using animal models where long data acquisition time is not
a problem.

Fig. 15 (a) g1ðτÞ in 4 ms scale showing the decorrelation at different positions. Calculated from
Eq. (5). (Black: above the macro-vessel; red, inside the macro-vessel; and magenta, beneath the
macro-vessel.) (b1) Regular OCTA en face MIP. (b2) g1-OCTA en face MIP with intralipid. The
value 25/30 represents nτ∕nt . (c1) A single B-scan image from white dashed line marked in (b1).
(c2) XZ stack (MIP over 50 μm in Y ) from white shadow region marked in (b1). (c3) A single
B-scan image from white dashed line marked in (b2). (c4) XZ stack (MIP over 50 μm in Y) from
white shadow region marked in (b2). (d) g1-OCTA en faceMIP and en face images at depths = 24,
48, and 71 μm showing the ability to identify descending vessels (cyan color). Reproduced with
permission, courtesy of Tang et al.
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5 Discussion and Conclusion

The blood vessel tail artifacts in an OCTA image are due to the multiple scattering of photons
with flowing RBCs. Such elongated light path extends the dynamic signal from vessel lumen to
the regions below the lower boundary of blood vessels. In this review, we summarized the
existing methods to address the blood vessel tail artifacts issue that prevents OCTA to realize
real 3D imaging. The high NA approach suppressed the blood vessel tail artifacts using the short
confocal depth to reject multiple scattered photons out of this focus region, but at the expense of
repeated data acquisition at multiple focal depth. The subtraction-based methods15,53,54,57 remove
the tails by subtracting the vessel signal in the superficial layers from the deep layers, which
however suffers from broken flows due to the removal of voxels under the large vessels. The PR-
OCTA and rbPR-OCTA approaches can alleviate this issue to some extent but still can’t fully
address this problem. The Hessian filtering approaches showed good performance in blood ves-
sel tail artifacts suppression and preserve the flow continuity in deep layers, but it relies on high
signal-to-background ratio and is vulnerable to false positives. The g1-OCTA approach is based
on the dynamic analysis of high rate acquired data (repeat A-scan) and using a shorter decor-
relation time to minimize the tail artifacts and preserve the flow continuity in small vessels by
employing intralipid to fill the gap between RBCs, but it has the limitation of longer data acquis-
ition time. In addition to the aforementioned methods, the convolutional neural networks (CNN)-
based deep learning has also been tested for OCTA data processing. It shows the potential to map
microvascular networks with better imaging contrast. However, this method relies heavily on the
accuracy of ground truth, which is usually generated by manual labeling, requiring laborious
work.65,66 In addition, the deep learning process is usually designated for a specific scenario,
such as a specific shape or structure, and it is currently challenging to use deep learning process
for complex inputs. However, the blood vasculature is composed of various complex structures.
It thus needs to consider all possible scenarios of vessel structures to obtain reliable results.
Nevertheless, in combination with deep learning, it is possible to suppress the blood vessel tail
artifacts and realize real 3D blood vessel structure imaging with OCTA.

In conclusion, we have reviewed the imaging principle of OCTA, the origin of blood vessel
tail artifacts in an OCTA image, and summarized the current methods for blood vessel tail arti-
facts suppression. The existing techniques have addressed the blood vessel tail artifacts in OCTA
to some extent, but none of them have an absolute advantage over the others. Future work may
focus on tail artifacts suppression of large vessels while preserving the small vessel flows in the
tail artifacts region, thus providing real 3D blood vessel structure imaging with OCTA. In com-
bination with the OCT-based blood flow velocity imaging, it is possible to realize the RBC
transit time 3D imaging of the blood vessel network, providing a robust tool for the assessment
of this important blood flow parameter.
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