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Abstract

Significance: Functional near-infrared spectroscopy (fNIRS) for resting-state neonatal brain
function evaluation provides assistance for pediatricians in diagnosis and monitoring treatment
outcomes. Artifact contamination is an important challenge in the application of fNIRS in the
neonatal population.

Aim: Our study aims to develop a correction algorithm that can effectively remove different
types of artifacts from neonatal data.

Approach: In the study, we estimate the recognition threshold based on the amplitude character-
istics of the signal and artifacts. After artifact recognition, Spline and Gaussian replacements are
used separately to correct the artifacts. Various correction method recovery effects on simulated
artifact and actual neonatal data are compared using the Pearson correlation (R) and root mean
square error (RMSE). Simulated data connectivity recovery is used to compare various method
performances.

Results: The neonatal resting-state data corrected by our method showed better agreement with
results by visual recognition and correction, and significant improvements (R ¼ 0.732� 0.155,
RMSE ¼ 0.536� 0.339; paired t-test, **p < 0.01). Moreover, the method showed a higher
degree of recovery of connectivity in simulated data.

Conclusions: The proposed algorithm corrects artifacts such as baseline shifts, spikes, and serial
disturbances in neonatal fNIRS data quickly and more effectively. It can be used for preprocess-
ing in clinical applications of neonatal fNIRS brain function detection.
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1 Introduction

Functional near-infrared spectroscopy (fNIRS) is an emerging neuroimaging method.1–3

By emitting specific wavelengths of near-infrared light (650 to 900 nm) toward the scalp and
measuring the intensity of the scattered light, the relative changes in oxyhemoglobin (HbO) and
deoxyhemoglobin (HbR) in the cerebral cortex can be obtained, which provides information
on the brain activity and the relationship between the various brain regions.4,5 Owing to its
non-radiative, noninvasive, and patient-friendly nature, this technology is widely used for the
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detection of brain function in autism,6 hyperactivity disorder,7,8 and infants.9–11 Especially in the
case of newborns, fNIRS is more robust and suited to the free movements of the newborn than
other neuroimaging techniques.12,13 As a useful supplement to existing techniques, fNIRS can
provide clinicians with information on functional brain imaging and gain insight into cerebral
development14 and mechanisms of injury in neonates by monitoring the brain function of neo-
nates and preterm infants15–17 with brain injury.18–20

One challenge that remains when using fNIRS, a promising brain imaging method, for rapid
examination of neonatal populations is the interference of motion artifacts.13,18 During data
acquisition, the relative motion between the light source, detector, and neonatal scalp21,22 leads
to interference in the fNIRS signal with motion artifacts,23 such as spikes, baseline shifts,
or serial disturbances24 consisting of a mixture of spikes and baseline shifts for a few seconds.
There are two main reasons for this phenomenon. First, newborns cannot follow instructions
as adults can.25,26 Even during sleep after full lactation, they appear to move their heads
randomly.13,20 Second, a neonatal skull is soft, the fontanelle is not closed, and other tissues
around the brain are relatively thin. To prevent the detector and light source from causing damage
or pain to the newborn, the light source and detector should be gently applied to the neonate’s head,
and no external force is allowed to be applied to the skull during neonatal data acquisition.20

Small movements of the newborn can cause slippage between the light source, detector, and scalp.
These unavoidable problems can lead to motion artifacts contaminating the fNIRS data.27

Typically, motion artifacts in fNIRS data have peaks or offsets much higher than the range of
physiological oscillations, leading to discrepancies between the information reflected by the
contaminated fNIRS signal and the true activity of the cortex.27–29 Inappropriate preprocessing
procedures or uncorrected motion artifacts generally result in false-positive or false-negative
results.18 Functional connectivity is a prevalent method of analysis, particularly in the study
of resting-state data.19 Abrupt artifacts generally occur in multiple channels simultaneously,
causing false correlations and confounding the conclusions.

Correction algorithms have been proposed in the field of fNIRS to reduce the interference of
motion artifacts. A simple method is to discard the artifact segments. The signal is corrected by
removing the motion artifacts.30 However, this method is not applicable when faced with the
difficulty of intercepting long-time artifact-free data segments.31 Some researchers have cor-
rected the motion artifacts according to their characteristics or frequencies through methods,
such as principal component analysis method (PCA)32 and wavelet filtering (WAVE).33 PCA
first converts the signals into orthogonal principal component sets. The transformed variance,
which is relatively large, represents the motion artifacts. The signal is reconstructed after
discarding the components that account for a relatively large variance. However, this approach
requires multiple channels and tends to overcorrect signals. To avoid this problem, an improved
method called target PCA (tPCA)34 was developed to correct the data marked as artifacts. The
WAVE method first decomposes the fNIRS signal into wavelet coefficients. The wavelet coef-
ficients of the motion artifacts appear as outliers among all the coefficients. The motion artifact is
corrected by removing the outliers from all wavelet coefficients and reconstructing the signal.
This approach is more effective in correcting spikes and high-frequency noise than baseline
shifts of the signals.33,35 An effective method for correcting baseline shifts is the movement arti-
fact reduction algorithm, also known as spline interpolation (Spline).36 Spline first distinguishes
between artifacts from all signals based on the moving standard deviation (MSD). Motion arti-
facts are modeled using cubic spline interpolation, and the model is subtracted from the original
signal. Finally, the average values before and after the motion artifact segments are adjusted to
obtain the denoised signal.36–38 Spike noise may remain in the corrected signal because of the
weak ability of Spline to fit the spikes.36,39 Another method to correct the signal using the physio-
logical properties of the variation in hemoglobin concentration is the correlation-based signal
improvement method (CBSI).40 This method eliminates motion artifacts by assuming that HbO
and HbR are always negatively correlated. It is mathematically simple and requires fewer param-
eters to be set. However, the assumption may not always hold and may have limitations for
subjects with abnormal brain activity.31,41

The above methods have been widely used in various applications of fNIRS but have not
been adequately studied for neonatal fNIRS data. Behrendt et al. corrected the fNIRS data for
three ages (5, 7, and 12 months) of infants using traditional motion correction methods. The data

Yang et al.: Motion artifact correction for resting-state neonatal functional near-infrared spectroscopy. . .

Neurophotonics 045002-2 Oct–Dec 2022 • Vol. 9(4)



were combined with a simulated hemodynamic response function (HRF). The results showed
that the WAVE method at specific coefficients could remove noise from the data and recover the
true HRF.22 However, because the study used simulated HRF, and the actual HRF of infants
usually has small fluctuations25 and uncertainty,42 the effectiveness of the direct correction
of infant data may need to be validated. Jahani et al.24 proposed a parameter-independent
Spline combined with Savitzky–Golay (SG) filtering. This algorithm performs spline interpo-
lation correction and SG filtering when the signal-to-noise ratio of the data is >3. Only SG
filtering is applied when the signal-to-noise ratio is <3. This approach was validated using adult
fNIRS data. However, Di Lorenzo et al. pointed out that the signal-to-noise ratio of infant data is
generally lower than three. Therefore, only the Golay filter should be used for infant data, which
is not sufficient to correct motion artifacts.27 Some researchers have explored the effectiveness of
different combinations of correction methods in artifact removal. Di Lorenzo et al.27 used the
fNIRS data collected from infants aged 4 to 11 months while performing different tasks to
explore the effectiveness of the correction methods. They also combined the simulated hemo-
dynamic functions. Their results showed that the corrected results obtained with the combined
Spline and WAVE approach (Spline-WAVE) were closer to the actual HRF. Further, it was
pointed out that the performance of the method was highly dependent on the detection of motion
artifacts.27 Motion artifacts are automatically detected by observing whether the MSD of the data
within the sliding window exceed the magnification of the standard deviation (STD).36 However,
direct use of neonatal data with a large number of artifacts can cause STD values to be high,
resulting in missing motion artifacts. In summary, traditional motion artifact correction methods
have certain limitations in the processing of neonatal fNIRS data. These problems can cause
neonatal fNIRS signal preprocessing results that may not be consistent with the actual situation.
Thus, handling neonatal data with dense motion artifacts is challenging for researchers and
pediatricians.

Facing the above challenges, we consider that the identification of motion artifacts should be
based on objective detection of physiological oscillation changes in each channel. In addition,
different types of noise should be removed separately to avoid residuals. Based on this idea, we
designed a motion artifact correction method in this study to remove different types of artifacts
from resting-state neonatal fNIRS data. The method first estimates the STD of the physiological
oscillations in each channel of the signal, which is then used as a threshold to mark the motion
artifacts accurately. Then, the baseline shift and spike noise are corrected separately using
the respective advantages of Spline and Gaussian replacement. In addition, other correction
methods, Spline, WAVE, CBSI, tPCA, Spline-SG, and Spline-WAVE were used in this study.
Neonatal resting-state data and simulated artifact data were used together to validate the effec-
tiveness of different artifact correction methods. We first compared the detection efficiency of
our method with the traditional methods for detecting motion artifacts. Then, after applying each
motion correction algorithm, the change in HbO after correction by the different algorithms was
compared with the established criteria in terms of the following metrics: root mean square error
(RMSE) and Pearson’s correlation (R). The criterion for the neonatal data was the change in
concentration of HbO visually identified and corrected, while the criterion for the simulation
data was the change in HbO concentration when no artifacts were added. In addition, connec-
tivity changes were used to assess the performance of the algorithm. The connectivity of homolo-
gous channels in the simulation data and the connectivity between different regions were used as
our metrics of interest.

2 Method

2.1 Adaptive Estimation of Physiological Oscillation Denoising

Motion artifacts in the fNIRS signals are noises with short time variations and large amplitudes.
A suitable threshold value is required to accurately identify the motion artifacts. In addition, to
avoid residual artifacts, different types of artifacts must be corrected separately in different ways.
To address the above issues, this study first identified motion artifacts in the fNIRS signals based
on their characteristics and obtained the deviation of the noise-free signal portion of each channel
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using an estimation method, which was used as the threshold to identify the artifacts. Finally,
the artifacts were corrected using Spline and Gaussian white noise replacement. The method is
shown in Fig. 1.

2.1.1 Estimated physiological oscillations

In the neonatal fNIRS data, the frequency, amplitude, and time of occurrence of motion artifacts
are random. The basis of detecting motion artifacts is the determination of whether the MSD of
the data within the sliding time window exceeds the threshold by a certain multiple. In previous
studies, this threshold reference value has been used as the STD of the overall data difference.
For widely varying neonatal data, even a careful adjustment of the multiple will not always
satisfy this requirement.

Generally, the motion artifacts in fNIRS signals occupy a portion of the entire signal. If the
fNIRS data are divided into small segments, the segments should include both noiseless data and
data with artifacts. Therefore, we calculated the STD of the physiological oscillations for all
small-segment data. In this set of STDs, smaller values correspond to the noise-free parts of
the signal. Therefore, the smaller values were averaged to obtain the deviation of the overall
data as the threshold. In the previous method,36 the STD of the entire data difference was used
as the threshold. However, the STD becomes uncertain because of the amplitude and frequency
of the artifacts in the signal. The improvements proposed in our study are that the threshold is
related only to the physiological oscillation part of the signal and is relatively stable.

The procedure of the proposed method is as follows: after obtaining the neonatal fNIRS
signal, the original signal is transformed into an optical density (OD) signal and 0- to 0.75-Hz
bandpass filtering is performed to remove the effects of the slow drift on STD calculations.
The filtered signal is used to estimate the threshold value. Next, the STD of the physiological
oscillations for each small fluctuation is calculated using the sliding window method (4 s win-
dow with 2 s interval)43

EQ-TARGET;temp:intralink-;e001;116;194STD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N − 1

XN−1

t¼1

�
Xðtþ 1Þ − XðtÞ − 1

N − 1

�XN−1

t¼1

Xðtþ 1Þ − XðtÞ
��2

2

vuut ; (1)

whereN is the window length and XðtÞ is the OD data. Next, the STDs are arranged in ascending
order. The STDs of the artifact-free part are more concentrated in the first 1/3 interval of the
entire set. Therefore, the top 30% are extracted and averaged as the STD of the noise-free part of
the signal.

Fig. 1 AEPOworkflow, including estimation of physiological oscillations, artifact identification, and
correction.
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2.1.2 Motion artifact recognition

After estimating the STD of the physiological oscillations of the signal, its product with the
threshold multiplier is used as the recognition threshold. This threshold multiplier is consistent
with STDEVthresh used in Homer2, and we set this parameter to 7.39 Next, we determine
whether the difference between two points before and after the signal exceeds the threshold
value of the sliding window. If it exceeds, it is marked as a motion artifact. In this study,
a modified hmrMotionArtifactbyChannel (hMAC) function was used to detect the motion-
contaminated part of the signal at the designed threshold.39 At the end of the detection step,
the entire signal is represented as follows:

EQ-TARGET;temp:intralink-;e002;116;621XðtÞ ¼ fXFM;1ðtÞ; XMA;1ðtÞ; XFM;2ðtÞ; XMA;2ðtÞ; : : : ; XFM;LðtÞ; XMA;LðtÞg; (2)

where XðtÞ denotes the data of all channels, XFM denotes the free-motion part of the signal, and
XMA denotes the motion artifacts in the signal. L represents the channel.

2.1.3 Motion artifact correction

After the artifacts are identified, we first correct the motion artifacts by means of spline inter-
polation. The identified motion artifacts are first modeled using cubic spline interpolation.
Depending on the parameter p in the specified range [0,1], the degree of spline function is
chosen to be used. For example, when p ¼ 0, a least-squares linear fit is applied, whereas when
p ¼ 1, a cubic spline interpolation is performed.36 In this study, we used the same parameters as
in previous studies (p ¼ 0.99) to correct for the identified motion artifacts.24 Then, the signal
fitted by spline interpolation is subtracted from the original signal to obtain the denoised signal.
Finally, the average values before and after the motion artifact segment are adjusted to recon-
struct the entire time series. The reconstructed signal is expressed as follows:

EQ-TARGET;temp:intralink-;e003;116;420YðtÞ ¼ fXFM;1ðtÞ; XSP;1ðtÞ þ a1;XðtÞ; XSP;2ðtÞ þ a2; · · · ; XFM;LðtÞ; XSP;LðtÞ þ aLg; (3)

where YðtÞ is the signal after the first correction, and XSP is the part of the motion artifacts after
the Spline correction; and a is the array of difference between the average values before and after
the motion artifacts in different channels.

Because the subtraction of the signal leaves a small amount of high-frequency oscillation, the
corrected signal contains spikes. Therefore, the artifacts must be identified again using the proc-
ess described in Sec. 2.1.2 to ensure that the data previously identified as normal will not be
marked again after the Spline. The spike noise usually lasts for a short time, and we use Gaussian
replacement to repair it. The identified spikes are replaced by Gaussian white noise of the same
amplitude as the physiological oscillations of the signal. The Gaussian white noise is calculated
as follows:

EQ-TARGET;temp:intralink-;e004;116;269YGSðtÞ ¼ fSTD1 ×WgnðtÞ; STD2 ×WgnðtÞ; · · · ; STDL ×WgnðtÞg; (4)

where YGSðtÞ denotes the fitted signal. The STDL is the physiological oscillation of each channel
in the data. WgnðtÞ is the Gaussian white noise with a STD of 1. After the replacement, artifact
correction is completed by adjusting the signal segments before and after the spike noise.
The final reconstructed signal is

EQ-TARGET;temp:intralink-;e005;116;190ZðtÞ ¼ fYFM;1ðtÞ; YGS;1ðtÞ þ b1; YFM;2ðtÞ; YGS;2ðtÞ þ b2; · · · ; YFM;LðtÞ; YGS;LðtÞ þ bLg; (5)

where ZðtÞ represents the signal after the correction process and YFM is the signal without spikes;
and b is the array of difference between the average values before and after the spike correction in
different channels.

2.2 Traditional Artifact Correction Techniques

To verify the effectiveness of the proposed method, we compared it with Spine, WAVE, tPCA,
CBSI, Spline-SG, and Spline-WAVE.
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The Spline method was proposed by Scholkmann et al. The motion artifact of each channel is
first detected.36,37 The corrected signal is the difference between the original signal and the cubic
spline interpolation of the artifacts. Then, the entire dataset is reconstructed by moving the aver-
age values before and after the artifact segments. In this study, we identified the motion artifacts
using the settings AMPThresh = 0.5, TMotion = 0.5 s, TMASK = 1 s, and STDEVthresh = 15, 10,
7, 5. According to previous reports, the parameter p was set to 0.99 to correct the identified
motion artifact.24

Spline-SG is a motion artifact correction method proposed by Jahani et al.24 This method
uses Spline to correct for baseline drift when the SNR of the signal is >3, and later uses SG
filtering to correct for spike artifacts in the signal. If the SNR of the signal is <3, only SG filtering
is used for correction. In this study, we set the parameter of SG filtering to 6 s, according to
the suggestion of Jahani et al.

Molavi and Dumont33 proposed a motion artifact removal method based on discrete wavelet
transform. First, the signal is decomposed into wavelet coefficients at different levels. The wave-
let coefficients of the motion artifacts are shown as outliers in the fNIRS signal background.
Then, the motion artifacts are removed by detecting the outliers in the different wavelet coef-
ficients and setting them to zero. In this study, the interquartile range (IQR) was set to 1.5 to
detect the outliers after wavelet decomposition for artifact correction.24 In addition, we used
Spline-WAVE to correct for artifacts. We used IQR of 0.8 in this study by referring to a previous
neonatal study.27

Zhang et al.32 proposed a PCA method in 2005. Yücel et al.34 proposed an improved PCA
method, called tPCA, based on the above approach for motion artifact removal. This method first
arranges the data of all channels into a matrix and then extracts the eigenvalues and eigenvectors.
Larger eigenvalues are assumed to represent the differences caused by the motion artifacts,
which were removed by removing the feature values. In this study, the algorithm had the same
parameter settings as applied in Spline to identify the artifacts: STDEVthresh = 15, 10, 7, 5;
AMPThresh = 0.5; TMotion = 0.5 s; TMASK = 1 s; and nSV = 0.9. The denoised signal was
reconstructed after removing 97% of the variance in the motion detection part of the signal. This
process was repeated two more times to detect any remaining motion artifacts.

Cui et al. proposed the CBSI method in 2010. The main assumption in this method is that
the measured fNIRS signal consists of three components: signal for the change in the true Hb
component content, motion artifacts, and white noise. Motion artifacts attenuate the negative
correlation between the HbO and HbR concentrations. Thus, the actual HbO and HbR concen-
trations can be derived from the mathematical relationships established using the previously
mentioned assumptions.40 The hmrMotionCorrectCbsi function was used for artifact correction
in this study.

2.3 fNIRS Data

2.3.1 Simulated motion artifact in fNIRS data

This study first used simulated motion artifact data to verify the effectiveness of the proposed
method. By referring to previous studies,38 we simulated the artifact data by adding artifacts
randomly to the noise-free fNIRS signal.

The study recruited one healthy adult subject and recorded the resting-state brain fNIRS
signals twice, as shown in Fig. 2(a). The duration of resting-state data acquisition was 8 min.
During the first data acquisition, the subject was asked to remain stationary. The second time, the
subject was asked to deliberately mimic the movements of the newborn during wakefulness,
including head shaking, blinking, and other actions. Dual wavelength (760 and 850 nm)
fNIRS signals were acquired using a multichannel fNIRS system (NirSmart, Danyang
Huichuang, China). The sampling frequency was 10 Hz. The locations of the monitored brain
regions are shown in Fig. 2(b), including the prefrontal and parietal lobes.

Artifacts in the second fNIRS data were identified using hMAC (STDEVthresh = 10,
AMPThresh = 0.5, TMotion = 0.5 s, and TMASK = 1 s), and then all the artifacts were extracted
and formed into an artifact set. About 30 artifact segments were randomly added to the artifact-
free data, that included baseline shifts, spikes and serial disturbances. The motion artifact
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duration exceeded 20% of the overall duration. This operation was repeated 30 times, resulting in
30 simulated artifacts of fNIRS data.

2.3.2 Neonatal fNIRS data

In this study, resting-state neonatal data were collected to explore the effect of our proposed
method on different types and degrees of noise in the neonatal fNIRS data. The participants
in the experiment were neonates from the Department of Pediatrics, Peking University First
Hospital. The inclusion criteria were as follows: (1) full-term newborns, gestational age from
37 to 44 weeks and (2) consent from legal guardians. All relevant assessments were performed
within 72 h of the infant’s birth. About 12 newborns were enrolled in the study, including
six healthy neonates and six newborns with hypoxic-ischemic brain damage. The socio-
demographic information for this study is shown in Table 1. This study was conducted in accor-
dance with the Declaration of Helsinki and approved by the local ethics committee of Beihang
University.

Neonatal data were acquired using a multichannel, dual wavelength (760 and 850 nm) fNIRS
system (NirSmart, DanYang HuiChuang, China) at a sampling rate of 10 Hz. A room with appro-
priate dim lighting and sound insulation was selected to reduce the interference of the external
environment on the infants. Before the experiment, the newborn was placed in a supine position
in the crib. Owing to the softness of the infant’s skull, light sources and detectors were gently
attached to the newborn’s head for safety and comfort, as shown in Fig. 2(c). The fNIRS head
cap comprised 20 light sources and 16 detectors. The covered areas were the prefrontal,

Table 1 Sociodemographic information for this study.

Neonatal no. 1 2 3 4 5 6

Healthy

GA (week) 38 37 39 40 35 38

Gender M M M F F M

Birth weight (g) 2450 4000 3350 3340 2160 3690

Feeding Mix Mix Mix Mix Milk Milk

HIBD

GA (week) 41 39 40 40 40 37

Gender F F M F F M

Birth weight (g) 3050 3305 2600 3350 3240 2890

Feeding Mix Milk Mix Milk Milk Milk

GA = gestational age; M = male; F = female; mix = formula milk powder + breast feeding; HIBD = hypoxic-
ischemic brain damage.

Fig. 2 (a) Experimental setting for simulated fNIRS data; (b) fNIRS layout in the simulated data;
(c) experimental setting for neonatal fNIRS data; and (d) fNIRS layout in the neonatal signal.
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temporal, and parietal lobes, as shown in Fig. 2(d). The 10-min resting-state data were collected
as the neonatal data used in the experiments. All newborns were monitored after full lactation
and natural sleep.

2.4 Criteria and Indicators for Evaluation

2.4.1 Evaluation criteria

First, the efficiency of adaptive estimation of physiological oscillation (AEPO) and hMAC for
the recognition of motion artifacts were compared. For the simulation data, the total length of
artifacts added to each simulation data was normalized and set to 100%. For the real neonatal
data, the total duration of artifacts recognized visually was normalized and set to 100%. The ratio
of the total artifact length recognized by different detection methods to the actual total artifact
length was taken as the detection efficiency. Exceeding 100% is over-recognition.

Next, the changes in the HbO concentration (ΔHbO) after correction was compared using
different methods because resting-state fNIRS data were used. At the same time, manual cor-
rection is used as a complement to the artifact correction method. The comparison criterion for
the simulated artifact data was ΔHbO calculated without adding motion artifacts. For the neo-
natal fNIRS data, manual correction (correction motion44 artifacts after visual recognition45–47)
were used to remove artifacts. fNIRS researchers with expertise in biomedical engineering and
signal processing collaborated with pediatricians to review the resting-state fNIRS data of the
neonates and marker-correct the artifacts in the signal. By amplifying the signal in the visual
interface, the physiological oscillation waveform was observed. Motion artifacts (baseline drift,
spikes, and serial disturbances) that did not match the amplitude and frequency characteristics of
the waveform in the channel were flagged. The time of marking was from 0.5 s before to 0.5 s
after the appearance of the artifact. For the fNIRS data, pediatricians and researchers examined
all channels for artifacts. An automatic correction of the labeled artifacts was then performed.
The automatic correction method used a random signal to replace motion artifacts, which is
consistent with the method used in nirsLAB.44 The value of ΔHbO obtained after visual rec-
ognition and correction was used as the standard for comparison with other artifact correction
methods.

Finally, the effect on connectivity before and after the motion artifact correction in the sim-
ulation data was evaluated. For connectivity, the connectivity of contaminated channels to
homologous channels or other brain regions was the metric. Specifically, homologous channel
connectivity is the mean value of the correlation coefficient between the contaminated channel
and other channels of the same light source over the entire 8-min recording duration. The con-
nectivity of other brain regions was the mean of the correlation coefficients between the channels
in the four brain regions and the contaminated channels over the entire 8-min recording duration.
Thus, for each artifact correction method, 30 sets of five connectivity values were obtained.
The connectivity criterion was the connectivity before adding motion artifacts (five values of
fixed connectivity).

2.4.2 Evaluation indicators

We used the following two metrics to compare the standard and corrected ΔHbO obtained with
each motion correction algorithm:48,49 (1) the Pearson coefficient (R) and (2) RMSE defined as
follows:

EQ-TARGET;temp:intralink-;e006;116;170RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

½aðtiÞ − bðtiÞ�2
2

vuut : (6)

For the simulated data, aðtiÞ is ΔHbO without the addition of motion signals. For neonatal
data, aðtiÞ isΔHbO after manual correction. bðtiÞ is the value ofΔHbO obtained after processing
the data with the different artifact correction methods. R was used to evaluate the similarity
between the corrected values obtained with the different processing methods and the established

Yang et al.: Motion artifact correction for resting-state neonatal functional near-infrared spectroscopy. . .

Neurophotonics 045002-8 Oct–Dec 2022 • Vol. 9(4)



standard. R was close to 1, indicating that the processed data had higher similarity. A smaller
RMSE indicates that the result of the artifact correction method does not differ widely from the
standard result. Finally, paired t-tests were used to evaluate statistically significant differences
between different motion artifacts correction methods and corrected for multiple comparisons
using false discovery rate. For connectivity, one-way analysis of variance (ANOVA) with false
discovery rate (FDR) correction was used to compare the differences in connectivity between the
different methods.

3 Results

3.1 Motion Correction Performance in Simulation Datasets

In the simulation data, the detection efficiency of hMAC is improved when STDEVthresh
becomes smaller. However, when using a strict parameter multiplicity, over-recognition occurs.
Table 2 lists the recognition efficiency with different STDEVthresh. In this study, we used
STDEVthresh = 7 as the correction parameter for Spline, tPCA, and Spline-WAVE.

An example of the simulated artifact data used in this study is shown in Fig. 3(a), where the
signal with no artifact added is marked in red, and the simulated artifact data are blue. It can be
seen from the figure that the simulation data contain baseline shifts, spike artifacts, and serial
disturbances, which are identified by boxes of different colors. The entire simulation data
accounted for between 25% and 35% of the artifact time. Figure 3(b) shows the effect of
ΔHbO after correction using different algorithms, and the raw OD data are boxed in Fig. 3(a).
The tPCA and CBSI methods resulted in large deviations of ΔHbO from the true change in HbO
concentration, whereas the values of the restored ΔHbO after AEPO, WAVE, Spline-WAVE, and
Spline-SG were consistent with the change trend of the true HbO concentration.

Overall, for the 30 sets of simulated artifact data, the results of the correction methods manual
correction (R ¼ 0.895� 0.025, RMSE ¼ 0.168� 0.020), AEPO (R ¼ 0.860 � 0.037,
RMSE ¼ 0.196� 0.024), WAVE (R ¼ 0.746� 0.069, RMSE ¼ 0.314� 0.048), Spline
(R ¼ 0.726� 0.098, RMSE ¼ 0.315� 0.084), Spline-WAVE (R ¼ 0.767� 0.084, RMSE ¼
0.260� 0.052), and Spline-SG (R ¼ 0.828� 0.078, RMSE ¼ 0.213� 0.049) showed
improvements when compared with the uncorrected (R ¼ 0.645� 0.109, RMSE ¼
0.472� 0.131) results. In contrast, tPCA (R ¼ 0.613� 0.117, RMSE ¼ 0.366� 0.065) and
CBSI (R ¼ 0.578� 0.113, RMSE ¼ 0.420� 0.116) did not show improvements, and the dif-
ference between the corrected HbO and original HbO changes was large (Table 3 and Fig. 4).
Compared with the conventional artifact correction method, the corrected signal obtained
with AEPO showed more significant improvements in the two indicators of R and RMSE
(paired t-test, **p < 0.01, Table 4).

For the analysis of connectivity, the correlation between contaminated channel and the
homologous (HCC: 0.911), left prefrontal (LPFC: 0.777), right prefrontal (RPFC: 0.746),
left parietal (LPC: 0.456), and the right parietal (RPC: 0.461) channels before adding motion
artifacts were calculated. These indicators decreased after the addition of motion artifacts
(HCC: 0.633, 0.418 – 0.755; LPFC: 0.538, 0.336 – 0.667; RPFC: 0.523, 0.304 – 0.665;
LPC: 0.316, 0.160 – 0.407; RPC: 0.308, 0.100 – 0.436). Figure 5 shows the results of connec-
tivity after processing by different methods.

In this study, different methods restored connectivity to different degrees. AEPO increased
HCC to 0.754 (0.587 – 0.840), LPFC to 0.622 (0.510 – 0.724), RPFC to 0.567 (0.493 – 0.675),
LPC to 0.387 (0.298 – 0.503), and RFC to 0.384 (0.236 – 0.521). Spline-SG retrieved HCC to

Table 2 Detection efficiency of different methods in simulation data.

Methods hMAC-15 hMAC-10 hMAC-7 hMAC-5 AEPO

Detection efficiency 22.3% ± 5.0% 50.2% ± 13.6% 68.6% ± 17.0% 123% ± 21.8% 86.9% ± 9.0%

hMAC = hmrMotionArtifactbyChannel.
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0.753 (0.530 – 0.866), LPFC to 0.610 (0.406 – 0.715), RPFC to 0.591 (0.388 – 0.715), LPC to
0.338 (0.232 – 0.423), and RFC to 0.360 (0.251 – 0.446). Spline-WAVE increased HCC to 0.699
(0.418 – 0.815), LPFC to 0.591 (0.402 – 0.723), RPFC to 0.551 (0.331 – 0.718), LPC to
0.308 (0.147 – 0.422), and RFC to 0.323 (0.160 – 0.424). WAVE increased HCC to 0.711

Fig. 3 (a) Example of simulated artifact data contaminated by different types of motion: high-
frequency spikes (yellow), baseline shifts (green), serial disturbances (gray) and (b) comparison
of ΔHbO obtained by different correction methods.

Table 3 R and RMSE values for simulation data corrected using different algorithms.

Method R RMSE Processing time (s)

Uncorrected 0.645 ± 0.109 0.472 ± 0.131 0.027

Manual correction 0.895 ± 0.025 0.168 ± 0.020 —

AEPO 0.860 ± 0.037 0.196 ± 0.024 0.504

Spline 0.726 ± 0.098 0.315 ± 0.084 0.145

WAVE 0.746 ± 0.069 0.314 ± 0.048 77.844

tPCA 0.613 ± 0.117 0.366 ± 0.065 3.830

CBSI 0.578 ± 0.113 0.420 ± 0.116 0.077

Spline-WAVE 0.767 ± 0.084 0.260 ± 0.052 78.406

Spline-SG 0.828 ± 0.078 0.213 ± 0.049 11.640
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Table 4 P-values (paired t -tests) signifying improvement or significant improvement in R and
RMSE for the simulation data, calculated as the method in the row over the method in the column.

R
RMSE AEPO Spline-SG Spline-WAVE Spline WAVE tPCA CBSI Uncorrected

Manual correction <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

AEPO <0.05 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

<0.05 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Spline-SG <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

<0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Spline-WAVE 0.12 <0.01 <0.01 <0.01 <0.01

<0.01 <0.01 <0.01 <0.01 <0.01

Spline 0.29 <0.01 <0.01 <0.01

0.95 <0.01 <0.01 <0.01

WAVE <0.01 <0.01 <0.01

<0.05 <0.01 <0.01

tPCA 0.24 0.26

0.09 <0.01

CBSI <0.05

<0.01

Fig. 4 (a) R and (b) RMSE values for ΔHbO before (without adding artifacts) and after corrected
by different algorithms for the simulation data.
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(0.530 – 0.795), LPFC to 0.607 (0.445 – 0.703), RPFC to 0.586 (0.371 – 0.698), LPC to 0.335
(0.180 – 0.440), and RFC to 0.335 (0.157 – 0.455). The performances recovered by different
methods are listed in Table 4.

Table 5 gives the analysis of recovering connectivity by different methods. Compared to uncor-
rected, tPCA, and CBSI, AEPO showed significant advantages in HCC, LPFC, LPC, and RPC.
While for Spline, Spline-SG,WAVE, and the AEPOmethod showed a clear advantage for a part of
the connectivity. For Spline-WAVE, AEPO showed no significant difference between the two
methods, although it was greater than Spline-WAVE in recovering connectivity. Notably, all con-
nectivity did not return to contamination levels after different motion artifact correction (Table 6).

Fig. 5 Bar graphs of HCC, RPC, LPC, LPFC, and RPFC in the datasets, including artifact-free
data and, after artifact addition, corrected by different methods.

Table 5 HCC, RPC, LPC, LPFC, and RPFC after the different correction methods.

Method HCC RPC LPC LPFC RPFC

Motion-free 0.911 0.461 0.456 0.777 0.746

Uncorrected 0.633(0.418 –

0.744)
0.308(0.100 –

0.436)
0.316(0.160 –

0.407)
0.538(0.336 –

0.667)
0.523(0.304 –

0.665)

Manual
correction

0.812(0.721 –

0.882)
0.413(0.322 –

0.468)
0.422(0.323 –

0.484)
0.690(0.602 –

755)
0.640(0.548 –

0.726)

AEPO 0.754(0.578 –

0.840)
0.384(0.236 –

0.521)
0.387(0.298 –

0.503)
0.622(0.510 –

0.724)
0.567(0.493 –

0.675)

tPCA 0.588(0.336 –

0.782)
0.269(0.084 –

0.387)
0.203(–0.033 –

0.312)
0.471(0.229 –

0.650)
0.483(0.176 –

0.689)

WAVE 0.711(0.530 –

0.795)
0.335(0.157 –

0.455)
0.335(0.180 –

0.440)
0.607(0.455 –

0.703)
0.586(0.371 –

0.698)

Spline 0.676(0.482 –

0.824)
0.333(0.148 –

0.447)
0.341(0.182 –

0.445)
0.573(0.426 –

0.707)
0.558(0.391 –

0.683)

Spline-WAVE 0.714(0.500 –

0.820)
0.341(0.172 –

0.439)
0.334(0.185 –

0.426)
0.610(0.448 –

0.710)
0.599(0.413 –

0.720)

Spline-SG 0.753(0.530 –

0.866)
0.360(0.251 –

0.446)
0.338(0.232 –

0.423)
0.610(0.406 –

0.715)
0.591(0.388 –

0.715)

CBSI 0.519(0.323 –

0.740)
0.221(–0.007 –

0.378)
0.243(0.067 –

0.402)
0.434(0.192 –

0.673)
0.410(0.122 –

0.669)
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Table 6 P-values (one-way ANOVA) signifying improvement in HCC, RPC, LPC, LPFC, and
RPFC for the simulation data corrected by different methods.

Methods HCC LPFC RPFC LPC RPC

MC versus AEPO <0.01 <0.01 <0.01 0.17 0.41

MC versus tPCA <0.01 <0.01 <0.01 <0.01 <0.01

MC versus WAVE <0.01 <0.01 <0.05 <0.01 <0.01

MC versus CBSI <0.01 <0.01 <0.01 <0.01 <0.01

MC versus Un <0.01 <0.01 <0.01 <0.01 <0.01

MC versus Spline <0.01 <0.01 <0.01 <0.01 <0.01

MC versus Sp-Wa <0.01 <0.01 0.20 <0.01 <0.01

MC versus Sp-SG >0.05 <0.01 0.13 <0.01 <0.01

AEPO versus tPCA <0.01 <0.01 <0.05 <0.01 <0.01

AEPO versus WAVE 0.15 0.98 0.95 <0.05 0.09

AEPO versus CBSI <0.01 <0.01 <0.01 <0.01 <0.01

AEPO versus Un <0.01 <0.01 0.36 <0.01 <0.01

AEPO versus Spline <0.01 0.12 >0.99 0.19 0.12

AEPO versus Sp-Wa 0.37 >0.99 0.57 0.07 0.27

AEPO versus Sp-SG >0.99 >0.99 0.91 <0.05 0.76

tPCA versus WAVE <0.01 <0.01 <0.01 <0.01 0.07

tPCA versus CBSI 0.35 0.93 0.36 0.60 0.59

tPCA versus Un 0.69 0.17 0.86 <0.01 0.67

tPCA versus Spline <0.05 <0.01 0.09 <0.01 0.11

tPCA versus Sp-Wa <0.01 <0.01 <0.01 <0.01 <0.05

tPCA versus Sp-SG <0.01 <0.01 <0.01 <0.01 <0.01

WAVE versus CBSI <0.01 <0.01 <0.01 <0.01 <0.01

WAVE versus Un <0.05 <0.05 0.12 0.94 0.85

WAVE versus Spline 0.68 0.60 0.87 >0.99 >0.99

WAVE versus Sp-Wa >0.99 >0.99 >0.99 >0.99 >0.99

WAVE versus Sp-SG 0.48 >0.99 >0.99 >0.99 0.80

CBSI versus Un <0.01 <0.01 <0.01 <0.05 <0.01

CBSI versus Spline <0.01 <0.01 <0.01 <0.01 <0.01

CBSI versus Sp-Wa <0.01 <0.01 <0.01 <0.01 <0.01

CBSI versus Sp-SG <0.01 <0.01 <0.01 <0.01 <0.01

Un versus Spline 0.65 0.75 0.82 0.86 0.93

Un versus Sp-Wa <0.05 <0.05 0.04 0.98 0.73

Un versus Sp-SG <0.01 <0.05 0.10 0.80 >0.05

Spline versus Sp-Wa 0.65 0.55 0.51 >0.99 >0.99

Spline versus Sp-SG <0.05 0.66 0.83 >0.99 0.81

Sp-Wa versus Sp-SG 0.67 >0.99 >0.99 >0.99 0.96

Un = Uncorrected; Sp-Wa = Spline-WAVE; Sp-SG = Spline-SG; MC = Manual correction.
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3.2 Motion Correction Performance in Neonatal Datasets

About 12 neonatal fNIRS data were collected in this experiment, which included data from six
healthy neonates and six neonates with hypoxic-ischemic brain damage. Because the light source
could not be close to the scalp during the acquisition of neonatal fNIRS data, we eliminated the
channels with no physiological information signal or oversaturated channels from the raw data
during data processing (raw light intensity data values >1800 or <0.5). Finally, 409 channels of
neonatal fNIRS data were analyzed.

Table 7 lists the detection efficiency of the hMAC with the AEPO method for motion artifacts
in the 12 neonatal data. As the STDEVthresh becomes smaller, the detection efficiency increases
for some of the data, while over-identification occurs for the others. In this study, for each neo-
natal data, we selected STDEVthresh with better recognition efficiency without over-recognition
as the parameter for Spline, tPCA, and Spline-WAVE.

Figure 6 shows the correction effect of the neonatal data with different artifact occupancies
using the AEPO method. The first row of Fig. 6 represents the raw neonatal OD data containing
different numbers of artifacts; in addition to the common baseline shifts, spikes, and slow drift,
serial disturbance noise is observed. Different types of noises are highlighted using squares of
different colors. The results obtained after the initial detection of artifacts and correction of the
signal by applying Spline to the baseline shift is shown in the second row of Fig. 6. After
Gaussian replacement to correct the spikes, the final corrected signal is as shown in the third
row of Fig. 6.

To distinguish the results of the proposed method from other correction methods, Fig. 7
shows the OD data after processing with different correction algorithms. Specifically, WAVE
removes the spikes in the signal effectively, but it also aggravates the baseline shift of the signal,
especially in the parts of the signal containing serial disturbance. In contrast, Spline and tPCA
leave residuals when dealing with such perturbations, as shown in Fig. 7(a). The Spline-WAVE
method causes baseline shift owing to the residual artifacts. In contrast, the AEPO and Spline-SG
methods correct most of the artifacts in the signal. Because the CBSI approach corrects for arti-
facts based on HbO and HbR, Fig. 7(b) shows ΔHbO after correction using different motion
correction techniques, especially in the presence of serial disturbances. As a specific example,
the residuals after correction by the Spline, wavelet, and tPCA correction approaches cause a
larger deviation of ΔHbO from the manually corrected result (Table 8).

Table 7 Detection efficiency of different methods in newborn data.

Methods hMAC-15 hMAC-10 hMAC-7 hMAC-5 AEPO

Subject 1 21.4% 35.8% 53.5% 72.0% 89.5%

Subject 2 16.3% 27.7% 41.0% 62.2% 85.3%

Subject 3 24.7% 36.5% 72.6% 142.5% 97.6%

Subject 4 52.6% 65.7% 79.1% 95.2% 98.1%

Subject 5 24.4% 56.0% 93.6% 139.5% 90.1%

Subject 6 40.8% 62.7% 80.8% 102.2% 90.8%

Subject 7 22.2% 30.9% 41.5% 54.4% 83.1%

Subject 8 32.6% 58.3% 85.5% 118.3% 93.4%

Subject 9 71.5% 111.6% 165.5% 234.0% 90.9%

Subject 10 49.7% 71.7% 95.2% 122.8% 93.4%

Subject 11 27.6% 45.0% 64.5% 89.3% 86.7%

Subject 12 61.2% 79.5% 106.0% 133.9% 92.3%

hMAC=hmrMotionArtifactbyChannel.
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Fig. 7 (a) Neonatal OD signal after correction by different methods and (b) ΔHbO after correction
with different methods.

Fig. 6 Columns (a)–(c) represent the original neonatal OD signal with low, medium, and high num-
ber of artifacts, respectively, and the results after AEPO correction, including that after the Spline
and after Gaussian replacement.
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Figure 8 shows the values of R and RMSE for the ability of different correction techniques to
remove the artifacts in neonatal resting-state fNIRS data. Compared with the data with no
correction artifacts (R ¼ 0.459� 0.227, RMSE ¼ 1.237� 0.986), CBSI (R ¼ 0.454� 0.216,
RMSE ¼ 0.777� 0.480), and Spline-SG (R ¼ 0.360� 0.230, RMSE ¼ 0.966� 0.576) were
inadequate in recovering the signals in neonatal data. Whereas AEPO (R ¼ 0.732� 0.155,
RMSE ¼ 0.536� 0.339), WAVE (R ¼ 0.542 � 0.222, RMSE ¼ 0.811� 0.520), tPCA
(R ¼ 0.577� 0.215, RMSE ¼ 0.666� 0.413), Spline (R ¼ 0.631� 0.205, RMSE ¼
0.700� 0.462), and Spline-WAVE (R ¼ 0.640� 0.191, RMSE ¼ 0.637� 0.375) alleviated
the effects of motion artifacts on ΔHbO. Among the methods that showed improvements, the
AEPO method performed better statistically in terms of RMSE and R (paired t-test, **p < 0.01,
Table 9) and produced amplitudes of ΔHbO that were closer to those of the manual correction
method.

Fig. 8 (a) R and (b) RMSE values for ΔHbO obtained by manual correction and different algo-
rithms for the neonatal datasets.

Table 8 R and RMSE values for neonatal data corrected using different algorithms.

Method R RMSE Processing time (s)

Uncorrected 0.459 ± 0.227 1.237 ± 0.986 0.055

AEPO 0.732 ± 0.155 0.536 ± 0.339 1.258

Spline 0.631 ± 0.205 0.700 ± 0.462 0.111

WAVE 0.542 ± 0.222 0.811 ± 0.520 100.849

tPCA 0.577 ± 0.215 0.666 ± 0.413 0.065

CBSI 0.454 ± 0.216 0.777 ± 0.480 0.281

Spline-WAVE 0.640 ± 0.191 0.637 ± 0.375 107.539

Spline-SG 0.360 ± 0.230 0.966 ± 0.576 23.351
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4 Discussion

In this study, we proposed a suitable denoising method for complex fNIRS signals in neonates.
Typically, when collecting neonatal fNIRS data, motion artifacts contaminate the fNIRS signal
owing to reasons such as head movements by the subject and detector not being firmly attached
to the scalp. Motion artifacts of different sizes and frequencies are not easily and completely
recognized by artifact detection procedures.27 In addition, the existing correction methods fail to
consider the influence of the noise created by a mixture of multiple motion artifacts in neonatal
fNIRS data on the recognition and correction algorithm, which reduces their ability to handle
artifacts in neonatal data and correct them appropriately and adaptively.27 Therefore, our strategy
was to first estimate the normal physiological oscillations in the neonatal signal such that motion
artifacts of different amplitudes and frequencies could be identified to the maximum extent. After
identifying the motion artifacts, we corrected the baseline shifts and spikes using Spline with
Gaussian replacement to avoid residual artifacts. This study evaluated the performance of the pro-
posed method using simulation data and real neonatal resting-state data. The performance was
compared with that of commonly used artifact correction algorithms in the fNIRS field, which
verified the advantages of our proposedmethod in preprocessing neonatal resting-state fNIRS data.

Based on the R and RMSE values, the CBSI method does not provide a significant advantage
in the cases of simulated data and actual neonatal data (simulated data: R ¼ 0.578� 0.113,
RMSE ¼ 0.420� 0.116; neonatal data: R ¼ 0.454� 0.216, RMSE ¼ 0.777� 0.480).
According to our analysis, the changes in the HbO and HbR concentrations in head blood are
not strictly negatively correlated in neonates in the resting-state.23,50 Moreover, in the study by
Behrendt et al. on fNIRS of mother–infant interaction, HbO and HbR in infant cerebral blood
were not strictly negatively correlated in the facial expression task.10 This is a characteristic of
infant blood flow. However, this characteristic deviates from the assumptions of the CBSI
method,24 causing variance between its corrected neonatal data and the manually corrected data.

Compared with the results without any correction processing (simulation data:
R ¼ 0.645� 0.109, RMSE ¼ 0.472� 0.131; neonatal data: R ¼ 0.459� 0.227,

Table 9 P-values (paired t -tests) denoting improvement or significant improvement in R and
RMSE using the method in the row over the method in the column for neonatal data.

R
RMSE Spline-WAVE Spline-SG WAVE Spline tPCA CBSI Uncorrected

AEPO <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Spline-WAVE — <0.01 <0.01 0.14 <0.01 <0.01 <0.01

— <0.01 <0.01 <0.01 <0.05 <0.01 <0.01

Spline-SG — <0.01 <0.01 <0.01 <0.01 <0.01

— <0.01 <0.01 <0.01 <0.01 <0.01

WAVE — <0.01 <0.01 <0.01 <0.01

— <0.01 <0.01 <0.05 <0.01

Spline — <0.01 <0.01 <0.01

— <0.05 <0.01 <0.01

tPCA — <0.01 <0.01

— <0.01 <0.01

CBSI — 0.89

— <0.01
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RMSE ¼ 1.237� 0.986), the tPCA method failed to demonstrate improvements in the case of
simulation data (R ¼ 0.613� 0.117, RMSE ¼ 0.366� 0.065), whereas in the case of neonatal
data, a slight improvement in the correlation R was observed (R ¼ 0.577� 0.215,
RMSE ¼ 0.666� 0.413). However, this improvement is usually not sufficient to meet the
requirements for artifact removal, such as in neonatal brain network analysis. The tPCA method
relies on the artifact recognition result.27 Second, it also requires that all artifacts be recognized
as the main component.23 However, in actual neonatal data, artifacts with small amplitudes are
not easily or completely recognized as the main component.12 In addition, tPCA directly
removed the largest principal component of the proportion of variance in the data. However,
these components may also contain changes in the blood flow.51 Owing to the above possible
reasons, the effect of the tPCA correction was not obvious.

WAVE and Spline are effective in removing spike noise and baseline shift respectively from
the neonatal data. However, they are not effective in handling serial disturbances in the neonatal
data, caused by a combination of different proportions of spikes and baseline shifts. The
differences between the approaches are influenced by the type of motion artifacts in the data
and the detection effectiveness. Specifically, the WAVE approach was better at correcting for
spike artifacts in the neonatal data (R ¼ 0.542� 0.222, RMSE ¼ 0.811 � 0.520). However,
when faced with noise consisting of spikes superimposed with baseline shifts, the WAVEmethod
smears or smoothens this part of the artifact,50 leading to a greater degree of baseline shift. This
problem persists even after changing different parameters. In contrast, Spline relies heavily on
artifact detection. Factors such as inaccurate artifact detection and a higher amount of high-
frequency noise in the neonatal data cause unstable results.50 Moreover, data processed with
Spline usually contain residual spikes, especially at the sites of disturbance caused by noise
(R ¼ 0.631� 0.205, RMSE ¼ 0.700� 0.462). In our study, the combination of Spline and
WAVE produced slightly better results in the neonatal data than their individual results, with
a reduced number of residual artifacts in the corrected signal. Similar conclusions were obtained
in the study by Lorenzo et al., in which the combination of Spline and WAVE showed better
performance on semi-simulated data, and recovered the majority of data affected by motion
artifacts in all datasets.27 Therefore, we recommend the use of Spline-WAVE for complex
fNIRS data rather than the Spline or wavelet method.

The Spline-SG method showed good recovery effect in the simulated data (R ¼ 0.828�
0.078; RMSE ¼ 0.213� 0.049). However, for actual neonatal data, the Spline-SG correction
method performed poorly (R ¼ 0.360� 0.230; RMSE ¼ 0.966� 0.576). The reason for
this result is that not all channels in the neonatal data used in this study had an SNR > 3

(117 channels with SNR < 3). Using SG filtering did not remove all artifacts, which is consistent
with previous reports.27

The different motion correction methods showed varying performance for connectivity resto-
ration. In the simulation data, AEPO, Spline-SG, WAVE, and Spline-WAVE recover better for
the two types of significantly decreased connectivity. For AEPO, Spline-SG, and Spline-WAVE,
the phenomenon of recovery is related to the modeling operations in the Spline.38 However all
connectivity does not returned to its original level. For the WAVE method, when faced with
continuous disturbance, the noiseless signal before and after disturbance does not change after
correction. The residual baseline drift may be the reason for the connectivity not returning to its
original state.38

The results of the combined simulation and neonatal data showed that the optimized method
in this study had a better correction effect than the traditional algorithm (simulation data:
R ¼ 0.860� 0.037, RMSE ¼ 0.196� 0.024, **p < 0.01; neonatal data: R ¼ 0.732� 0.155,
RMSE ¼ 0.536� 0.339, **p < 0.01), while also displaying an improved effect on the restora-
tion of connectivity in the simulation data. Because motion artifacts in neonatal data affect the
calculation of the recognition thresholds, our strategy was to eliminate this effect using sliding
windows and sorting. When processing neonatal fNIRS signals containing different motion arti-
facts, this strategy adaptively estimates the physiological oscillations in the noise-free part of the
signal and then uses them as thresholds to maximize the objective recognition of artifacts. Thus,
the threshold multiplier STDEVthresh has a smaller range. In addition, to solve the problem of
residual artifacts, we used different treatments for different types of artifacts. Because Gaussian
substitution can handle only spikes of a short duration, we recommend using Spline to remove
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baseline shifts. The signal is then passed to the Gaussian replacement algorithm to correct for
high-frequency spikes. Thus, the Gaussian is not used to correct the baseline shift in the signal,
which produces better results. Based on the results of our study, we recommend using the AEPO
approach as a preprocessing method for neonatal fNIRS data. However, our method has some
limitations. Only the resting-state fNIRS data of the neonates were processed in this study. In
scenarios where the physiological oscillations have different magnitudes in the alternating task
and resting states, our method may have over-correction problems. In the future, we will further
optimize this aspect so that our method may be used as a preprocessing tool for physicians to
monitor brain function in newborns.

5 Conclusion

Motion artifact correction is a fundamental preprocessing step for transforming raw fNIRS data
into changes in the HbO concentration. Particularly, when the subjects are newborns or infants,
the preprocessing results are critical for subsequent analysis. Traditional motion artifact correc-
tion faces certain challenges when processing data from such populations. This paper presented
an artifact correction method suitable for neonatal data. The proposed method maximizes the
identification of artifacts in the data based on the physiological oscillations in the signal and
combines the advantages of both Spline and Gaussian replacement methods to provide a better
correction effect for different types of noise in neonatal data. The application of the proposed
method to simulated data and neonatal resting-state data showed that our method obtains faster
and better results than other artifact correction methods. Hence, it is suitable for correcting
artifacts in newborns data within short time, thereby improving the clinical applicability of the
fNIRS technique to neonates.
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