
Research on super-resolution reconstruction of
remote sensing images: a comprehensive review

Hui Liu,a,b,c Yurong Qian,b,c,d,* Xiwu Zhong,b,c,d Long Chen ,b,c,d

and Guangqi Yangb,c,d
aXinjiang University, College of Information Science and Engineering, Urumqi, China

bXinjiang University, Key Laboratory of Signal Detection and Processing, Urumqi, China
cXinjiang University, Key Laboratory of Software Engineering, Urumqi, China

dXinjiang University, College of Software, Urumqi, China

Abstract. The super-resolution (SR) reconstruction of remote sensing images is a low-cost
and efficient method to improve their resolution, and it is often used for further image analysis.
To understand the development of SR reconstruction of remote sensing images and research
hotspots and trends, we examined its history and reviewed existing methods categorized into
traditional, learning-based, and deep-learning-based methods. To evaluate the reconstruction
performance, we conducted experiments comparing various algorithms for the single- and
multi-frame SR reconstruction of remote sensing images considering three datasets. The exper-
imental results indicate the advantages and limitations of single- and multi-frame reconstruction,
with the latter showing a higher performance. Finally, we provide directions for future develop-
ment of this SR reconstruction. © 2021 Society of Photo-Optical Instrumentation Engineers (SPIE)
[DOI: 10.1117/1.OE.60.10.100901]
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1 Introduction

With the rapid development of image processing, numerous applications using digital images are
emerging, with those using remote sensing images becoming a research hotspot. Remote sensing
images provide wide coverage, rich information, and durability.1,2 High-resolution (HR) remote
sensing images are important in many fields, including environmental monitoring,3 agricultural
yield estimation,4 urban planning,5 military reconnaissance,6 and emergency rescue.7 However,
owing to the high cost and long time required to develop HR remote sensing satellites, it remains
challenging to conveniently obtain HR images. Super-resolution (SR) reconstruction has been
devised to address this challenge by processing images to increase their resolution.8,9 SR recon-
struction is a traditional image processing problem. In recent years, many researchers have pro-
posed SR technology to improve the spatial or spectral resolution of images.10,11 We make an
in-depth analysis on the status of SR reconstruction of remote sensing images from bibliomet-
rics, such ScienceDirect, IEEE Xplore, Cnki Database, and Wanfang Database, as shown in
Fig. 1. This method has low-cost and fast application and can be continuously improved, thus
becoming practical and effective to expand the use of remote sensing images.12 This review
analyzes and discusses the field of SR reconstruction based on the research of domestic and
foreign researchers. According to the number of input images, SR reconstruction method can
be generally divided into two reconstruction schemes: single frame and multi-frame.13 In the
single-frame method, only a low-resolution (LR) image of the target scene can be used to gen-
erate an HR result, which was first proposed by Harris14 and Goodman.15 In the multi-frame
method, multiple LR images of the same scene obtained under different conditions are used,
first proposed by Tsai,16 to improve the spatial resolution of Landsat TM images. In recent years,
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the SR method of remote sensing image has been widely used. The most successful application
is SPOT-5, which can generate an HR image with a resolution of about 2.5 m by processing two
5-m images.17 With the increase of means to obtain images, multi-frame method has attracted
more and more scholars’ attention. In addition, with the development of deep learning, there are
more and more layers of network, and the lightweight of network model has become the research
direction of many scholars.18

Since the introduction of image SR reconstruction by Tsai16 in 1984, this topic has been
extensively studied, and there have been many in-depth discussions. In addition, SR reconstruc-
tion of remote sensing images has become a research hotspot. Moreover, machine learning and
deep learning methods, especially deep neural networks, have shown remarkable reconstruc-
tion performance. In fact, machine learning can achieve a high performance by the following
factors.

(1) Massive data can be used to train a deep neural network for tasks such as classification
under the guidance of user-defined labels.

(2) The increasing capabilities of graphics processors allow processing and optimization in
parallel.

(3) Deep neural networks can outperform traditional methods, and the model depth and out-
put size of the image can be adjusted.

Although deep neural networks have contributed to remote sensing, various challenges
remain to be addressed.

(1) Due to technical and budget constraints, a single-satellite sensor cannot acquire remote
sensing images with high spatial and temporal resolution at the same time. Therefore, it is
necessary to make effective use of time, space, and spectral correlation for multi-spectral
and hyperspectral images from high latitudes.

(2) Remote sensing images mean long-distance observations encoded with a large number of
sensors and scene information. Therefore, compared with natural images, remote sensing
images contain richer information. Obtaining high-quality remote sensing images and
extracting valuable characteristic information from them can provide a basis for remote
sensing applications, such as remote sensing image classification applications.

(3) Remote sensing is affected by environmental factors, including atmospheric and weather
conditions, which hinder the extraction of valuable information.

(4) Owing to the diversity in sampling methods, resolutions of remote sensing images, and
available datasets, deep neural networks can be used to extract rich image information.
Although deep learning can provide high performance, the computation burden increases
with the complexity of the learning network, and the hardware requirements become
prohibitive for practical large-scale applications.

Fig. 1 SR reconstruction literature quantity trend chart.
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This paper reviews the classification of remote sensing image SR reconstruction methods.
Section 2 mainly discusses the traditional remote sensing image SR method. Section 3 mainly
investigates the remote sensing image SR reconstruction method based on deep learning.
Section 4 summarizes the quality evaluation criteria in remote sensing image reconstruction and
the comparison between single-frame reconstruction and multi-frame reconstruction was done
using some classical algorithms on three datasets. A summary and prospects are given in Sec. 5.

2 Based on Traditional Remote Sensing Image Super-Resolution
Reconstruction

SR reconstruction is a traditional image processing problem, which mainly focuses on SR recon-
struction for spatial resolution and spectral resolution. This review analyzes and discusses this
field based on the research of domestic and foreign researchers on SR reconstruction. This sec-
tion mainly summarizes the SR methods based on reconstruction and learning.

2.1 Super-Resolution Reconstruction Method Based on Reconstruction

SR reconstruction is a traditional SR problem. Considering the frequency domain, Tao et al.19

used a discrete wavelet transform to decompose remote sensing images. Then the wavelet coef-
ficient image was interpolated using nearest-neighbor, bilinear, or bicubic interpolation. The
inverse discrete wavelet transform then provided the corresponding SR image. This method
effectively preserves high-frequency information from the original HR image. To solve typical
convolution and noisy linearly degraded images, Wei et al.20 proposed a degraded image resto-
ration algorithm based on a hidden Markov tree and Fourier-wavelet regularized deconvolution.
Similarly, Jinliang et al.21 used wavelet decomposition to obtain wavelet coefficients at different
scales from high- and low-frequency information, obtaining weighting factors for suitable recon-
struction, as demonstrated through multiple experiments. In addition, wavelet coefficients of
multi-period LR images have been reconstructed using a wavelet transform to capture more
details in the reconstructed images. Ma et al.22 considered the frequency domain to reconstruct
HR images in different frequency bands and proposed a method combining wavelet transform
and the recursive ResNet architecture.

Among non-uniform image interpolation methods for reconstruction, the proposal by Tao
et al.19 combines the wavelet transform and an interpolation algorithm based on the image char-
acteristics, improving the image resolution while preserving rich high-frequency information
from the original remote sensing image. To prevent blurring of image boundaries after interpo-
lation and loss of details, Jingmeng et al.23 proposed an image SR reconstruction method based
on the combination of residual pixels and non-uniform B-spline interpolation to reconstruct the
visual effect, obtaining high-quality HR images. To use representative information from the
medium- and high-frequency components in remote sensing images, Han24 proposed an image
interpolation algorithm based on the wavelet transform, which processes a bicubic interpolation
image to preserve high-frequency information. Similarly, Solanki et al.25 proposed a method to
extract low- and high-frequency bands using a dual-tree complex wavelet transform and apply-
ing improved new edge-oriented interpolation to the high-frequency subband images, obtaining
HR images without artifacts.

In the convex set projection method based on reconstruction, the traditional projection on
convex sets (POCS) algorithm has contradictions in preserving image details and denoising,
which affects the quality of the reconstructed image. In order to avoid this defect and obtain
higher resolution, Shang26 introduced the idea of image denoising based on sparse representation
on the basis of POCS, combined the image processing method of sparse representation of
K-singular value decomposition with the advantages of POCS for image SR reconstruction.
Patti et al.27,28 proposed another method of SR reconstruction of POCS, which took into account
the blur factors caused by non-zero aperture time, camera movement, and imaging optical
components.

The reconstruction-based maximum posteriori (MAP) method is more flexible, especially
in the regular terms of the MAP method; one can freely add specific constraints on specific
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problems. For example, Tao et al.29 introduced the Markov random field model on the basis of
MAP to achieve SR reconstruction of sequence images. Markov random field theory imposes
regularization constraints on LR to achieve rapid convergence and improve SR. Irmak et al.30

proposed an improved method based on maximum posteriori-Markov random field (MAP-MRF)
to enhance the spatial resolution of hyperspectral images. This method used non-linear program-
ming technology to solve the joint energy minimization problem based on MAP-MRF, identified
HR abundance maps, and combined them to obtain HR hyperspectral images which were very
close to the original HR images. Irmak et al.31 proposed a new MAP-based SR reconstruction
method for hyperspectral images, in which the hyperspectral image was the only signal source.
This method transformed the ill-posed SR reconstruction problem in the spectral domain into the
quadratic optimization problem in the abundance mapping domain.

Iterative back projection based on reconstruction, conventional SR reconstruction based on
iterative back projection causes a sawtooth effect and noise in the edge of reconstructed images,
consequently compromising image clarity. To prevent these problems, Guo and Song32 proposed
image SR reconstruction based on a high-frequency enhancement curve and iterative back pro-
jection. The method first uses the unsharp mask to extract the high-frequency components of the
initial reconstructed image, perform high-frequency information classification, and mitigate
noise. Then the high-frequency enhancement curve is used to enhance the high-frequency com-
ponents and maintain their monotonicity. As distortions caused by clouds, atmospheric turbu-
lence, and other noise sources often vary across regions in LR remote sensing images, local
distortions should be considered, but conventional iterative back projection cannot handle indi-
vidual local distortions.33,34 Thus Li et al.35 improved iterative back projection by merging an
inverse combination algorithm and a positive combination algorithm, improving elastic regis-
tration, and the image spatial resolution. Nevertheless, as iterative back projection is used for SR
reconstruction of single-frame remote sensing images, the strong edges of the reconstructed
image present the sawtooth effect. Tongyu36 proposed an iterative process to handle image errors
and further enhance the high-frequency components of images, thus improving the quality of
image reconstruction and reflecting high-frequency information with stability and robustness
(Table 1).

2.2 Super-Resolution Reconstruction Method Based on Learning

Learning-based methods have become important for SR algorithms in recent years.28,30,37 Using
a training set, such methods calculate the neighborhood relation between image blocks of test
samples and training samples to determine the optimal weight constraint to obtain prior knowl-
edge and approximate the HR image corresponding to the test sample. Therefore, sample-based
SR algorithms based on neural network estimation have been proposed. Freeman et al.38 intro-
duced the application of sample-based methods for image SR reconstruction. Their algorithm
uses a neural-network-based high-frequency small block estimation. Then a Markov network
improves the resolution of the output small blocks. Wu and Wang39 considered overfitting
in traditional sample-based learning and regarded SR reconstruction as a regression problem.
For a given set of training image pairs, they minimized the regularized cost function of the
regressor to determine the minimum of the regressor in a sparse subset, reducing the time com-
plexity and calculation cost while enriching image details such as textures.

Based on popular learning methods, the learning efficiency is not only related to the size of
the training set but also to the use of the available samples. Su et al.40 considered HR image
blocks and their corresponding LR image blocks as points in high- and low-dimensional data
spaces, respectively. Then they used local linear embedding to estimate LR small blocks that can
map onto the corresponding HR small blocks. Specifically, the nearest neighbors of datapoints in
the high-dimensional space from the local linear embedding were assumed to be the nearest
neighbors in the low-dimensional space, and local linear embedding was used for SR.
Chang et al.41 proposed an SR algorithm based on neighborhood embeddings. This method uses
a training set containing the corresponding LR and HR image blocks and assumes that the fea-
ture relation between any LR block and the training LR block is reconstructed to improve the
resolution. Xinlei and Naifeng42 proposed a sparse-structure manifold embedding method. By
adding geometric rules of the image along the singular points or contours to neighborhood
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selection, structure information of the image can be suitably restored. Simultaneously, by con-
sidering that abnormal values are often included in the embedding and that they reduce the struc-
ture accuracy, they used robust sparse embedding to eliminate outliers and normalized the
weights to obtain more accurate neighborhoods and coding coefficients when synthesizing
HR images. Zhang et al.43 considered that multiple-point simulation based on linear dimension-
ality reduction compresses a high-dimensional space and shortened the simulation time, but it
also reduces the simulation quality and limits the use for applications to non-linear data.
Therefore, they introduced isometric mapping to achieve non-linear dimensionality reduction
and combined multiple-point simulation with clustering for classification after dimensionality
reduction. In addition, they designed a training process for image reconstruction to achieve con-
tinuous image feature reconstruction.

Based on the dictionary learning method, Yang et al.9 proposed the use of sparse represen-
tation of image blocks to achieve SR reconstruction in 2008. An over-complete dictionary was
formed by randomly selecting image blocks, and then linear programming was used for each test
block. The method obtained the sparse representation of the test block under this over-complete
dictionary and finally reconstructed an HR image with the weight of this set of coefficients. This
method overcomed the problem of the neighborhood size selection in the neighborhood embed-
ding method. Zhihui et al.44 proposed a method based on sparse signal representation. This
method jointly trained two dictionaries for LR and HR image blocks, respectively, and enhanced
the similarity of sparse representation between them to realize the SR of remote sensing images
and denoising. Liu et al.45 proposed an image SR reconstruction algorithm based on sparse

Table 1 Summary of SR reconstruction methods based on reconstruction.

Algorithm Advantage Disadvantage

Frequency
domain method

Image convolution, translation, rotation,
and other operations can be easily
converted into easy-to-handle arithmetic
operations in the frequency domain

It is difficult to deal with the problem of
image noise and can only deal with the
spatially invariant noise model, and it is
difficult to add prior information in the
process. In addition, due to the complex
transformation relationship between the
frequency domain and the spatial domain,
the traditional frequency domain method
can only handle the situation where there
is only global overall motion between the
input LR images, and it is difficult to deal
with the local motion, which has relatively
large limitations

Non-uniform
image
interpolation

Very simple and intuitive, linking the
problem of SR with the problem of image
interpolation

The adaptability is relatively poor, it is
difficult to deal with the blur phenomenon
in the input image, the image introduces
noise, etc., and it is difficult to add the prior
information of the image

Convex set
projection method

The thinking is relatively simple, the
method form is relatively flexible, and the
addition of prior knowledge is also
relatively convenient

The computational complexity is high, and
the convergence speed is relatively slow.
In addition, its target solution is generally
not unique but a set of feasible solutions

Maximum
posterior
probability

It has strong flexibility and robustness.
Under the premise that the probability
distribution of noise satisfies certain
conditions, the original probability
inference problem has a unique solution.
At this time, you can choose an efficient
gradient descent algorithm without
worrying about converging to a local
extreme

Need sufficient prior information

Example-based
multi-linear
regression
method

Computational space complexity and time
complexity are both low

The reconstruction quality depends on the
anchor point scale and anchor point
quality
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representation and classified texture patch, which mainly used prior knowledge and texture to
reconstruct remote sensing images and performed dictionary learning by extracting image blocks
from HR to LR. The super-complete dictionary was learned in the resolution image block, and
then the trained dictionary was used to reconstruct the remote sensing image.

In the instance-based multi-linear regression method, it is considered that although the
method based on dictionary learning has advantages in the quality of reconstructed images,
it has a relatively high amount of calculation. Zhang et al.46 proposed an instance-based support
vector regression model, which learned the non-linear relationship between coarse fractional
pixels and corresponding labeled subpixels from the selected best-matching training data.
The coarse fractional images generated the HR land cover maps. It has more detailed spatial
information and higher accuracy on different spatial scales. Subsequently, Zhang et al.47 im-
proved the method, which produced results with fewer spots and linear artifacts, more spatial
details, smoother boundaries, and higher accuracy.

These methods either use the internal similarity in the image or learn the mapping between
LR and HR image pairs. Although they focus on learning and dictionary optimization, the
remaining steps of the methods are rarely optimized or considered under a unified framework.

3 Super-Resolution Reconstruction of Remote Sensing Image Based
on Deep Learning

This section mainly summarizes the methods of SR reconstruction of remote sensing images
based on deep learning models. Each type of model is divided into single-frame image and
multi-frame image. Multi-frame SRR refers to the generation of a single high-quality and
HR image from a group of low-quality and LR images (Table 2).

3.1 Algorithms Based on BP Neural Network

The back propagation (BP) neural network (its structure shows in Fig. 2) is a multi-layer feedfor-
ward neural network, which simulates the structure of the neural network of the human brain,
and the basic unit of the human brain to transmit information is the neuron. There are a large
number of neurons in the human brain, and each neuron connects with multiple neurons.48 In the
multi-frame remote sensing image SR reconstruction based on BP neural network, Ding et al.49

used a three-layer BP neural network to reconstruct the resolution of the input remote sensing
image. Because the BP neural network needs a lot of data to make it possible to converge, the

Table 2 Summary of learning-based SR reconstruction methods.

Algorithm Advantage Disadvantage

Example-based
algorithm

Can learn a priori knowledge of various
complex image structures and edges; can
generate HR images with rich high-
frequency information; and reduce the
time complexity and calculation cost, and
enrich the detailed information such as the
texture of the image

The visual effect of the generated image is
not good, contains noise, and the visual
effect is improved but limited

Based on popular
learning methods

Can make full use of the samples in the
training set, and has good generalization
ability under a small sample set

Sensitive to the selection of image
features and the number of neighbors,
which can easily lead to over-fitting or
under-fitting

Dictionary-based
learning method

It has the ability of adaptive field selection,
low algorithm space complexity, and good
robustness to noise

Reconstruction quality depends on
dictionary size and dictionary quality

Example-based
multi-linear
regression
method

Computational space complexity and time
complexity are both low

The reconstruction quality depends on
the anchor point scale and anchor point
quality
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amount of calculations that it performs is also particularly prominent. Because the genetic algo-
rithm can search for the global optimal solution, and it has strong robustness, but the conver-
gence of the algorithm is deficient. Chen andWang50 combined genetic algorithm with BP neural
network, so that the network has faster convergence ability and stronger learning ability.

3.2 Algorithms Based on Convolutional Neural Network

The development of convolutional neural networks (CNNs) can be traced back to the work by
Hubel and Wiesel51 on the visual system of the cat brain in 1962. Subsequently, Lecun et al.52

proposed LeNet-5 in 1998. They introduced back projection to train neural networks, establish-
ing the basis for CNNs. Nevertheless, it was not until 2012 when the AlexNet53 was presented in
the ImageNet large scale visual recognition challenge that CNNs began to flourish and to be
widely used in various fields, achieving the highest performance at the time. A basic CNN con-
sists of an input layer, a convolutional layer, a pooling layer, and a fully connected layer, as
shown in Fig. 3. Moreover, the emergence of non-linear activation functions, such as the rectified
linear unit (ReLU),54 has increased the training performance of CNNs.

(1) Single-frame remote sensing image SR reconstruction based on CNN

Ducournau and Fablet55 applied super-resolution CNN (SRCNN)56 in handling ocean
remote sensing data of large scale, the sea surface temperature field dataset, and obtained con-
siderable gains in the peak-signal-to-noise ratio (PSNR) considering that in a typical CNN
model, neurons in the lower convolutional layer share a smaller receptive field and pay more
attention to local details, while in the higher layer, a larger receptive field is accumulated, cover-
ing a larger area. Lei et al.57 proposed a novel image SR method called local global combination
network (LGCNet). LGCNet has carefully designed the multi-fork structure, which can learn
the multi-scale representation of remote sensing data, including local details (such as the edges
and contours of objects) and global a priori (such as environment types). It is dedicated to
reconstructing the residual between the LR and corresponding HR image pairs and achieved
good robustness.

Fig. 3 Structure diagram of CNN.

Fig. 2 BP neural network model diagram.
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(2) Multi-frame remote sensing image SR reconstruction based on CNN

Masi et al.58 improved the SR-CNN and proposed a three-layer CNN for multi-spectral
images with high spectral resolution and panchromatic images with high spatial resolution using
feature fusion to generate multi-spectral images with high spatial resolution. Ye et al.59 consid-
ered the spatial information in a multi-spectral image and used the available texture information
to enhance the spatial resolution of a panchromatic image before processing, thereby improving
the spatial resolution of the generated image. To better learn the characteristics of images across
multiple frames, Palsson et al.60 used a 3D CNN to fuse hyperspectral and panchromatic images
to generate hyperspectral images with high spatial resolution. Yang et al.61 used a two-branch
CNN to extract spectral and spatial features of hyperspectral and multi-spectral images, respec-
tively. The branch that processes hyperspectral images performs a 1D convolution, and its input
is a 1D signal processed by a convolution. As a result, a remote sensing image with high spatial
resolution and high spectral resolution is obtained.

3.3 Algorithms Based on Generative Adversarial Network

Generative adversarial networks (GAN) was first proposed by Goodfellow et al.,62 and its
structure is shown in Fig. 4. It is inspired by the zero-sum game in game theory and consists
of a generator and a discriminator. The generator receives a random noise and generates a
picture from the received noise. The discriminator is a binary classifier, which discriminates
whether the input data are real data or the data generated by the generator. Both the generator
and the discriminator can be implemented using any deep neural network model. Commonly
used GAN network models include WGAN,63 DCGAN,64 InfoGAN,65 EBGAN,66 and
LSGAN.67

(1) Single-frame remote sensing image SR reconstruction based on GAN

Ma et al.22 proposed SR reconstruction for remote sensing images based on a transient GAN,
which improved the previous SR-GAN.68 Specifically, the conventional GAN was simplified by
deleting components to reduce the memory requirements and increase the calculation speed. In
addition, inspired by transfer learning, their reconstruction method was pretrained on the DIV2K
dataset and then adjusted using a remote sensing image dataset, thus achieving high accuracy and
visual performance. Similarly, Huang et al.69 proposed an SR method based on GAN and
residual learning for handling hyperspectral remote sensing images, extending the SR-CNN with
a deeper architecture and more residual blocks. In addition, the generator was similar to that in
SR-GAN, but the batch normalization layer was removed, and a deep network learned residual
images. The combination of deeper layers and residual learning provided high spectral fidelity.
Moreover, to improve the quality of spatial perception, a gradient learning network was devel-
oped to replace the VGG loss, and the discriminator was trained by transmitting the gradient
features to the generator to contribute to detail recovery.

(2) Multi-frame remote sensing image SR reconstruction based on GAN

Liu et al.70 were the first to develop a GAN for multi-frame image fusion using two-branch
fusion as the generator of the required HR multi-spectral image and a fully convolutional net-
work as the discriminator. Using this architecture, they obtained multi-spectral images with high

Fig. 4 GAN structure.
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spatial resolution. Shao et al.71 further improved the results by introducing a residual encoder–
decoder and a conventional GAN. Ma et al.72 used a least squares GAN as the basic model and
unsupervised learning. They adopted two discriminators, a spectral discriminator and a spatial
discriminator, for the generated image to reflect both the spectral resolution of the multi-spectral
image and the spatial resolution of the panchromatic image.

3.4 Algorithms Based on Deep Dense Convolutional Network

With the continuous improvement in deep learning networks, the problem of gradient messages
has become persistent. To solve this problem, information transmission between adjacent layers
in the network should be ensured. In addition, information transmission between the feature
maps obtained in the early and late network stages should be considered. To maximize infor-
mation transmission, Huang et al.73 proposed a dense CNN, DenseNet, that transmits informa-
tion across all the network layers. Specifically, each layer takes the results from all the previous
layers as additional inputs. For example, for an L-layer network, a conventional CNN has L
connections, whereas DenseNet has LðLþ 1Þ∕2 connections. The DenseNet architecture is
shown in Fig. 5. In the SR reconstruction of single-frame remote sensing image based on deep
dense convolutional network, Pan et al.74 proposed an single image super resolution (SISR)
method based on residual dense back projection network to improve the resolution of an
RGB image with medium and large-scale factors. The network is composed of dense back pro-
jection blocks, which contains two modules, called the upper projection module and the lower
projection module. These modules are closely connected in one block to achieve better recon-
struction performance, thereby making up for the fact that the details are ignored during the
reconstruction process for large-scale factor.

3.5 Algorithms Based on Deep Residual Network

For single-frame SR reconstruction of remote sensing images based on deep dense CNNs, Pan
et al. proposed single-image SR reconstruction based on the residual dense back projection net-
work to improve the resolution of an RGB image with medium- and large-scale factors. Their
network is composed of dense back projection blocks with an upper projection module and a
lower projection module. These modules are closely connected in one block to improve recon-
struction, compensating for details ignored during reconstruction for large-scale factors.

For conventional deep learning networks, it is generally believed that a deeper network with
more parameters provides stronger non-linear expression ability and learning. However, the first
problem caused by increasing depth is gradient explosion (or dissipation). This is because as the
network has more layers, the gradient of BP in the network becomes unstable and excessively
large or small as multiplications proceed. To prevent this problem, He et al.75 proposed a residual
module. For a stacked structure with several layers and input x and learned featureHðxÞ, residual
FðxÞ ¼ HðxÞ − x should be learned for the original learning feature to be HðxÞ. When residual
FðxÞ ¼ 0, the accumulation layer only performs identity mapping, and the network performance
is maintained. In practice, the residual cannot be zero, and the accumulation layer learns new
features based on the input features to further improve the network performance.

(1) SR reconstruction of single-frame remote sensing image based on deep residual network

SR-GAN68 introduces residual learning using multiple residual blocks in the generator
(SR-ResNet). Each residual block contains two 3 × 3 convolutional layers followed by batch
normalization and parametric ReLU activation. In addition, two subpixel convolutional layers
are used to increase the feature size. The SR-GAN architecture is shown in Fig. 6.

Fig. 5 DenseNet network structure.
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Subsequently, enhanced deep residual networks76 have considered the original ResNet
intended to solve high-level computer vision problems, such as classification and detection.
However, they do not directly apply ResNet to low-level computer vision problems, such as
SR, because it provides suboptimal results. In addition, as batch normalization has the same
memory requirements of the previous convolutional layer, enhanced deep residual networks
remove this step (see Fig. 7), and instead it stacks more layers or improves feature extraction
per layer to increase performance.

Wang et al.77 improved an algorithm for SR reconstruction of remote sensing images based
on a recursive residual network that combines global and local residual learning to facilitate deep
network training under the control of recursive parameter learning. The improved recursive
residual network uses global residual learning in the identity branch. In addition, recursive learn-
ing is introduced into the residual branch by constructing a recursive block stacked by residual
units, and a multi-path structure is used in the recursive block. Ma et al.22 combined the wavelet
transform with a recursive ResNet. Thus frequency-domain reconstruction of HR images is
achieved over different frequency bands. In detail, the wavelet transform is applied to LR images
to divide them into various frequency components. Then a network with recursive residual
blocks predicts high-frequency components. Finally, the image is reconstructed by applying the
inverse wavelet transform.

(2) Multi-frame remote sensing image SR reconstruction based on deep residual network

In deep learning, high-frequency details are often lost due to the difficult learning of non-
linear feature maps during fusion of multi-spectral and panchromatic images, and the spatial
resolution of multi-spectral images should be improved. Therefore, Yang et al.78 considered two
residuals by gradually cascading them to learn non-linear feature maps from LR multi-spectral
and panchromatic images to HR multi-spectral images. Zheng et al.79 used a deep residual net-
work to fuse hyperspectral and panchromatic images for the first time. In detail, they used a deep
residual network to fuse edge-enhanced panchromatic images with initialized hyperspectral
images that were generated by a guided filter to finally obtain remote sensing images with high
spectral and spatial resolutions. To address the loss of details during upsampling and initializa-
tion of hyperspectral images and the restricted discriminative ability of CNNs caused by the
equal treatment of various features, Zheng et al.80 used a deep hyperspectral prior and a

Fig. 7 EDSR network model structure.

Fig. 6 SRGAN network model.
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dual-attention residual network for multi-frame SR reconstruction with fusion of hyperspectral
and panchromatic images.

3.6 Algorithms Based on Feature Map Attention Mechanism

In computer vision, an attention mechanism allows learning key features from essential infor-
mation while ignoring irrelevant information. Depending on the application, attention mecha-
nisms in image SR reconstruction perform channel attention or spatial attention.

(1) Single-frame remote sensing image SR reconstruction based on channel attention
mechanism

The squeeze-and-excitation network (SENet)81 considers that convolutions should improve
the receptive field, that is, they should fuse features spatially or extract multi-scale spatial infor-
mation. For feature fusion across channels, conventional convolutions basically fuse all channels
of the input feature maps without considering the importance of different channels. Therefore,
SENet considers the relationship between channels to adaptively recalibrate the feature response
of individual channels by explicitly modeling interdependencies using a squeeze-and-excitation
module, as shown in Fig. 8.

The SE module first squeezes the feature map obtained by convolution to obtain the channel-
level global feature (1 × 1 × C), and then performs the excitation operation on the global feature,
learns the relationship between each channel, and also obtains the weight of different channels,
and finally multiplies the original feature map to get the final feature. Essentially, the SE module
performs attention or selection operations in the channel dimension. This attention mechanism
allows the model to pay more attention to the channel features of the most information, while
suppressing those unimportant channel features.

Residual channel attention networks (RCAN)82 introduced the channel attention mechanism
to image SR. This method made two improvements on the basis of the EDSR model and pro-
posed a residual in residual (RIR) structure to form a very deep network. It consists of several
residual groups with long jump connections. Each residual group contains some residual blocks
with short-hop connections. At the same time, RIR allows rich low-frequency information.
Bypassing multiple hop connections, the main network is formed to focus on learning high-
frequency information. Then a channel attention mechanism is proposed to adjust the channel
characteristics adaptively by considering the interdependence between channels, and its essence
is to combine the SE module and the residual.

Haut et al.83 devised a CNN to handle the complexity of remote sensing images. The network
uses residuals and skip connections in a very deep architecture to transmit information processed
at different abstraction levels and alleviate data degradation. In addition, internal feature extrac-
tion implements a visual attention mechanism, which is integrated into the deep learning archi-
tecture for SR reconstruction of remote sensing images. Moreover, the channel focus domain
responds according to the characteristics of the channel and reduces the computation burden
associated with low-frequency information.

(2) Spatial attention mechanism

The convolutional block attention module considers84 that attention should locate relevant
information and improve the expression of the focus areas. Hence, to emphasize meaningful
features in the spatial and channel dimensions, this module applies channel and spatial attention

Fig. 8 Channel attention module.
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to learn salient areas and the attention results for the spatial and channel dimensions. The con-
volutional block attention module is basically the same as SENet for a channel, while the spatial
dimension considers a spatial perspective, as shown in Fig. 9.

Similar to channel attention, given a feature F of H ×W × C, it first performs average pool-
ing and maximum pooling of a channel dimension to obtain two H ×W × 1 channel feature
maps, and these two feature maps are spliced together according to the channel. Then after
a 7 × 7 convolutional layer, the activation function is Sigmoid, and the weight coefficient
Ms is obtained. Finally, the weight coefficient and feature F are multiplied to get the new feature
after scaling.

Residual feature aggregation (RFA) network85 believes that the use of residual connections
can improve network performance. Especially as the depth of the network increases, the residual
features gradually concentrate on different aspects of the input image, which is very useful for
reconstructing spatial details. However, the existing methods neglect to make full use of the
hierarchical features on the residual branch. Therefore, an RFA framework is proposed for more
effective feature extraction. The RFA framework groups several residual modules together and
directly propagates features on each local residual branch by adding jump connections. At the
same time, in order to maximize the function of the RFA framework, the improved enhanced
spatial attention block is further used to make the residual features more focused on the key
spatial content. Yang et al.86 were inspired by U-Net and attention network, and added a spatial
attention mechanism to the network of hyperspectral and multi-spectral image fusion. The spatial
attention mechanism is used to retain more spatial information and generate the remote sensing
images with high spatial resolution and high spectral resolution.

4 Experiment

4.1 Quality Evaluation Criteria for Remote Sensing Image Reconstruction

This paper uses eight widely used indicators to quantitatively evaluate the performance of the
proposed method and the comparison methods.

The PSNR87 reflects the quality of the reconstructed fused image by calculating the ratio of
the maximum peak value of the reconstructed image to the mean squared error (MSE) of the two
images. The PSNR is defined as

EQ-TARGET;temp:intralink-;e001;116;217PSNR ¼ 10 · log10

�
MAX2

I

MSE

�
¼ 20 · log10

�
MAXI

MSE

�
; (1)

where MAXI is the maximum value that represents the color of the image point. The higher the
PSNR value is between two images, the less distorted the reconstructed image is relative to the
HR image. The MSE is defined as

EQ-TARGET;temp:intralink-;e002;116;136MSE ¼ 1

mn

Xm−1

i¼0

Xn−1
j¼0

kIði; jÞ − Kði; jÞk2; (2)

where I and K are the two images of size m × n, one of which is the noise approximation of
the other.

Fig. 9 Spatial attention module.
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The structural similarity (SSIM) index88 measures the overall fusion quality by calculating
the mean, variance, and covariance of the fused image and the reference image. The SSIM meas-
urement consists of three contrast modules, namely, the brightness, contrast, and structure. Given
two images X and Y of size M × N, the means and variances of X and Y and the covariance of
X and Y are represented by ux, uy, δ2x, δ2y, and δxy. The comparison functions that define the
brightness, contrast, and structure are

EQ-TARGET;temp:intralink-;e003;116;662lðX; YÞ ¼ 2uxuy þ c1
u2x þ u2y þ c1

; (3)

EQ-TARGET;temp:intralink-;e004;116;607cðX; YÞ ¼ 2δxδy þ c1
δ2x þ δ2y þ c1

; (4)

EQ-TARGET;temp:intralink-;e005;116;571sðX; YÞ ¼ δxy þ c3
uxuy þ c3

: (5)

The combination of these three component factors is the SSIM indicator, which is defined as

EQ-TARGET;temp:intralink-;e006;116;536SSIMðX; YÞ ¼ ½lðX; YÞ�α½cðX; YÞ�β½sðX; YÞ�γ: (6)

The closer the SSIM value is to 1, the higher the similarity is between the two images. The
relative global dimensional synthesis error (ERGAS)89 mainly evaluates the spectral quality
of all the fusion bands within the spectral range, taking into account the overall situation of
the spectral changes. It is defined as

EQ-TARGET;temp:intralink-;e007;116;458ERGAS ¼ 100
h
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
N
i¼1ðRMSE2ðBiÞ∕M2

i Þ
N

r
; (7)

where h is the resolution of the HR image, l is the resolution of the LR image, N is the number of
bands, Bi is the MS image, andMi is the average of the emissivity values of the MS image. The
smaller the value is, the better the spectral quality of the fused image within the spectral range is.

The spectral angle mapper (SAM)90 evaluates the spectral quality by calculating the angle
between the corresponding pixels of the fused image and the reference image. It is defined as

EQ-TARGET;temp:intralink-;e008;116;355SAM ¼ arccos

� ðIaJaÞ
kIakkJak

�
; (8)

where Iα and Jα are the pixel vectors of the fused image and the reference image, respectively, at
the distance point α. For an ideal fused image, the value of the SAM should be 0.

The spatial correlation coefficient (SCC) evaluates the similarity between the fused image
and the spatial details of the reference image, uses a high-pass filter to extract the high-frequency
information of the reference image, and calculates the correlation coefficient (CC) between the
high-frequency information.91 This paper uses a high Laplacian filter defined as

EQ-TARGET;temp:intralink-;e009;116;240F ¼
"−1 −1 −1
−1 8 −1
−1 −1 −1

#
(9)

to obtain a high frequency. A higher SCC means that most of the spatial information of the PAN
image is injected during the fusion process. The SCC is calculated between the fused image and
the reference image. The final SCC is averaged over all bands of the MS image.

The CC is calculated as

EQ-TARGET;temp:intralink-;e010;116;137CC ¼
P

w
i¼1

P
h
j¼1ðXi;j − μXÞðYi;j − μYÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

w
i¼1

P
h
j¼1

q
ðXi;j − μXÞ2ðYi;j − μYÞ2

; (10)

where X is the fused image, Y is the reference image, w and h are the width and height of the
image, and μ represents the average value of the image.
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The index Q92 combines three factors to calculate image distortion: correlation loss, bright-
ness distortion, and contrast distortion. It is defined as

EQ-TARGET;temp:intralink-;e011;116;711Q ¼ jσZ1;Z2j
σZ1 · σZ2

·
2σZ1 · σZ2
σ2Z1 þ σ2Z1

·
2jZ1j · jZ2j
jZ1j2 · jZ2j2

; (11)

where Z1 and Z2 represent the b’th band of the fused image and the reference image. When
Q is 1, it represents the best fidelity for reference.

The quality with no reference (QNR) index,93 the original LRMS image, and PAN image are
used to measure the direct spectral distortion of LRMS image and fused image, as well as the
spatial distortion caused by the spatial detail differences generated by fusion.

The QNR is a non-reference image quality evaluation method. It is composed of the spectral
distortion index Dλ and the spatial distortion index DS:

EQ-TARGET;temp:intralink-;e012;116;579Dλ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXL
l¼1

XL
r ¼ 1|fflffl{zfflffl}
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jQðIHRMS
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r Þ −QðILRMS
l ; ILRMS

r Þjq
LðL − 1Þq

vuuuut ; (12)

EQ-TARGET;temp:intralink-;e013;116;495DS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
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L
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r
; (13)

EQ-TARGET;temp:intralink-;e014;116;458QNR ¼ ð1 −DλÞαð1 −DSÞβ; (14)

where the LRMS image with L bands is represented by ILRMS, the generated HRMS image is
IHRMS, and only one band is the PAN image with IPAN, and its degradation corresponds to the
ILRPAN image. The ideal value of the QNR index is 1, which means that the quality of the fused
image is better.

With the development of single-image SR, the research on single-image SR is divided into
two branches. One of them is based on PSNR and SSIM values, and the other is based on per-
ceptual index (PI) values.94 PI value represents the subjective perception quality of an image.
Usually, the lower PI value is, the more comfortable the image looks. The lower the PI value is,
the better the perceived quality of the image is, which is contrary to the PSNR value. In general, a
low PI value is accompanied by a low PSNR value:

EQ-TARGET;temp:intralink-;e015;116;326PI ¼ 1

2
ðð10 −MaÞ þ NIQEÞ: (15)

Ma stands for Markov score and NIQE stands for natural image quality evaluator, that is, image
evaluation quality.

4.2 Experimental Analysis of Super-Resolution Reconstruction of Remote
Sensing Images Based on a Single Frame

This section conducts experimental comparison and data analysis on seven classic single-frame
remote sensing image SR reconstruction models using three datasets.

4.2.1 Introduction to dataset and experimental environment

This section mainly introduces the experimental datasets and experimental environmental
parameters for SR reconstruction of remote sensing images based on single frame.

(1) The datasets

We used three public datasets commonly used in the literatures related to remote sensing
image SR, namely UCMerced_LandUse (UCM), aerial image dataset (AID), and PatternNet,
to evaluate the classic SR methods.
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UCM. This dataset was released by the University of California in 2010. According to the
source is GoogleEarth, it includes 21 types of remote sensing scenes such as mediumresidential,
airplanes, storagetanks, and parkinglot, each with 100 pictures. All images are of the size by
256 × 256 pixels, and the spatial resolution is 0.3 m∕pixel. We randomly selected 40% of the
images for training and 5% of the images for testing.

AID. This dataset was released by Wuhan University in 2012. The data source is
GoogleEarth, including 30 types of remote sensing scenes such as parks, airports, mountains,
and churches. Each type has 200 to 400 images, and all images are of the size by 600 ×
600 pixels. The spatial resolution is 0.58 m∕pixel. We randomly selected 100 images and 5
images in each class as the training dataset and the test dataset respectively.

PatternNet. This dataset was released by Wuhan University in 2018. The data source is
GoogleMap, including 38 types of remote sensing scenes such as forest, freeway, railway, ship-
ping_yard, and football field. Each category has 800 pictures. All images are of the size of
256 × 256 pixels, and the spatial resolution is 0.064.7 m∕pixel.

(2) The experimental environment

We trained and tested the networks using three datasets, UCM, AID, and PatternNet. Each
original image is regarded as an HR image and is down-sampled with a scale factor of 4 using the
bicubic interpolation algorithm in the MATLAB environment as an LR image. The training sam-
ple is a set of 96 × 96 image patches randomly cropped from the HR image and the correspond-
ing LR image. In the training process, the images for training were enhanced by random flips and
rotations. We used the pytorch framework to implement all the experiments with the Adam opti-
mizer. The initial learning rate was 5 × 10−4, the minimum learning rate was 1 × 10−7, the batch-
size was 32, and a total of 500 epochs were performed (Tables 3 and 4).

4.2.2 Quantitative comparison of different datasets

The experiment compared seven classic algorithms, including the traditional interpolation-based
algorithm (Bicubic), the CNN-based algorithm SRCNN,68 the deep residual network-based algo-
rithm SRResnet68 and EDSR,76 the dense residual network-based algorithm RDN,95 as well as
the algorithms RCAN82 and DRN96 with the attention mechanism (Table 5).

On the UCMerceed_LandUse dataset, due to the simple operation of bicubic interpolation,
the convenience of calculation is the best in terms of time, calculation amount, and parameters.

Table 3 Summary of single frame image dataset.

Dataset
Scene
type

Resolution
(m/pixel)

Image
size

Number of
images in

training sets

Number of
images in
test sets

UCM 21 0.3 256 × 256 840 105

AID 30 0.5 to 8 600 × 600 3000 150

PatternNet 38 0.06 to 4.7 256 × 256 3800 190

Table 4 Experimental environment configuration parameters.

Parameter Numerical value Parameter Numerical value

Operating system Windows 10 CUDA CUDA11.0

CPU i7-10700CPU at 2.90 GHz × 16 cudnn cudnn-8.0

GPU GeForce RTX 3070 Pytorch-GPU 1.7

RAM 32G/DDR4 GPU memory 8G
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RCAN has achieved the best effect on PSNR, which is 2.41 dB higher than bicubic interpolation,
and DRN is the best results that are achieved on SSIM, and the bicubic interpolation is 0.0517
higher. This is because compared with traditional algorithms; algorithms based on deep learning
have better feature extraction capabilities and can better restore high-frequency information of
images.

It can be seen from Table 6 that RCAN has achieved the best results in both PSNR and SSIM,
and DRN is 0.02 and 0.009 lower than that in PSNR and SSIM. When zooming in 4 times, the
test image size of UCM is 64 × 64, while the image size of the AID dataset is 150 × 150.
Because of the different image input sizes, the calculation of FLOPS has also changed, and the
calculation of EDSR the amount has increased by 5.5 times from 205 to 1130G, whereas
SRCNN has increased by 7 times. The parameter amount of the model has not changed, which
benefits from the parameter sharing of the deep learning model. The lower the PI index of the
algorithm based on generating countermeasure network, the better the subjective visual effect of
the image, but at the same time, the PSNR is also low.

On the PatternNet remote sensing image dataset, the RCAN remains the best-performer
regarding the PSNR and SSIM measure. Considering that the size of its input image and UCM
dataset are the same, the floating point operations (FLOPs) per second of the model do not

Table 6 Quantitative comparison of different algorithms under the condition of 4 times magnifi-
cation on the AID dataset. (Bold and italics indicate the best and second best, respectively).

Evaluation PSNR SSIM PI Flops Params (M) Time (s)

AID Bicubic 27.98 0.6955 7.4847 — — 0.002

SRCNN 28.28 0.7105 7.1541 14.9 0.02 0.011

RDN 28.81 0.7337 6.7693 363.8 22.27 0.058

SRResNet 28.74 0.7305 6.8480 36.1 1.52 0.019

EDSR 28.78 0.7322 6.8457 823.3 43.09 0.043

RCAN 28.89 0.7365 6.8226 399.7 12.61 0.090

DRN 28.87 0.7356 6.8771 379.1 4.80 0.047

SRGAN_x4 26.15 0.6114 2.6333 36.1 1.52 0.019

ESRGAN_SRx4 26.11 0.6270 2.8914 92.2 16.6 0.048

Table 5 Quantitative comparison of different algorithms under the condition of 4 times magnifi-
cation on the UCM dataset. (Bold and italics indicate the best and the second best, respectively).

Evaluation PSNR SSIM PI Flops Params (M) Time (s)

UCM Bicubic 26.85 0.6978 7.7841 — — 0.001

SRCNN 27.82 0.7388 8.1992 3.7 0.02 0.009

RDN 26.83 0.6961 9.7252 90.9 22.27 0.042

SRResNet 29.09 0.7891 13.047 9 1.52 0.014

EDSR 29.14 0.7901 9.3805 205.8 43.09 0.036

RCAN 29.26 0.7941 12.7145 99.9 12.61 0.082

DRN 29.25 0.7945 13.1988 94.7 4.80 0.038

SRGAN_x4 25.55 0.6648 4.6951 9 1.52 0.014

ESRGAN_SRx4 25.39 0.6685 4.4418 23 16.6 0.039
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change, and the relative performance of other models is generally the same as that of UCM.
Moreover, results on the AID dataset are consistent, showing that the deep learning-based
method can achieve a high generalization ability. Thus the end-to-end RCAN is reliable and
consistent across datasets.

4.2.3 Qualitative comparison of different datasets

The experiment compared seven classic algorithms, including the traditional interpolation-based
algorithm (Bicubic),19 the CNN-based algorithm SRCNN,68 the deep residual network-based
algorithm SRResnet,68 EDSR,76 the dense residual network-based algorithm RDN,95 algorithms
SRGAN68 and ESRGAN97 based on generating countermeasure network, as well as the algo-
rithms RCAN82 and DRN96 with the attention mechanism. Tables 5–7 shows the quantitative
analysis results of the seven algorithms based on three different datasets when the original image
is enlarged 4 times. From these tables, it can be seen that there are three datasets.

(1) In terms of PSNR and SSIM, deep learning-based algorithms have achieved greater
improvements in PSNR and SSIM compared to traditional interpolation algorithms
(Bicubic). The algorithm based on the residual network (SRResnet) has achieved a
0.89-dB improvement on the UCM dataset compared with the algorithm based on the
ordinary convolutional neural network (SRCNN), which confirms the effectiveness of the
residual module in the SR field. EDSR has a larger network width than SRResnet and has
achieved a 0.13-dB improvement on the UCM dataset. However, RCAN has reduced the
width on the basis of EDSR and increased the depth of the model. It has achieved the best
results on the PatternNet and AID datasets and obtained equivalent results if compared
with DRN on the UCM dataset, which proves that a deeper model is better than a
wider model.

(2) In terms of time, considering that the time taken by data reading, model loading, and file
saving far exceeds the time taken by the data to be calculated on the model, the time
calculation in this paper is to calculate time interval between the model reading data and
the model producing the output which can better reflect the time difference between dif-
ferent models. The traditional method (Bicubic) only needs to perform direct interpola-
tion due to its simple structure, which takes the shortest time. The time consumption of
the algorithm based on deep learning has a great relationship with the number of layers
of the model and the modules used. RCAN has a depth of 400 layers and takes 9 times
longer than SRCNN with a three-layer structure. RDN takes into account the interaction
between different layers and uses residual dense connections, so it takes 0.028 s more
time on the UCM dataset than SRResnet, which takes 3 times more time. The depth of the

Table 7 Quantitative comparison of different algorithms under the condition of 4 times magnifi-
cation on the PatternNet dataset. (Bold and italics indicate the best and second best, respectively).

Evaluation PSNR SSIM PI Flops Params (M) Time (s)

PatternNet Bicubic 26.46 0.6610 7.8897 — — 0.001

SRCNN 26.99 0.6887 7.9915 3.7 0.02 0.009

RDN 27.99 0.6961 8.5969 90.9 22.27 0.042

SRResNet 27.88 0.7254 8.5309 9 1.52 0.014

EDSR 28.01 0.7306 8.4816 205.8 43.09 0.036

RCAN 28.07 0.7332 8.5031 99.9 12.61 0.082

DRN 28.05 0.7317 8.6296 94.7 4.80 0.038

SRGAN_x4 25.77 0.6270 4.2225 9 1.52 0.014

ESRGAN_SRx4 25.28 0.6140 4.3635 23 16.6 0.039
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DRN model is not deep, but it uses the channel attention mechanism which needs
more time.

(3) In terms of parameters and FLOPs, traditional algorithms do not have these two indica-
tors due to their simple calculations. Only algorithms based on deep learning are counted
and compared. It can be seen from the table that the model based on deep learning has
gradually increased with the increase of evaluation indicators. The amount of parameters
and calculations of the model are gradually increasing, especially FLOPs will increase
exponentially when the input of test pictures becomes larger. EDSR has the largest width
of the model, so its parameters and calculations are the most complex, reaching 1130G
when the input image size is 150 × 150, but its PSNR and SSIM indicators are lower than
that of RCAN and DRN, which once again proves that the impact of the depth of the
model on performance is greater than the width of the model.

The qualitative comparison results of test images on the UCM dataset in Fig. 10 show that the
images generated by bicubic interpolation are blurry and texture details are not reconstructed.
Although the deep learning SR-CNN improves reconstruction, its results still show blurring. The
more advanced SR-ResNet, DRN, and other networks achieve qualitative improvements in
reconstruction by providing clear images and texture details. However, some areas are distorted,
and the shapes and structures of small objects cannot be reconstructed using such methods.

The qualitative comparison results of test images from the AID dataset in Fig. 11 show that
as the number of small objects in the image increases, the difficulty of reconstruction increases,
and the algorithm based on bicubic interpolation misses most small objects. In contrast, deep
learning networks show strong learning and feature extraction capabilities, achieving correct
reconstruction. For instance, the white vehicle shows a clear comparison between the reconstruc-
tions of the evaluated algorithms. RCAN and DRN have achieved the best visual effects.

From Fig. 12, it can be seen that compared with the images on the UCM and AID datasets,
the resolution of the image is lower, which increases the difficulty of reconstruction. The

Fig. 10 Qualitative comparison results based on the UCM dataset at 4 times magnification.

Fig. 11 Qualitative comparison results based on the fourfold magnification of the AID dataset.
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interpolation algorithm and SRCNN cannot reconstruct the image at all, and the generated image
effect is particularly poor. The image generated by SRResnet has some structural distortions.
RDN, EDSR, RCAN, and DRN can better reconstruct high-quality images.

4.2.4 Summary of comparative experiments

In summary, the best algorithm is DRN, which has comparable results with RCAN in terms of
PSNR and SSIM evaluation indicators, but it is better than RCAN in terms of parameter amount,
calculation amount, and time. Other algorithms are superior to RCAN in terms of PSNR and
SSIM. There are considerable advantages. The dual regression network adopted by DRN can
reduce the number of model solution spaces, and the convergence speed will be faster. At the
same time, the information of multi-scale images is effectively used in the upsampling process,
which reduces the difficulty of reconstruction and achieves better visual effects. Although the
two recent models, RCAN and DRN, have been separated for two years, they have not improved
substantially. The DRN index of PSNR and SSIM is still lower, which indicates that the algo-
rithm based on deep learning has encountered a bottleneck in the improvement of PSNR and
SSIM index. In the future, it should be considered that on the premise of maintaining these two
indices. A more lightweight and efficient model is developed to effectively reduce the number
of model parameters and the amount of calculation.

4.3 Experimental Analysis of Super-Resolution Reconstruction Based on
Multi-Frame Remote Sensing Images

This section conducts experimental comparison and data analysis on a variety of classic multi-
frame remote sensing image SR reconstruction models using different datasets.

4.3.1 Datasets and experimental environment

This section conducts experimental comparison and data analysis under different datasets for a
variety of classical multi-frame remote sensing image SR reconstruction models.

(1) The datasets

The datasets used in the experiment include the datasets from GeoEye-1, Spot-6, and
GaoFen-2. The GeoEye-1 satellite is a commercial satellite launched by the United States from
Vandenberg Air Force Base in California on September 6, 2008. It can acquire full-color images
with a spatial resolution of 0.41 m and four-band (blue, green, red, and near-infrared) multi-
spectral images with a spatial resolution of 1.65 m. The SPOT-6 satellite, launched on September
9, 2012, has a spatial resolution of 1.5 m for panchromatic images and 6 m for multi-spectral
images, including blue, green, red, and near-infrared. The GaoFen-2 satellite, launched on
August 19, 2014, has a spatial resolution better than 1 m. It is equipped with two cameras with
an HR of 1 m panchromatic imaging and 4 m multi-spectral imaging. The relevant information
of the three satellites GeoEye-1, Spot-6, and GaoFen-2 is shown in Table 8.

Fig. 12 Qualitative comparison results based on 4 times magnification on the PatternNet dataset.
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The three datasets used in this paper consist of three pairs of sizes of 320 × 320 ×
4-1280 × 1280 × 1, 256 × 256 × 4-1024 × 1024 × 1, and 1000 × 1000 × 4-4000 × 4000 × 1

multi-spectral-panchromatic image pair composition. The goal is to generate a multi-spectral
image with the same size and the same spatial resolution as the PAN image. In order to evaluate
the proposed model, we should compare the results obtained with non-existent reference images.
According to the Wald protocol,98,99 we use Gaussian blur to downsample the input image
4 times as the input to the network. The spectral image is used as a reference. We also use the
bicubic interpolation algorithm to upsample the input spectral image to match the resolution of
the PAN image. Here we use reference evaluation indicators: PSNR, SSIM, SAM, ERGAS,
SCC, and Q.

In practical applications, there are no HR multi-spectral images for training. Therefore, we
directly use the original data and the fusion reconstruction data to evaluate the indicators on the
original resolution scale. Since there is no comparable ground truth, we use three non-reference
image quality indicators DΛ, DS, and QNR.

(2) Experimental details

We train and test our network using three datasets, GeoEye-1, Spot-6, and GaoFen-2. In the
training phase, we cut the upsampled MS image and PAN image into 32 × 32 image pairs and
then randomly select 90% and 10% of the cut images as the training set and the validation set.
In the testing phase, we then cropped the up-sampled MS image and PAN image to a 320 × 320

image pair, then filled the edges to 400 × 400 and input them to the network, and then cropped
the image edges of the output network to restore to 320 × 320, then stitch all the test images to
form a new generated image. The experiments were done using Keras and the configuration of
the experimental environment is shown in Table 9. We used Adam optimizer to minimize losses.
The initial learning rate lr is set to 0.0005. After 5 epochs, if the loss does not decrease, the
learning rate is adjusted to lr ¼ 0.2 × lr. We performed a total of 600 epochs, and the batch size
was set to 32.

4.3.2 Quantitative comparison of different datasets

We compared 15 algorithms in total, including bicubic-based SISR algorithm, Brovey-based trans-
form,100 PCA,98 IHS-based component replacement,99 SFIM-based brightness smoothing filter
adjustment,101 GS-based Gram–Schmidt transform,102 wavelet-based transform,103 generalized

Table 8 Summary of multi-frame image dataset.

Satellite

Spectral wavelength (nm)
Spatial

resolution (m)

PAN Blue Green Red NIR PAN MS

GeoEye-1 450 to 800 450 to 510 510 to 580 655 to 690 780 to 920 0.41 1.65

Spot-6 455 to 745 455 to 525 530 to 590 625 to 695 760 to 890 1.5 6

GaoFen-2 450 to 900 450 to 520 520 to 590 630 to 690 770 to 890 0.8 3.2

Table 9 Experimental environment configuration parameters.

Parameter Numerical value Parameter Numerical value

Operating system Ubuntu 18.04 CUDA CUDA11.0D

CPU i7-10700CPU at 2.90 GHz × 16 cudnn cudnn-8.0

GPU GeForce RTX 3070 tensorflow-GPU 1.15.4

RAM 32G/DDR4 Keras-GPU Keras 2.3.1
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Laplacian pyramidMTF_GLP104 of modulation transfer function, generalized puller with matched
filter and multiple compound injection model Plass Pyramid MTF_GLP_HPM,105 adaptive GS
GSA,106 CNMF-based coupled non-negative matrix factorization,107 GFPCA-based PCA and
guided filter108 and deep learning-based PNN,58 PanNet,109 and ResTFNet.110 The experimental
quantitative evaluation results on the GeoEye-1 dataset are shown in Table 10.

It can be seen from Table 10 that in terms of reference evaluation indicators, PanNet and
RestFNet have achieved the best and the second best results. This shows that deep learning
methods are superior in spatial and spectral reconstruction to other algorithms. For other algo-
rithms, such as CNMF based on coupled non-negative matrix factorization, good results have
also been obtained.

In terms of non-reference measures, PNN achieves the best results, and ResTFNet improves
its results. Overall, deep learning methods outperform other algorithms. The ResTFNet based on
the two-branch fusion network can achieve better results with reference and no reference indica-
tors. This indicates that the two-branch fusion network in the deep learning method is better than
the method of directly stacking the input images in the processing of multi-frame remote sensing
image superpartition reconstruction. It can use two subnetworks to process the two input images,
respectively, and extract more effective features, so as to improve the quality of the fusion image.

As the consistent quantitative results of the GeoEye-1 dataset, the quantitative results of the
Spot-6 dataset in Table 11 show that in terms of reference evaluation measures, the deep learning
PENNet and ResTFNet also achieve the highest performance. Other algorithms such as CNMF
also obtain suitable results. Again, ResTFNet achieves suitable results on non-reference evalu-
ation measures, and other methods such as GSA also achieve good results. ResTFNet achieves
high performance regarding reference and non-reference measures, indicating that deep learning
is benefited from two-branch fusion, which outperforms stacking inputs in terms of spatial and
spectral reconstruction. Overall, methods based on deep learning are superior to other algorithms
for reconstruction.

Table 10 Quantitative evaluation results on the GeoEye-1 dataset. (Bold, bold-italics, and italics,
respectively, indicate the best, second best, and third best results).

Metrics

Reference comparison No reference comparison

PSNR SSIM SAM ERGAS SCC Q Dλ Ds QNR

Bicubic 26.7239 0.6751 0.0867 4.8367 0.8858 0.4254 0.0323 0.0274 0.9412

Brovey 27.0411 0.7554 0.0934 4.0589 0.9183 0.593 0.1002 0.1063 0.8041

PCA 17.1862 0.6073 0.3942 12.484 0.6486 0.4028 0.0595 0.1687 0.7818

IHS 27.6877 0.7706 0.0888 3.8437 0.9272 0.6139 0.0897 0.1143 0.8063

SFIM 25.0983 0.7095 0.1004 5.8498 0.8481 0.5476 0.145 0.0529 0.8098

GS 27.8395 0.7791 0.0885 3.7992 0.9281 0.6251 0.0523 0.1022 0.8508

Wavelet 26.1692 0.6831 0.0951 5.0181 0.8732 0.4642 0.0448 0.054 0.9036

MTF_GLP 26.5291 0.7472 0.0937 3.8994 0.9139 0.6146 0.1842 0.0736 0.7557

MTF_GLP_HPM 25.1797 0.742 0.0977 5.3437 0.8801 0.6089 0.1913 0.0552 0.764

GSA 28.1781 0.7825 0.0851 3.591 0.9312 0.637 0.0624 0.0706 0.8714

CNMF 28.5319 0.7851 0.0827 3.5742 0.9346 0.623 0.061 0.0758 0.8678

GFPCA 26.1225 0.7031 0.1069 4.7886 0.8903 0.4259 0.0649 0.1257 0.8176

PNN 28.1373 0.7417 0.0831 4.0768 0.9187 0.5649 0.0141 0.0163 0.9698

PanNet 30.497 0.8273 0.0657 2.8207 0.9593 0.7262 0.0364 0.0313 0.9334

ResTFNet 29.763 0.8213 0.0708 3.1999 0.9497 0.7135 0.0365 0.031 0.9336
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The quantitative evaluation results of the Gaofen-2 dataset are listed in Table 12. As in
Tables 10 and 11, PanNet and ResTFNet achieve the best results in terms of the reference
evaluation measures. In addition, PNN achieves suitable results on this dataset. Regarding
non-reference measures, RestFNet achieves suitable results. Overall, deep learning methods out-
perform the other algorithms on all the evaluated datasets. Remarkably, ResTFNet based on
two-branch fusion achieves high performance regarding all the measures.

4.3.3 Qualitative comparison of different datasets

The qualitative evaluation results of the GeoEye-1 dataset are shown in Fig. 13. The images
generated by PanNet and RestTFNet are visually superior to those generated by the other algo-
rithms. Although the IHS method provides a suitable spatial reconstruction, it exhibits spectral
distortion. The images obtained using bicubic interpolation for single-image SR reconstruction,
wavelet transform, GFPCA, and guided filter show blur and artifacts. The first PNN model based
on deep learning is also ambiguous. At the same time, MTF_GLP, MTF_GLP_HPM, SFIM, and
PCA all have severe spectral and spatial distortions.

The qualitative evaluation results of the Spot-6 dataset are shown in Fig. 14 PanNet and
RestFNet are visually superior to the other algorithms. The images obtained using bicubic inter-
polation, wavelet transform, and GFPCA still show blur and artifacts, while the spectral distor-
tion of the IHS method is still present, and MTF_GLP, MTF_GLP_HPM, SFIM, and PCA show
serious spectral and spatial distortions. Moreover, the ambiguity of PNN persists.

The qualitative evaluation results on the Gaofen-2 dataset are shown in Fig. 15. Seeing from
Fig. 15, it indicated that PanNet and PNN are visually superior to other algorithms. The images
obtained by Bicubic, wavelet, GFPCA, and CNMF methods have blur and artifacts. The spectral
distortion of IHS still exists. MTF_GLP, MTF_GLP_HPM, SFIM, and PCA also have serious
spectral and spatial distortions.

Table 11 Quantitative evaluation results on the Spot-6 dataset. (Bold, bold-italics, and italics,
respectively, indicate the best, second best, and third best results).

Metrics

Reference comparison No reference comparison

PSNR SSIM SAM ERGAS SCC Q Dλ Ds QNR

Bicubic 23.8359 0.5484 0.1025 6.7785 0.8262 0.3961 0.0236 0.0569 0.9209

Brovey 24.3703 0.7417 0.1102 5.4564 0.8458 0.6695 0.0464 0.1065 0.852

PCA 20.3483 0.7066 0.3467 8.67 0.8829 0.6605 0.0935 0.0778 0.8359

IHS 25.1374 0.7432 0.1104 5.3214 0.87 0.6799 0.069 0.1021 0.8359

SFIM 23.9448 0.678 0.1033 6.4248 0.8337 0.5869 0.0954 0.0654 0.8455

GS 25.2396 0.7405 0.1124 5.3661 0.8746 0.6781 0.0406 0.0967 0.8666

Wavelet 23.7197 0.5937 0.1096 6.7671 0.8188 0.4587 0.0352 0.0753 0.8921

MTF_GLP 25.87 0.7713 0.094 4.6184 0.8941 0.7289 0.1242 0.0674 0.8168

MTF_GLP_HPM 25.7115 0.775 0.0894 4.7169 0.8912 0.7306 0.1195 0.0653 0.823

GSA 25.5626 0.7467 0.1031 5.0547 0.8843 0.6995 0.0824 0.0655 0.8574

CNMF 26.3792 0.7795 0.0862 4.5675 0.9026 0.7177 0.0883 0.0563 0.8604

GFPCA 24.1668 0.6599 0.1144 6.2197 0.8483 0.5174 0.0813 0.1277 0.8013

PNN 26.1832 0.7413 0.0954 4.7867 0.9023 0.6884 0.0625 0.0305 0.9089

PanNet 27.9401 0.82 0.0862 3.9482 0.9366 0.7875 0.0492 0.0422 0.9107

ResTFNet 27.5324 0.8028 0.0942 4.137 0.9299 0.7725 0.0432 0.0378 0.9207
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Table 12 Quantitative evaluation results on the Gaofen-2 dataset. (Bold, bold-italics, and italics,
respectively, indicate the best, the second best, and the third best results).

Metrics

Reference comparison No reference comparison

PSNR SSIM SAM ERGAS SCC Q Dλ Ds QNR

Bicubic 23.6379 0.5207 0.1333 9.7288 0.7972 0.3724 0.0248 0.2904 0.6921

Brovey 25.2994 0.799 0.1451 7.9374 0.8914 0.745 0.0606 0.1485 0.7999

PCA 23.9662 0.7284 0.2716 9.2124 0.8364 0.666 0.096 0.2286 0.6973

IHS 25.4087 0.7768 0.1796 7.8865 0.8831 0.7236 0.1047 0.1564 0.7553

SFIM 24.1771 0.7132 0.1865 9.0287 0.8393 0.6446 0.0824 0.0532 0.8688

GS 25.0856 0.7585 0.2066 8.1032 0.8713 0.7004 0.0744 0.1968 0.7435

Wavelet 24.0319 0.6628 0.1779 9.2471 0.8252 0.6036 0.1511 0.0319 0.8218

MTF_GLP 27.3228 0.8021 0.1932 6.2051 0.9271 0.763 0.1195 0.1165 0.7779

MTF_GLP_HPM 26.8807 0.8148 0.1993 6.4427 0.928 0.7717 0.0734 0.0889 0.8442

GSA 26.4543 0.7761 0.212 6.885 0.9189 0.7467 0.1604 0.1374 0.7243

CNMF 27.8433 0.8265 0.1567 5.9334 0.9291 0.7693 0.1048 0.0887 0.8158

GFPCA 23.6819 0.5894 0.1785 9.6273 0.83 0.397 0.0352 0.2126 0.7597

PNN 29.9057 0.8677 0.127 4.689 0.9616 0.8472 0.1011 0.0979 0.8109

PanNet 29.9086 0.8625 0.1265 4.6767 0.9607 0.8421 0.0891 0.0934 0.8259

ResTFNet 29.2961 0.8578 0.1286 4.9978 0.9559 0.8354 0.0894 0.0884 0.8301

Fig. 13 Qualitative evaluation results on the GeoEye-1 dataset: (a) ground truth, (b) Bicubic,
(c) Brovey, (d) CNMF, (e) GFPCA, (f) GS, (g) GSA, (h) wavelet, (i) HIS, (j) MTF_GLP, (k) MTF_
GLP_HMP, (l) PCA, (m) SFIM, (n) PNN, (o) PanNet, and (p) ResTFNet.

Fig. 14 Qualitative evaluation results on the Spot-6 dataset: (a) ground truth, (b) Bicubic,
(c) Brovey, (d) CNMF, (e) GFPCA, (f) GS, (g) GSA, (h) wavelet, (i) HIS, (j) MTF_GLP, (k) MTF_
GLP_HMP, (l) PCA, (m) SFIM, (n) PNN, (o) PanNet, and (p) ResTFNet.
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4.3.4 Summary of comparative experiments

In terms of reference evaluation measures, PanNet provides the best results for the three datasets
because it combines knowledge of a specific field. To reconstruct spatial information, it trains
the network parameters with high-frequency information. To reduce the spectrum usage, it
directly propagates the upsampled multi-spectral image to the output of the network. Then
high-pass filtering instead of spatial information reconstruction in the image domain provides
proper generalization for images from different satellites. For the two-branch fusion ResTFNet,
good results are achieved in terms of reference and no-reference evaluation measures. Hence,
two-branch deep learning can outperform the direct stacking of inputs for reconstruction in space
and spectrum of multi-frame remote sensing images. Deep learning is a new direction in the
development of multi-frame remote sensing image super-division reconstruction algorithms
in recent years, and it is indispensable in multi-frame remote sensing image super-division
reconstruction algorithms due to its ability to characterize the non-linear relationship between
observation data and its strong learning ability. Using deep learning can be regarded as the devel-
opment direction of the field of multi-frame remote sensing image super-division reconstruction
algorithm in the future, although the existing deep learning-based multi-frame remote sensing
image super-division reconstruction method still has certain shortcomings. For example, in prac-
tical applications, there is still room for improvement in non-reference indicators. At the same
time, similar to traditional methods, MS images are often regarded as the carrier of spectral
information, while ignoring the spatial information of the images; and PAN images are regarded
as the carrier of spatial information while ignoring their spectral information. These all lead to
different degrees of information loss in the generated image in space and spectrum.

5 Summary and Outlook

Machine learning is becoming essential for remote sensing observations and analysis. Since the
introduction of deep learning to process remote sensing images in the late 1990s, major achieve-
ments have been made in automatic feature extraction, land cover estimation, and oil spill
monitoring. However, after a potential and comprehensive analysis of key remote sensing appli-
cations, various problems remain to be solved. For instance, the increase in available datasets and
diversity of sampling methods complement spatiotemporal features of remote sensing images,
but publicly available datasets are limited and have different sampling resolutions, resulting in a
lack of high-quality remote sensing images, training samples, and ground truths. The following
three points summarize the future directions and challenges of remote sensing image SR:

(1) Regarding spatiotemporal feature fusion of remote sensing images, the increasing
number of datasets reduces the effectiveness of single-frame reconstruction to exploit
complementarity between datasets. Therefore, multi-frame reconstruction has gradually
become the research mainstream. Fully using datasets such as drone shooting data or
topographic maps, land use classification maps, and sampling point data can contribute
to the extraction and fusion of spatiotemporal features across datasets, thereby improving
the reconstruction quality.

Fig. 15 Qualitative evaluation results on Gaofen-2 dataset: (a) ground truth, (b) Bicubic,
(c) Brovey, (d) CNMF, (e) GFPCA, (f) GS, (g) GSA, (h) wavelet, (i) HIS, (j) MTF_GLP, (k) MTF_
GLP_HMP, (l) PCA, (m) SFIM, (n) PNN, (o) PanNet, and (p) ResTFNet.
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(2) Deep learning methods applied to remote sensing images should tend to lightweight
frameworks. Algorithms based on deep learning can use deep networks to extract rich
image information. Although deep learning can achieve a high performance, the calcu-
lation burden increases with the network complexity, and the hardware requirements
become prohibitive for large-scale applications. Thus optimizing deep learning algo-
rithms, adopting lightweight neural networks, and improving the computing efficiency
can increase the applicability of SR reconstruction.

(3) Unsupervised learning is often used in SR reconstruction of remote sensing images
because supervised learning usually requires labeled data to guide training, and few
labeled datasets are available for SR reconstruction of remote sensing images.
Considering fewer data labels may lead to convenient supervised learning for SR recon-
struction of such images.
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