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Abstract. In the digital era, sharing pictures on social media has become a common privacy
issue. To prevent private images from being eavesdropped on and destroyed, developing secure
and efficient image steganography, image cryptography, and image authentication has been
difficult. Deep learning provides a solution for digital image security. First, we make an overall
conclusion on deep learning applications in image steganography to generate five aspects: the
cover image, stego-image, embedding change probabilities, coverless steganography, and steg-
analysis. Second, we also combine and compare deep learning methods used in six aspects:
image cryptography from image compression, image resolution improvement, image object
detection and classification, key generation, end-to-end image encryption, and image cryptoa-
nalysis. Third, we collect deep learning methods in image authentication from five perspectives:
image forgery detection, watermarked image generation, image watermark extraction and detec-
tion, image watermarking attack, and image watermark removal. Finally, we summarize future
research directions of deep learning utilization in image steganography, image cryptography, and
image authentication. © 2021 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10
.1117/1.OE.60.12.120901]
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1 Introduction

In such a highly information-oriented era, digital image transmission and delivery on the Internet
have been increasingly frequent. the deliverer hopes that this only occurs in a secure channel
while on the Internet; however; there are many eavesdroppers and destroyers. To protect indi-
vidual privacy on public network platforms, researchers need to find an approach that satisfies
both private image security and robustness. Image encryption, image steganography, and
image authentication are three efficient methods that balance the characteristics of images and
the requirement of security. Deep learning is a powerful tool in image processing that has
reached impressive successes in image object detection,1–3 image classification,6–9 image seg-
mentation,10–13 image style transfer,14–17 image denoising,18–20 and image compression.21–23

Applying deep learning methods to the field of image security to solve the traditional problems
has also received extensive attention and achieved breakthrough progress recently. But how to
better use the advantages of deep learning in image steganography, image cryptography, and
image authentication always attracts many scholars’ attention. To help relevant researchers
understand the field of deep learning applications in digital image security and its future develop-
ment more quickly, in this paper, we order the origin and development process of deep learning
methods in image steganography, cryptography, and authentication from multiple aspects, as can
be seen in Fig. 1; we then compare these methods, analyze the advantages and disadvantages of
each, and finally suggest future research directions of this field.

This survey covers around 90 papers about deep learning for image steganography, cryptog-
raphy, and authentication. The main contributions of this paper can be summarized as follows.
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1. This survey collects and analyzes the deep learning techniques in the field of digital image
security from image steganography, image cryptography, and image authentication.

2. This survey estimates and compares the steganography, encryption, and watermarking
performance of these approaches from quantitative indicators to reach the existing
challenges.

3. This survey suggests research trends for deep learning in the use of image steganography,
cryptography, and authentication to collision sparks in a wider research field.

The remainder of this paper is formed as follows. Section 2 collects the related works for
traditional algorithms of image steganography, image encryption, and image authentication and
compares them with the deep learning methods. Section 3 illustrates the deep learning appli-
cations for image steganography as well as a comparison and future research directions of these
methods. Section 4 discusses the deep learning mechanisms in image cryptography, presents a
performance comparison of the image encryption methods, and then points out the existing chal-
lenges. Section 5 represents the deep learning techniques in image authentication and explains
the desire for future research. Section 6 suggests the future scope of deep learning in image
security. Section 7 elaborates the survey’s conclusions.

2 Related Works

2.1 Image Steganography

The purpose of image steganography is to send the stego-images like innocent normal images to
the receiver and avoid the secret data being noticed by the attacker. As can be seen in Fig. 2, the
process of image steganography is to embed the secret data into the cover image and then arrive

Digital image security 
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Learning to generate cover images

Learning to generate stego-image

Learning embedding change probilities for every 
pixel in the cover image

Coverless image steganography

Steganalysis methods based on deep learning
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image encryption algorithms
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Fig. 1 The overall framework of the survey on digital image security.
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Fig. 2 The process of image steganography and steganalysis.
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at the stego-image that steganalysis such as spatial rich model (SRM)24 and maxSRMd2,25 which
are two feature-based classifiers, and Xu-Net,26 which is a convolutional neural network
classifier, tries to distinguish the stego-image from the cover image.

The least significant bit (LSB) replacement is a classical steganography algorithm that repla-
ces the LSBs of the cover image with the secret data bits.27 However, the LSBs of the pixel of the
cover image take up a small part of the cover image, so the capacity is limited. Meanwhile, if we
modify more bits of the pixel of the cover image to get a larger capacity, the possibilities to be
detected by the attacker are higher. For higher capacity and higher undetectability, Pevný et al.28

introduced HUGO, which provided a larger capacity while having equal safety compared with
LSB matching.

Considering the relationship between the content of the image itself and the size of the secret
image, adaptive steganography selects the edge29 or texture30 areas of the cover image as the
embedding location as much as possible to strengthen the invisibility of stego-images. Li et al.31

proposed a cost function for spatial image steganography that used a high-pass filter to locate the
less predictable parts in an image, and then utilized two low-pass filters to make the low-cost
values more clustered; it achieved better performance on resisting SRM steganalysis over
HUGO28 and S-UNIWARD.30

Deep learning image steganography methods can reach a higher capacity and have higher
undetectability by not only the traditional feature-based steganalysis model but also deep learn-
ing steganalysis models over the traditional steganography algorithms. The capacity is measured
by bits-per-pixel (bpp), which is the average number of bits concealed into each pixel of the
cover image.32 An ideal image steganography method could embed as much secret data as
possible into the cover image without being detected by steganalysis methods. For example,
Ref. 33 described that 0.2, 0.3, 0.4, and 0.5 bpp of secret data were embedded into the image
from the BOSSbase34 dataset using three algorithms. As illustrated in Table 1, the detection error
rates of three steganalysis methods SRM,24 maxSRMd2,25 and Xu-Net26 on the deep learning
model in Ref. 33 are all higher than on traditional image steganography methods such as HILL31

and S-UNIWARD,30 which shows that deep learning-based image steganography has superiority
in escape steganalysis.

2.2 Image Encryption

Image encryption keeps image content invisible until someone has the correct key. As we can see
in Fig. 3, image cryptography involves encrypting the plaintext image to the ciphertext image by
the encryption key and decrypting the ciphertext image to the decrypted image by the decryption
key. Cryptanalysis involves cracking the cryptography to get the encryption/decryption keys or

Table 1 Different steganalysis models detection error rate of different image steganography
methods.

Steganalysis models
Steganography

methods 0.2 bpp (%) 0.3 bpp (%) 0.4 bpp (%) 0.5 bpp (%)

SRM Ref. 33 38.52 33.63 29.11 24.89

HILL 38.40 32.48 27.82 22.88

S-UNIWARD 33.84 27.41 21.97 17.72

maxSRMd2 Ref. 33 34.70 30.26 25.97 22.98

HILL 32.97 27.53 23.86 20.63

S-UNIWARD 30.42 25.23 20.54 17.16

Xu-Net Ref. 33 42.64 38.53 33.56 29.71

HILL 36.80 31.06 25.76 21.91

S-UNIWARD 37.55 30.43 24.34 19.25

Bao and Xue: Survey on deep learning applications in digital image security

Optical Engineering 120901-3 December 2021 • Vol. 60(12)



the secret image; these includes ciphertext only attacks,35 known-plaintext attacks,36 chosen
plaintext attacks,37 and chosen ciphertext attacks.38

Chaos is sensitive to initial states and possesses a complex and unpredictable long-term
behavior,39 so it is widely used in image encryption. Bentoutou et al.40 introduced an efficient
image encryption method based on chaotic maps and the Advanced Encryption Standard. Naim
et al.41 described a satellite image encryption algorithm based on the linear-feedback shift
register generator, SHA 512 hash function, hyperchaotic systems, and Josephus problem.

Based on the characteristic of optical systems,42–44 cellular automata,45–47 quantum,48–50 and
DNA computing,51–53 there are many applications in image encryption.

In most deep learning image encryption methods, deep learning plays a supporting role,
which gives full play to their special advantages. End-to-end deep learning image encryption
is a new research direction and has achieved security that is the same as or even better than the
traditional encryption methods. Table 2 compares three different image encryption methods in
ciphertext image entropy; correlation coefficients of two horizontal, vertical, diagonal adjacent
pixels; the number of pixels change rate (NPCR), and the unified averaged changed intensity
(UACI) on satellite images, and the best values are shown in bold. As we can see in Table 2, the
end-to-end deep learning image algorithm in Ref. 54 has better values in correlation coefficients
and NPCR than the other two traditional image encryption methods. Furthermore, in other
indexes, the deep learning method also has a similar value to the other two methods.

2.3 Image Authentication

Checking the image identity or image integrity is the target of image authentication. Image
watermarking is a significant technique for authenticating images. As can be seen in Fig. 4,
the process of image watermarking is like image steganography. The watermark is embedded
into the container and arrives at the watermarked image. Watermark extraction or detection
involves extracting or detecting and further authenticating the watermark. From the perspective
of watermark visibility, an image watermark can be divided into the visible watermark55 and the
invisible watermark,56 whereas from the perspective of watermark robustness, an image water-
mark can be classified by fragile watermark,57 semifragile watermark,58 and robust watermark.59

Furthermore, from the mode of watermark extraction, an image watermark can be itemized into
blind,60 semiblind,61 and nonblind extraction.62

Ciphertext image

Cryptanalysis

Decrypted image

Encryption key Decryption key

Plaintext image

Cryptography

Fig. 3 The process of image cryptography and cryptanalysis.

Table 2 Ciphertext image security performance comparisons of different image encryption
schemes.

Methods
Image
entropy

Horizontal correlation
coefficients

Vertical correlation
coefficients

Diagonal correlation
coefficients NPCR UACI

Ref. 40 7.9993 0.0008 0.0013 0.0017 0.9963 0.3527

Ref. 41 7.9977 0.0018 −0.0020 −0.0012 0.9962 0.3345

Ref. 54 7.9972 0.0004 0.0005 −0.0011 0.9964 0.3349
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Compared with the traditional image watermark methods, the deep learning methods have
better imperceptibility and robustness. Table 3 describes the peak signal-to-noise ratio (PSNR)
and normalized correlation (NC) between the extracted watermark from the watermarked image
under multiattacks and the original watermark. Suppose that x and y are two images with the size
ofM × N and ði; jÞ is the pixel location in an image. The PSNR is calculated as Eq. (1), and NC
is computed as Eq. (2), where if a ¼ b, then fða; bÞ ¼ 1, and otherwise, fða; bÞ ¼ 0:63

EQ-TARGET;temp:intralink-;e001;116;507PSNR ¼ 10 log10

�
2552

1
MN

P
M−1
i¼0

P
N−1
j¼0 ½xði; jÞ − yði; jÞ�2

�
; (1)

EQ-TARGET;temp:intralink-;e002;116;447NC ¼ 1

MN

XM−1

i¼0

XN−1

j¼0

fða; bÞ: (2)

As can be seen in Table 3, when watermarked images face the attacks like median filtering of
3 × 3, salt and pepper noise with noise level δ of 0.005, and JPEG compression with quality
factor 20, the deep learning method in Ref. 63 reaches almost all of the highest watermark quality
assessment values, which are shown in bold, while it also obtains the most complete watermark
with respect to no attack.

3 Deep Learning in Image Steganography

With regards to the traditional problem of image steganography for embedding capacity and
security, the deep learning method in image steganography helps a lot (Table 4).

Container Watermarked
image

Watermark extraction or
detection

Watermark
embed

Image watermarking

Fig. 4 The scheme of image watermarking and watermark extraction or detection.

Table 3 Comparisons of different methods facing multiattacks.

Attack types Metrics Ref. 59 Ref. 62 Ref. 63

No attack PSNR (dB) 48.47 51.45 58.91

NC 1.00 1.00 1.00

Median filtering (3 × 3) PSNR (dB) 32.12 36.71 36.42

NC 0.44 0.78 0.82

Salt and pepper (δ: 0.005) PSNR (dB) 32.74 31.66 54.12

NC 0.81 0.92 1.00

JPEG compression (QF: 20) PSNR 25.38 16.34 30.21

NC 0.44 0.32 0.56
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Table 4 Some deep learning models for image steganography tasks.

Series References Characteristics

Learning to generate
cover images

Volkhonskiy
et al. (2017)65

Use deep convolutional GANs to generate the cover image

Shi et al.
(2017)67

Use WGAN to generate cover image and GNCNN to
analyze steganography

Learning to generate
stego-image

Hayes et al.
(2017)70

Define a game between three parties represented by
the neural network

Baluja
(2017)71

Embed a color image into another image of the same size
using deep neural networks

Chattopadhyay
et al. (2018)72

Use multistage feed-forward artificial neural network

Zhu et al.
(2018)73

Jointly train encoder and decoder networks

Hu et al.
(2018)74

Map the secret data into a noise vector used by the trained
generator to produce the carrier image

Zhang et al.
(2019)76

Hide binary data in images using GANs

Wang et al.
(2019)77

Utilize a new secret information preprocessing method,
Inception-ResNet block, GAN, and perceptual loss

Zhang et al.
(2019)32

Use an inception-module-based neural network to embed a secret
gray image into an image with the same size, which was the
Y channel of the cover image, and propose a mixed loss function

Duan et al.
(2020)78

Use residual block in the hidden network to generate stego-image

Learning embedding
change probabilities
for every pixel in
the cover image

Tang et al.
(2017)84

A generator to learn the probability map, then the secret message
embedding simulated by the TES that was presented by
a neural network

Yang et al.
(2019)33

Has three modules: a generator with a U-Net architecture,
a no-pretraining-required double-tanh function, and
an enhanced steganography analyzer

Tang et al.
(2021)86

Employ reinforcement learning to learn the embedding policy

Coverless image
steganography
based on deep
learning

Duan et al.
(2018)87

A coverless image steganography based on a generative model

Luo et al.
(2020)88

A coverless image steganography method based on multiobject
recognition

Liu et al.
(2019)89

A coverless image steganography algorithm based on image
retrieval of DenseNet features and DWT sequence mapping

Zhang et al.
(2019)91

A diversity image style transfer network using multilevel noise
encoding

Zhou et al.
(2019)92

Use a faster region-based CNN and a dictionary that defined
the objects and corresponding codes

Duan et al.
(2020)94

Coverless information hiding method that constructs improved
Wasserstein GAN model

Bao and Xue: Survey on deep learning applications in digital image security

Optical Engineering 120901-6 December 2021 • Vol. 60(12)



3.1 Learning to Generate Cover Images

As can be seen in Fig. 5, using deep convolutional generative adversarial networks (DCGAN),64

Volkhonskiy et al.65 proposed steganographic generative adversarial networks (SGAN), which
was trained on the Celebrities dataset. Liu et al.66 generated cover images and embedded secret
messages using the LSB algorithm to deceive the steganography analyzer. Similar to SGAN,
secure steganography based on generative adversarial networks (SSGAN)67 used wasserstein
generative adversarial networks (WGAN)68 as the cover images generator and Gaussian-neuron
convolutional neural networks (GNCNN)69 as the steganography analyzer trained on the
CelebA66 database to improve the training performance and image quality. They opened the
field of container generation, although they lacked considerations in steganography properties.

Table 4 (Continued).

Series References Characteristics

Steganalysis
methods based
on deep learning

Qian et al.
(2015)69

A single neural network called GNCNN employing Gaussian
function as the activation function

Xu et al.
(2016)26

Xu-Net, a CNN architecture in consideration of the knowledge
of steganalysis

Yang et al.
(2017)95

Incorporate selection-channel awareness into modified Xu-Net

Zeng et al.
(2017)96

A hybrid CNN using the domain knowledge behind rich models
for JPEG steganalysis

Ye et al.
(2017)97

An alternative approach to steganalysis of digital images
based on a convolutional neural network named Ye-Net

Yedroudj et al.
(2018)98

Yedroudj-Net, which improves the architecture of the
convolutional neural network

Zhang et al.
(2018)99

Zhu-Net, which adopts small-sized convolutional kernel for
preprocessing, separable convolution to enhance the stego-
signal, spatial pyramid pooling, and data augmentation

Boroumand
et al. (2019)100

SR-Net, which adopts an expanded front part in a deep
residual neural network

Reinel et al.
(2021)101

GBRAS-Net using filter banks for preprocessing, and depth-wise,
separable convolution, skip connections for feature extraction

Liu et al.
(2021)102

DFSE-Net involving diverse filter modules and squeeze-and-
excitation modules

Iskanderani
et al. (2021)103

An efficient θ-nondominated sorting genetic algorithm-III
based DCNN model

Singhal et al.
(2021)104

Blind steganalysis for multiple categories in spatial and JPEG
images by the deep residual network

Real image

Noise

Discriminator

Generator Stego-image

Steganography
analyzer

LSB

Secret data

Fig. 5 The structure of SGAN and SSGAN.
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3.2 Learning to Generate Stego-Image

As can be seen in Fig. 6, the deep learning model in stego-image generation consists of three
parts: the generator translates the cover image and secret data to the stego-image, the restorer
recovers the secret data from the stego-image, and the steganography analyzer determines if the
input image is either the stego-image or the cover image.

Hayes and Danezis70 simulated a communication scenario in which three neural networks
trained on the CelebA dataset engaged: Alice and Bob communicated by concealing a secret
message in the carrier image, and Eve eavesdropped on the image and distinguished the
embedded image from the innocent image. Baluja71 designed three neural networks: a prepa-
ration network gained the features of the secret image, a hiding network concealed the extracted
features into the cover image across all available bits, and a revealing network reconstructed the
secret image from the stego-image. Chattopadhyay et al.72 adopted a multistage feed-forward
artificial neural network to complete image steganography. Zhu et al.73 transferred the input
message and cover image to a discriminator-indetectable image by a neural network and recov-
ered the secret message from the encoded image by the other neural network simultaneously. Hu
et al.74 trained a generator to translate a carrier-like image deceiving the discriminator using the
vector calculated by the secret information and an extractor to reconstruct the vector and map it
to the secret message reversely. The neural networks were trained on the CelebA and Food-10175

datasets. However, the disadvantages of DCGAN result in some drawbacks. For example, some
generated stego-images were not sufficiently natural, the size of the stego-image was small, and
the steganography capacity was not big adequate. Zhang et al.76 hid arbitrary binary data in
images using generative adversarial networks (GAN). Wang et al.77 utilized a secret information
preprocessing method, Inception-ResNet block, GAN, and perceptual loss to improve the unde-
tectability, imperceptibility, and capacity, although the model had certain limitations on the
length of secret information. Zhang et al.32 used an inception-module-based neural network to
embed a secret gray image into an image with the same size, which was the Y channel of the
cover image; a neural network to recover the secret image from the Y channel of the stego-image,
which tried to minimize a mean square error (MSE), structural similarity (SSIM), and multiscale
SSIM mixed loss function; and another neural network to judge whether the input image was the
stego-image or not. Duan et al.78 employed the residual learning block in the hiding network to
directly generate a stego-image that looked like the cover image and designed the reveal network
to recover the secret image.

Table 5 estimates PSNR and SSIM indices between the cover image and stego-image
obtained by SteGAN,70 HiDDeN,73 SteganoGAN,76 and HidingGAN77 with embedding
capacities of 0.4, 0.4, 4.4, and 4 bpp, respectively, in the COCO79 dataset; ISGAN32 with embed-
ding capacity of 8 bpp; Ref. 71 with embedding capacity of close to 24 bpp in the ImageNet80

dataset; and Ref. 78 with embedding capacity of 23.8 bpp in the ImageNet, LFW,81 or Pascal-
VOC82 datasets. The invisibility requires the stego-image to be similar to the cover image. And
the higher the values of PSNR and SSIM are, the more similar the two images are. PSNR esti-
mates the error between corresponding pixels of two images, but it does not considered the
human visual characteristics; the SSIM83 measures the image similarity from comparisons of
luminance, contrast, and structure.

In practice, these two indices should both be considered. Table 6 compares the steganography
capacity and cover image size of different deep learning methods. As can be seen in Fig. 7, the
method proposed by Ref. 71 has the highest PSNR, SSIM, and capacity values, and its SSIM

Cover image

Secret
data

Restorer

Generator Stego - image

Steganography 
analyzer

Recovered secret data

Fig. 6 The framework of the deep learning model in stego-image generation.
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Table 5 Comparison of different deep learning methods in PSNR and SSIM between stego-
images and cover images on different image datasets.

Methods (capacity, datasets) PSNR (dB) SSIM

SteGAN70 (0.4 bpp, COCO) 21.43 0.69

HiDDeN73 (0.4 bpp, COCO) 33.40 0.96

SteganoGAN76 (4.4 bpp, COCO) 36.33 0.88

HidingGAN77 (4 bpp, COCO) 33.16 0.96

ISGAN32 (8 bpp, ImageNet) 34.89 0.97

Ref. 78 (23.8 bpp, ImageNet, LFW, or Pascal-VOC) 40.62 0.98

Ref. 71 (close to 24 bpp, ImageNet) 41.2 0.98

Table 6 Comparison of different deep learning methods in capacity and cover image size.

Methods Cover image size Capacity (bits/pixel)

SteGAN 32 × 32 0.4

HiDDeN 512 × 512 0.203

Ref. 74 64 × 64 0.009

SteganoGAN — 4.4

HidingGAN 256 × 256 4

ISGAN 256 × 256 8

Ref. 78 256 × 256 23.8

Ref. 71 200 × 200 Close to 24

Fig. 7 Histogram comparison of different deep learning methods in PSNR and SSIM between the
stego-image and the cover image and embedding capacity.
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value is close to the theoretical maximum value 1, which is the best stego-image imperceptibility
and the highest embedding capacity among all compared methods.

The deep learning methods generate the stego-image and recover the secret data automati-
cally while having a large embedding capacity and a good performance in undetectability. But
they do not recover the secret data 100% when the stego-image does not suffer any attacks. Deep
learning methods are not completely accurate secret data extraction algorithms in steganography
although they perform well in real complex communication situations. The secret data extraction
accuracy is limited by the characteristics of the neural network. Furthermore, the fixed input and
output size of deep learning model limits the size of the image that it could process.

3.3 Learning Embedding Change Probabilities for Every Pixel in the Cover
Image

As illustrated in Fig. 8, Tang et al.84 trained a generator to learn the probability map and then
embedded the secret message simulated by the ternary embedding simulator (TES), which was
presented by a neural network; finally the obtained modification map was added to the cover
image to achieve the stego-image that attempts to deceive the steganography analyzer. On the
basis of Ref. 84, Yang et al.33 presented a U-Net-based85 generator and replaced the TES with the
double-tanh function, which does not need to be trained. In addition, six high-pass filters were
integrated into the steganography analyzer. Similar to Refs. 33 and 84, Tang et al.86 employed
reinforcement learning to learn the embedding policy, which performed pixel-level actions and
rewards.

The above three methods were tested in embedding 0.1, 0.2, 0.3, 0.4, and 0.5 bpp of secret
data into the image from the BOSSbase dataset, and SRM was used to detect them. As illustrated
in Table 7, the detection error rates of Ref. 86 are all higher than the other compared algorithms
and have the best undetectability.

3.4 Coverless Image Steganography

The coverless image steganography does not change the cover image but transmits it directly, so
it does not easily raise the suspicion of the attacker, which can effectively resist steganalysis from
a new angle. As shown in Fig. 9, Duan et al.87 generated the stego-image directly using two
generators and two discriminators trained on the CelebA dataset. Generator 1 translates the secret
image to the cover image, and discriminator 1 distinguishes the stego-image from the cover

Cover image

Generator Probability map

Steganography analyzer

Recovered
secret

message
Stego-image

Secret
message TES

Modification image

Fig. 8 The structure of deep learning model in probability map generation.

Table 7 Detection error rate of different image steganography methods using SRM.

Methods 0.1 bpp (%) 0.2 bpp (%) 0.3 bpp (%) 0.4 bpp (%) 0.5 bpp (%)

ASDL-GAN84 36.19 31.24 25.41 21.95 18.04

UT-GAN33 43.53 36.87 32.26 27.30 22.52

SPAR-RL86 45.15 38.43 32.68 28.30 23.80
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image. Furthermore, generator 2 translates the stego-image to the secret image, and discriminator
2 determines whether the input image is generated or not. Luo et al.88 showed a coverless image
steganography scheme based on multiobject recognition. Liu et al.89 retrieved images according
to the features DenseNet90 trained on the ImageNet80 dataset and generated feature sequences
using discrete wavelet transform (DWT) coefficients, which presented the secret data and had
good robust and security performance in resisting most image attacks. Zhang et al.91 discussed a
diverse image style transfer network trained on the Microsoft COCO dataset79 using multilevel
noise encoding with the image style transfer results presenting different codewords. However,
the images with particularly dense textures were not suitable for datasets of steganography. Zhou
et al.92 created a dictionary that defined the objects and corresponding codes and used a faster
region-based convolutional neural network trained on the PASCAL VOC 200782 and VOC
201293 datasets to detect objects in stego-images that would extract the secret message.
Duan et al.94 trained an improved Wasserstein GAN model on the LFW dataset81 and transmitted
and input the disguised images with the generator outputting the images similar to the secret
images in visual mode.

3.5 Steganalysis Methods Based on Deep Learning

A deep learning model can automatically learn image features, which contributes to better clas-
sification precision. Utilizing the advantages of the deep learning model, Qian et al.69 applied a
single neural network called GNCNN, which employed six convolutional layers for extracting
the image features, three fully connected layers for classifying, and a Gaussian function as the
activation function for separating the cover and stego-signals. Xu et al.26 proposed Xu-Net,
which took absolute values of elements in the feature maps generated from the first convolutional
layer to force the model to take into account the sign symmetry24 that existed in noise residuals
and constrained the range of data values with the saturation regions of tanh in the first two con-
volutional layers, while constraining the strength of the model using 1 × 1 convolutions in the
last three convolutional layers to avoid overfitting. Yang et al.95 incorporated selection-channel
awareness into a modified Xu-Net architecture trained on the BOSSbase v1.01 dataset,34 which
applied large weights to features learned from complex texture regions and small weights to
features learned from smooth regions. Zeng et al.96 convolved the images with a set of kernels,
then calculated the different quantized and truncated features, and finally used the CNN model
trained on the ImageNet dataset to process the extracted features for JPEG steganalysis. Jian
et al.97 presented an image steganalysis CNN-based model called Ye-Net, which was initialized
with the filters used in calculating residual maps in SRM and integrated them with the truncated
linear unit to suit the distribution of embedding signals (with low signal-to-noise ratio) and selec-
tion channel awareness. Yedroudj-Net98 involved a predefined convolutional layer for extracting
the noise component residuals and adopted scale operations in the last three convolutional layers.
Zhu-Net99 applied 3 × 3 convolutional kernels to reduce the number of parameters and model the
features in a small local region, used separable convolution to enhance the stego-signal-to-noise
ratio, and employed spatial pyramid pooling to aggregate the local features for strengthening the
representation ability of features. SR-Net100 adopted an expanded front part in a deep residual
neural network without max-pooling operations to minimize the use of heuristics and externally
enforced elements. GBRAS-Net101 used filter banks in the preprocessing phase and depth-wise,
separable convolution, and skip connections in the feature extraction phase. Liu et al.102 con-
structed DFSE-Net with diverse filter parts that combined three different scale convolution filters
that could process information diversely and squeeze-and-excitation parts that could enhance the
effective channels out from diverse filter parts. Based on an efficient θ-nondominated sorting

Cover image

Generator1

Generator2
Recovered

secret image

Stego-imageSecret image

Discriminator1

Discriminator2

Fig. 9 The structure of deep learning model in stego-image direct generation in Ref. 87.
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genetic algorithm-III, Iskanderani et al.103 described a densely connected CNN (DCNN) for
image steganalysis. θ NSGA-III was utilized to tune the initial parameters of the DCNN model.
It could control the accuracy and f-measure of the DCNN model by utilizing them as the
multiobjective fitness function. Singhal and Bedi104 proposed multiclass blind steganalysis that
included 60 layers to record demographic features and residual mapping to retain weak stego-
signals generated by embedding payload and thus making classification easier and utilized a
high-pass filter to preprocess images.

Table 8 and Fig. 10 illustrate the detection accuracy of different deep learning steganalysis
algorithms in multiple steganography conditions, which consist of using the WOW105 steganog-
raphy algorithm with 0.2 and 0.4 bpp embedding capacity and using the S-UNIWARD30

steganography algorithm with 0.2 and 0.4 bpp embedding capacity on the BOSSbase dataset.
Compared with other algorithms, GBRAS-Net101 achieves the highest steganalysis accuracy.

Despite the image steganography method based on deep learning achieving an impressive
result in embedding capacity and stego-image quality, these methods have a lack of robustness.
The robustness of image steganography algorithms based on deep learning needs to be further
discussed and improved in future studies. Furthermore, the input and output of the deep learning
model are fixed, so the deep learning models only process the images of a fixed size. Developing
a model that could process images of various sizes in the field of image steganography is a
meaningful task.

Table 8 Comparison of detection accuracy of deep learning steganalysis methods for WOW and
S-UIWARD at embedding capacity of 0.2 and 0.4 bpp.

Algorithms WOW 0.2 bpp (%) WOW 0.4 bpp (%) S-UIWARD 0.2 bpp (%) S-UIWARD 0.4 bpp (%)

GNCNN69 61.4 70.7 53.7 69.1

Xu-Net26 67.5 79.3 60.9 72.7

Ye-Net97 66.9 76.7 60.1 68.7

Yedroudj-Net98 72.3 85.1 63.5 77.4

Zhu-Net99 76.9 88.1 71.4 84.5

SR-Net100 75.5 86.4 67.7 81.3

GBRAS-Net101 80.3 89.8 73.6 87.1

DFSE-Net102 75.3 85.1 65.9 78.5

Fig. 10 Steganalysis accuracy comparisons of the deep learning steganalysis techniques against
WOW and S-UNIWARD algorithms with the embedding capacity of 0.2 and 0.4 bpp.
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4 Deep Learning in Image Cryptography

4.1 Image Compression in Image Encryption Algorithms

Image compression can increase the efficiency of image encryption by reducing the size of data.
Chen et al.106 utilized a deep learning model trained on a color image dataset107 to compress and
reconstruct the plaintext image and compound the chaotic system to encryption. Hu et al.108

employed stacked autoencoder for compression and chaotic logistic map to encrypt the
compressed vector. Suhail and Sankar109 presented an application of image compression and
encryption using an autoencoder and chaotic logistic map. Selvi et al.110 suggested a competent
adaptive sigma filterized synorr certificateless signcryptive Levenshtein entropy coding-based
deep neural learning technique trained on a dataset of chest x-ray images to develop the image
encryption and compression (Table 9).

Table 9 Some deep learning models for image cryptography tasks.

Series References Characteristics

Deep learning for
image compression
in image encryption
algorithms

Chen et al.
(2020)106

Utilize a deep learning model to compress and reconstruct the
plaintext image and compound chaotic system to encryption

Hu et al.
(2016)108

Stacked autoencoder for compression and chaotic logistic
map for encryption

Suhail et al.
(2020)109

Autoencoder for compression and chaotic logistic map for
encryption

Selvi et al.
(2021)110

A competent adaptive sigma filterized synorr certificateless
signcryptive Levenshtein entropy coding-based deep
learning technique

Deep learning for
image resolution
improvement or
denoising in image
encryption algorithms

Zhang et al.
(2019)111

Employ ghost imaging as a transmission and encryption mode
and a CNN to improve the reconstructed image resolution

Chen et al.
(2019)113

Utilize a dilated deep CNN denoiser that improves the resolution
of the fractional Fourier transform-based decrypted images

Deep learning for
image object
detection and
classification in
image encryption
algorithms

Zhao et al.
(2020)115

Utilize the MTCNN to seek key feature points of human faces,
then adopt a combination of chaotic logic diagrams and RC4
stream ciphers to encrypt features

Alqaralleh
et al. (2021)116

Apply elliptic curve cryptography, employ the neighborhood
indexing sequence with burrow wheeler transform to encrypt
the hash values, and utilize a deep belief network for the
classification process to diagnose the existence of the disease

Asgari-
Chenaghlu
et al. (2021)117

A method based on YoloV3 object detection and chaotic
image encryption

Deep learning for
image private key
generation in
image encryption
algorithms

Li et al.
(2018)118

Train deep learning model to gain the features of iris image,
then use the RS error correcting code to calculate the
encryption key, finally encrypt the image using XOR operation

Ding et al.
(2021)120

Use the GAN to generate the private key

Jin et al.
(2020)122

The method based on deep neural network learning to induce
the symmetric key creation

Maniyath et al.
(2020)123

Adopt a robust deep neural network that generates secret key
resistive of different forms of attack and chaotic map to encrypt

Erkan et al.
(2020)124

Use sensitive key generation by deep convolution neural network
to produce a diverse chaotic sequence for encrypting operations

Fratalocchi
et al. (2021)125

Train a neural architecture to learn the mapping algorithm
between the key and the physical unclonable function
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4.2 Image Resolution Improvement or Denoising in Image Encryption
Algorithms

Zhang et al.111 employed ghost imaging as a transmission and encryption mode and a CNN that
was trained on the IAPR TC-12 benchmark112 to improve the recovered image resolution. Chen
et al.113 utilized a dilated deep CNN denoiser trained on the Waterloo exploration database,114

which improved the resolution of the fractional Fourier transform-based decrypted images and
resistance against multiclass attacks.

4.3 Image Object Detection and Classification in Image Encryption
Algorithms

Zhao et al.115 applied the multitask cascaded convolution network (MTCNN) to seek five key
feature points of human faces and then adopted a combination of chaotic logic diagrams and
Rivest Cipher 4 stream ciphers to encrypt eigenvalues. At the same time, the face coordinates
generated by MTCNN and user passwords were hash-converted and double-encrypted by a hash
table, which reduced the size of the images to be encrypted. Alqaralleh et al.116 employed elliptic
curve cryptography with an optimal key generated by hybridization of grasshopper with the fruit
fly optimization algorithm, then used the neighborhood indexing sequence with burrow wheeler
transform to encrypt the hash values, and finally adopted a deep belief network to classify the
existence of the disease. Asgari-Chenaghlu et al.117 described a technique based on YoloV3
object detection and chaotic image encryption that had the ability of automatic image encryption
on both full or user-selected regions.

4.4 Image Private Key Generation in Image Encryption Algorithms

Li et al.118 trained a CNN on the CASIA iris database version 4.0119 to extract the feature of the
iris image, then employed the RS error correcting code to encode the feature vector, and calcu-
lated the encryption key that was adopted to encrypt the plaintext image by the XOR operation.

Table 9 (Continued).

Series References Characteristics

Deep learning for
end-to-end image
encryption

Li et al.
(2020)127

An optical image encryption learning scheme based on
Cycle-GANs

Ding et al.
(2021)128

Employ Cycle-GAN to encrypt and decrypt the medical images
like a style transfer task

Bao et al.
(2021)129

Adversarial autoencoder for image scrambling based on
asymmetric encryption

Bao et al.
(2021)54

Employ the traditional diffusion technique to enhance the
avalanche effect of Cycle-GAN-based image encryption methods

Image cryptanalysis
method based on
deep learning

Xu et al.
(2021)132

A deep learning method to attack the phase truncated Fourier
transform encryption system

Hai et al.
(2019)134

Train a deep neural network model to learn and crack the
Random Phase Encoding based optical cryptosystems

Wu et al.
(2020)136

A model trained with large numbers of ciphertext-plaintext pairs to
crack the modified diffractive-imaging-based image cryptosystem

Chen et al.
(2020)138

A CNN directly converting the ciphertext image encrypted by the
joint transform correlation structure to the original plaintext image

He et al.
(2019)139

A deep learning-based decrypted image generation approach to
unravel the image encryption method in Ref. 140
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As can be seen in Fig. 11, Ding et al.120 trained a GAN trained on Montgomery County’s chest
x-ray121 dataset to generate the private key and input a seed image that had a large key space,
pseudorandomness, a one-time pad, high sensitivity to change, and resistance to different kinds
of attacks; then the bit-wise XOR algorithm was adopted as an encryption and decryption algo-
rithm. Jin and Kim122 illustrated a method based on deep neural network learning without shar-
ing the preshared key between systems and created and used the key that was variably used
through the symmetric key encryption system of the 3D cube algorithm, which provided good
security. Maniyath and Thanikaiselvan123 proposed a robust deep neural network trained on an
SIPI image database that generated a secret key resistive of multiattacks and applied a chaotic
map to encrypt the image without any negative effect on image quality. Erkan et al.124 mecha-
nized a CNN trained on the ImageNet database to generate sensitive keys and then produced
initial values and controlled parameters for the hyperchaotic log-map; thus they obtained a
diverse chaotic sequence for image encryption. Fratalocchi et al.125 decoupled the design of the
physical unclonable functions from the key generation and trained a neural structure to learn the
mapping between the key and the physical unclonable function, which could address the short-
comings of unreliability and weak unpredictability of cryptographic keys.

4.5 End-to-End Image Encryption

As can be seen in Fig. 12, the main end-to-end image encryption deep learning scheme consists
of the encryption network that generates a random-like ciphertext image, the decryption network
that reconstructs the plaintext image, and the discriminator that distinguishes the ciphertext
images from the pixel-random images.

Furthermore, cycle-consistent generative adversarial network (Cycle-GAN)126 has a good
performance in image style transfer, in which the process of image encryption is regarded as
translating the usual images to images with randomly distributed pixels. Thus the neural network
structure of Cycle-GAN was widely used as the encryption or decryption network in end-to-end
image encryption methods based on deep learning. The neural network structure, described in
Fig. 13, down-samples the input, then extracts the feature map through nine residual blocks,9 and
finally up-samples the feature map to output the image with the objective style. One style transfer
process of Cycle-GAN can be seen in Fig. 14, where the generator translates the original image
to the generated image with objective style and the discriminator distinguishes whether the image
is a real image.

Li et al.127 demonstrated an optical image encryption learning scheme based on Cycle-GAN
that was trained by the plaintext-ciphertext training set of satellite images in which the ciphertext
images were encrypted by double random phase encoding. Ding et al.128 employed Cycle-GAN

Image from 
transform domain

Encryption 
network Ciphertext image

Plaintext image

Generated key

Seed image

Discriminator

XOR

Fig. 11 The structure of the deep learning model in image private key generation and image
encryption in Ref. 120.

Pixel-random 
image

Encryption 
network

Decryption 
network

Recoveredplaintext image

Ciphertext image

Plaintext image

Discriminator

Fig. 12 The main scheme of the deep learning model in end-to-end image encryption.
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trained on a dataset of chest x-rays121 to encrypt and decrypt medical images as a style transfer
task. In addition, a neural network is projected to gain the interested object from the ciphertext
image. Bao et al.129 constructed an encoder–decoder and discriminator framework trained on the
Corel-1000 dataset130 to imitate the process of image scrambling and reconstruction in which the
parameters of the encoder and decoder are different. However, the cipher pixels were not uni-
formly distributed, the decrypted images quality and the generalization ability of model were not
good, and the plaintext and ciphertext image sensitivities were weak. Bao and Xue54 analyzed
the causes of the weak avalanche effect in the neural network of Cycle-GAN and integrated the
traditional diffusion algorithm into the Cycle-GAN-based image encryption methods trained on
a dataset of satellite images scraped from Google Maps to enhance the avalanche effect, although
its decryption performance was not well.

Table 10 compares the image encryption methods illustrated in Refs. 106, 109, 117, 120,
127–129, and 54 in PSNR and SSIM values between recovered decrypted images and plaintext
images, the key space, and the encryption speed per plaintext image with 256 × 256 resolution.
Table 11 compares the image entropy, correlation coefficients of two horizontally, vertically, and
diagonally adjacent pixels of the ciphertext image obtained by different methods, NPCR values,
and UACI values when these methods face a chosen plaintext attack, especially, changing 1% of
pixels of the plaintext image in Refs. 128 and 129. As can be seen in Tables 10 and 11, the end-
to-end key generation and image encryption methods based on the deep learning model have a
large key space and a quick encryption efficiency. However, correlation coefficients of two hori-
zontally, vertically, and diagonally adjacent pixels of the ciphertext image and the resistance to
the chosen plaintext attack need to be further improved generally.

Fig. 13 The generator neural network architecture of Cycle-GAN.

Generator

Discriminator

Original image Generated image

Real image with objective style

Fig. 14 One style transfer process of Cycle-GAN.

Table 10 Comparison of PSNR and SSIM values between the decrypted image and the plaintext
image, key space, and encryption efficiency in different deep learning methods.

Method PSNR (dB) SSIM Key space Efficiency (s)

Ref. 106 (Sec. 4.1) 32.5516 0.9456 10135 0.85

Ref. 109 (Sec. 4.1) — 1.00 — —

Ref. 117 (Sec. 4.3) — — — 0.097

Ref. 120 (Sec. 4.4) — — ð28Þ196608 —

Ref. 127 (Sec. 4.5) 30.1664 0.9081 — 0.044

Ref. 128 (Sec. 4.5) 37.43 0.93 ð1010Þ2757936 0.07

Ref. 129 (Sec. 4.5) 27.5087 0.9115 ð232Þ6067459 0.6423

Ref. 54 (Sec. 4.5) 33.1800 0.9360 ð232Þ16698307 þ ð28Þ196608 —
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Some problems exist with end-to-end key generation and image encryption based on the deep
learning model. For example, the histogram of the generated key and ciphertext image is not
seriously randomly distributed, and as can be seen in Table 11, the UACI values facing chosen
ciphertext or plaintext attacks is not high in general. Although Ref. 54 proved that the employ-
ment of traditional diffusion techniques to Cycle-GAN-based image encryption methods could
enhance the ability against chosen plaintext attack, the complexity of the image encryption meth-
ods also increased. Using a deep learning method to take the place of the diffusion algorithm is
a possible solution to reduce the time costs. Then the decrypted image quality could be further
enhanced. In addition, the deep learning model needs a lot of training time, and the huge amount
of model calculations results in a poor encryption/decryption speed. Thus the training and
encryption/decryption efficiency of the end-to-end image encryption techniques based on
Cycle-GAN could be further improved. Furthermore, because the model is trained according
to a specific dataset, the generalization ability of the encryption and decryption model should
be further discussed, analyzed, and improved. However, the automatic generation of keys and
ciphertext images using deep learning methods has the advantages of convience, large key space
and reduced reliance on complex cryptography design knowledge. How to realize the image
cryptography on an even more profound level using deep learning models and thus making
a breakthrough is still a potential research direction in the future.

4.6 Image Cryptanalysis Method Based on Deep Learning

Some progress of image cryptanalysis using deep learning has been made, especially in optical
image encryption. The deep learning model is trained with large ciphertext and corresponding
plaintext images to learn the ability to crack the optical image encryption method.

Because of the nonlinear operation of phase truncation, the cryptography based on phase
truncated Fourier transforms (PTFT)131 has high robustness against existing attacks.

Figure 15 illustrates the encryption processes of PTFT, assuming that the original image is
fðxÞ FTð·Þ and IFTð·Þ are the Fourier transform and inverse Fourier transform, respectively. The
Fourier transform is given in Eq. (3). Equation (4) gives the phase truncation operation PTð·Þ.
Suppose that R1ðxÞ and R2ðuÞ are a pair of independent random phase masks; the encryption
procedure of ciphertext image gðxÞ is seen in Eqs. (5) and (6):131

Table 11 Comparison of different deep learning methods in image entropy, correlation coeffi-
cients of two horizontally, vertically, and diagonally adjacent pixels of the ciphertext image, NPCR
values, and UACI values facing a chosen plaintext attack.

Method
Image
entropy

Horizontal
correlation
coefficients

Vertical
correlation
coefficients

Diagonal
correlation
coefficients NPCR UACI

Ref. 106 (Sec. 4.1) 7.9944 −0.0024 0.0012 0.0035 0.9961 0.3357

Ref. 109 (Sec. 4.1) — — — — 0.96 0.33

Ref. 117 (Sec. 4.3) — −0.0021 0.0014 0.0031 — —

Ref. 120 (Sec. 4.4) 7.9986 0.0383 0.2259 0.1158 0.9959 0.2319

Ref. 127 (Sec. 4.5) — 0.0877 0.1379 0.0349 — —

Ref. 128 (Sec. 4.5) 7.96 — — — 0.9421
(change

1% pixels)

—

Ref. 129 (section 4.5) 7.9772 0.0291 0.0363 −0.0233 0.9045
(change

1% pixels)

0.1237
(change

1% pixels)

Ref. 54 (Sec. 4.5) 7.9972 0.0004 0.0005 −0.0011 0.9964 0.3349
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EQ-TARGET;temp:intralink-;e003;116;633FðuÞ ¼ FT½fðxÞ� ¼ jFðuÞj expði2πφðuÞÞ; (3)

EQ-TARGET;temp:intralink-;e004;116;599PT½FðuÞ� ¼ jFðuÞj; (4)

EQ-TARGET;temp:intralink-;e005;116;577g1ðuÞ ¼ PT½FTðfðxÞ · R1ðxÞÞ�; (5)

EQ-TARGET;temp:intralink-;e006;116;555gðxÞ ¼ PT½IFTðg1ðuÞ · R2ðuÞÞ�: (6)

Xu et al.132 proposed a deep learning method to attack the PTFT encryption system131 and
used a dataset with pairs of plaintext images on the MNIST handwritten dataset133 and corre-
sponding ciphertext images constructed through the PTFT encryption system to train residual
network,9 which automatically learned the decryption characteristics of the encryption system by
reducing the MSE between the decrypted images obtained by the deep learning model with the
secret image as shown in Fig. 16. However, the quality of recovered images obtained by this
method was not good.

Hai et al.134 trained a neural network to crack the random phase encoding-based optical
cryptosystems.135 Wu et al.136 trained a model that involved a module for obtaining the features
of the ciphertext image and a module for recovering the plaintext image according to the
obtained features with a large numbers of ciphertext-plaintext image pairs to attack the modified
diffractive-imaging-based image encryption137 cryptosystem. Chen et al.138 demonstrated a CNN
trained with a large amount of ciphertext image data encrypted by the joint transform correlation
structure and its corresponding plaintext image, directly converting the ciphertext image to the
original plaintext image.

Deep learning also shows a certain ability to detect or crack other encryption methods. He
et al.139 mapped the ciphertext images encrypted by the chaos-based image encryption algorithm
demonstrated in Ref. 140 into the low-dimensional space and then regenerated visually consis-
tent decrypted images utilizing a deconvolutional generator.

f g1 gFT IFT

R2R1

PT PT

Fig. 15 Process diagram of phase truncation Fourier transform encryption.

f g1 gFT IFT

R2R1

PT PT

reduce MSE loss

Original image

Encrypted image

Decryption neural networkDecrypted image

Fig. 16 The training process of deep learning decryption network for phase truncation Fourier
transform encryption.
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5 Image Authentication

5.1 Image Forgery Detection

Bondi et al.141 employed a CNN trained on the Dresden image database142 to extract character-
istic camera model features, which were analyzed through iterative clustering techniques for
image tampering detection and localization using characteristic footprints left on images by dif-
ferent camera models. Elaskily et al.143 exploited a CNN trained on the MICC-F220,144 MICC-
F2000,144 MICC-F600,145 and SATs-130146 datasets to extract features from images to detect the
copy-move forgery. Diallo et al.147 presented a camera identification CNN model trained with a
mixture of different qualities of compressed and uncompressed images on the Dresden dataset142

for image forgery detection. Patil and Jariwala63 carried out the intensive and incremental learn-
ing phase and then implemented a hybrid CNN to detect the image and video forgery. Bappy
et al.148 introduced a manipulation localization method using resampling features, long-short-
term memory cells, and an encoder–decoder network to segment out manipulated regions from
nonmanipulated ones. Xiao et al.149 suggested a splicing forgery detection algorithm with diluted
adaptive clustering and a coarse-to-refined CNN trained on the CASIA,150 COLUMB,151 and
FORENSICS152 datasets, which cascaded a coarse CNN and a refined CNN and extracted the
differences in the image properties between untampered and tampered regions from image
patches with different scales. However, the detection only focused on a single tampered region
in an image owing to a restriction of the postprocessing approach. Zhang and Ni153 employed a
cross-layer intersection mechanism to dense U-Net85 for image forgery detection and localiza-
tion. Biach et al.154 described an encoder using an architecture that was topologically the same as
that of Resnet-50;9 it analyzed the discriminating characteristics between the manipulated and
nonmanipulated regions, and a decoder localized the manipulated regions. However, there were a
few poorly detected images, especially on the NIST’16155 dataset. Moulin and Goel156 derived
locally optimal statistical tests for identifying forgeries and showed a procedure for learning a
forgery detector trained on the CIFAR-10157 and MNIST handwritten datasets. To combat image
recapture attacks such as recapturing high-quality images from high-fidelity liquid crystal dis-
play screens, Zhu et al.158 described a recaptured image detection method based on CNN in
which the local binary patterns coding coded maps were extracted as the input (Table 12).

F1-score takes both false negatives and false positives into account. Table 13 shows that
Ref. 154 achieves the highest F1-score and has the best performance in image forgery detection
among all compared methods.

Although deep learning has achieved good results in image forgery detection for several
types of forgery, there is shortage of large and perfect datasets that include images tampered
by methods for more types of forgery and research studies on deep learning forgery detection
methods for more complete forgery types.

5.2 Watermarked Image Generation

To dynamically adapt image watermarking algorithms, deep learning-based image watermarking
schemes have attracted increased attention, and experiments and estimation results have con-
firmed the advantages of the deep learning mechanisms in image watermarking. Vukotić159

investigated a new family of transformations based on deep learning networks that were useful
in image watermarking. As can be seen in Fig. 17, Kandi et al.160 proposed an autoencoder CNN
for watermark embedding and extraction; the attack layer simulated different attacks, and the
strength factor controlled the level of watermarked images robustness versus imperceptibility.
Fierro-Radilla et al.161 demonstrated a zero-watermarking algorithm in which features of the
image were gained by the CNN and combined with the watermark sequence using the XOR
operation. Ahmadi et al.162 described two fully CNNs with the residual structure trained on the
CIFAR-10 and Pascal VOC201293 datasets for watermarks embedding and extraction. Mun
et al.163 exploited a reinforcement learning trained on the BOSSbase dataset for robust and blind
watermarking. Zhong et al.164 introduced an encoder to encode the watermark and input the
result into an embedder with the cover image to reach the watermarked image, with the encoder
and embedder being two CNNs trained on the ImageNet and CIFAR157 datasets. Zhang et al.165
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Table 12 Some deep learning models for image authentication tasks.

Series References Characteristics

Deep learning in
image forgery
detection

Bondi et al.
(2017)141

Employ a CNN to extract characteristic camera model features
that are analyzed through iterative clustering techniques for
image tampering detection

Elaskily et al.
(2020)143

A CNN is used for detecting the copy-move forgery and
original images

Diallo et al.
(2020)147

A camera identification CNN model trained with a mixture of
different qualities of compressed and uncompressed images

Pramod et al.
(2021)63

Ameliorate the image and video forgery detection’s efficiency
utilizing hybrid CNN

Bappy et al.
(2019)148

A manipulation localization method that utilizes resampling features,
long-short-term memory cells, an encoder–decoder

Xiao et al.
(2020)149

A splicing forgery detection method with diluted adaptive clustering
and a coarse-to-refined CNN

Zhang et al.
(2020)153

Apply cross-layer intersection mechanism to dense U-Net for
image forgery detection and localization

Biach et al.
(2021)154

A CNN method based on an encoder/decoder to locate the
manipulated regions

Moulin et al.
(2017)156

Derive locally optimal statistical tests for identifying forgeries

Zhu et al.
(2019)158

A recaptured image detection method based on convolutional
neural networks

Deep learning in
image watermark
generation

Vukotić et al.
(2018)159

A new family of transformations based on deep learning networks
that were useful in image watermarking

Kandi et al.
(2017)160

An autoencoder CNN for watermark embedding and extraction

Fierro-Radilla
et al. (2019)161

A robust zero-watermarking algorithm

Ahmadi et al.
(2019)162

An end-to-end diffusion blind watermarking framework

Mun et al.
(2019)163

A reinforcement learning for robust and blind watermarking

Zhong et al.
(2020)164

An encoder encodes the watermark and then input to an embedder
with the cover image to reach the watermarked image

Zhang et al.
(2021)165

A watermarking framework for protecting deep networks

Deep learning in
image watermark
extraction and
detection

Li et al. (2021)167 A single-exposure optical image watermarking framework

Huynh-The
et al. (2019)169

A blind image watermarking framework based on
an encoder–decoder network watermark extraction model

Li et al.
(2018)170

A cooperative neural network to recognize the suspected
watermark signal

Hayes et al.
(2020)171

Resilient signal watermarking via adversarial training

Chen et al.
(2021)172

A model based on deep learning technology that accurately identifies
the watermark copyright

Bao and Xue: Survey on deep learning applications in digital image security

Optical Engineering 120901-20 December 2021 • Vol. 60(12)



exploited an embedding network and an extractor network to embed and gain the watermark,
respectively, and a surrogate network to boost the watermark, revealing ability of an extractor
network; these were trained on the PASCALVOC82 and Chestx-ray8166 datasets. However, the
method was not robust enough to some preprocessing techniques such as random cropping and
resizing.

Table 12 (Continued).

Series References Characteristics

Deep learning
in image
watermarking
attack

Wang et al.
(2021)173

Digital image watermark fakers using generative adversarial learning

Hatoum et al.
(2021)175

A fully convolutional neural network as a denoising attack on
watermarked images

Sharma et al.
(2020)176

An adversarial watermarking attack based on a CNN-based
autoencoder scheme

Deep learning in
image watermark
removal

Cheng et al.
(2018)177

A deep learning model for visible watermark removal task that
consists of two parts: watermark detection and removal

Gandelsman
et al. (2019)178

A coupled “Deep-Image-Prior” network to remove image watermark

Hertz et al.
(2019)179

Estimate the visual motif matte and reconstruct the latent image
without opaque and semitransparent visual motifs

Li et al. (2019)180 A watermark processing framework using the conditional GAN

Pei et al.
(2021)181

A watermark removal structure including watermark extraction and
image inpainting networks

Cun et al.
(2020)183

A multitask feature extractor and a watermarked region smoother

Shafieinejad
et al. (2019)184

Focus on backdoor-based watermarking

Chen et al.
(2019)185

A unified watermark removal framework based on fine-tuning and
incorporated with an adaption of the elastic weight consolidation
algorithm and unlabeled data augmentation

William et al.
(2021)186

A neural network “laundering” algorithm to remove black-box
backdoor watermarks from neural networks

Table 13 F 1-score comparisons of different image forgery detection
methods on the CASIA151 and NIST’16156 datasets.

Datasets Ref. 153 Ref. 149 Ref. 154

CASIA v1.0 0.5722 0.6758 0.7362

NIST’16 0.5140 — 0.6389

Cover 
image

Waterm
-ark

Attacked 
image

Embedding
network

Watermarked 
image

Attack layer

Strength 
factor

Extraction 
network

Extracted 
watermark

Fig. 17 The watermarking framework of Ref. 160.
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Table 14 compares the bit error rate (BER) for the method recovering watermark information
against normal digital image manipulations (including 20% cropping, 5% pepper and salt noise,
and lossy JPEG compression with factor 10), capacity, and the PSNR between the container
image and the watermarked image gained by Refs. 161–164. The higher the BER value is, the
more robust thewatermark recovery ability of the methods is. The higher the PSNR values between
the container image and the watermarked image is, the more imperceptible the method is.

As can be seen in Table 14, different methods have their distinctive advantages. For example,
Ref. 161 has better resistance in JPEG compression with factor 10, whereas Ref. 162 has a higher
PSNR index between watermarked images and original images, and Ref. 164 has a better re-
sistance in 5% salt and pepper noise and 20% cropping and larger capacity. As a result, a deep
learning method in image watermarking that has a high resistance to multiattacks and a good
imperceptibility of the watermarked image while having a large capacity needs to be further
developed in future research.

5.3 Image Watermark Extraction and Detection

Li et al.167 extracted a watermark image from a single-frame watermarked hologram by a condi-
tional GAN trained on the fashion-MNIST168 and MNIST handwritten datasets. Huynh-The
et al.169 exploited a blind image watermarking framework based on a deep convolutional
encoder–decoder network watermark extraction model trained with various attacked water-
marked images on the BOSSbase v1.01 database. Li et al.170 embedded a processed watermark
image into the block discrete cosine transform component and used a cooperative neural network
to recognize the suspected watermark signal with a single hologram, which improved the trans-
mission efficiency. Hayes et al.171 learned a transformation-resilient watermark detector trained
on the CIFAR-10 and ImageNet datasets to detect watermarks that could be employed in various
carriers such as in the image, audio, and video domains. Chen et al.172 performed a simulated
process to generate a large number of distorted watermarks and then collected them to form a
training dataset to train a CNN model that could accurately identify the watermark copyright.

5.4 Image Watermarking Attack

Wang et al.173 trained a watermark faker based on U-Net trained on the Caltech256174 dataset
with the input being an original image and the output being a fake watermarked image after
preprocessing; a set of paired images of original and watermarked images was obtained by the
targeted image watermarking algorithms. However, this method did not perform well at gener-
ating the watermark in the frequency domain. Hatoum et al.175 employed a fully CNN trained on
th BOSSbase dataset to denoise watermarked images and destroy the watermarks while preserv-
ing a satisfied quality of the denoised images. Sharma and Chandrasekaran176 implemented an
enhanced hybrid watermarking scheme using DWT and singular value decomposition methods
and proposed an adversarial attack based on a CNN-based autoencoder scheme trained on the
CIFAR-10 database that could produce a perceptually close image.

Table 14 Comparison of different deep learning techniques in PSNR between watermarked
images and container images, capacity, and BER for the methods recovering watermark informa-
tion against normal digital image processing operations.

Method

Robustness to multiattacks

PSNR
(dB)

Capacity
(bpp)

JPEG compression
with factor 10

20%
cropping

5% salt and
pepper noise

Ref. 161 2 — — 33.15 3.7 × 10−4

Ref. 162 — 11.3 — 44.14 0.0156

Ref. 163 – 6.61 7.98 38.01 0.0052

Ref. 164 8.16 0 0.97 39.72 0.0208
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5.5 Image Watermark Removal

As can be seen in Fig. 18, for the visible watermark removal task, deep learning models often
consist of two parts:177 watermark detection and removal. First, the deep learning model detects
the watermark object in the watermarked images and then removes the watermark object from
the watermarked image to obtain the watermark-less image. Gandelsman et al.178 proposed a
coupled “Deep-Image-Prior” network to remove the image watermark that needed no training
examples other than the input image/video. Hertz et al.179 trained on the Microsoft COCO
val2014 dataset79 and learned to separate the visual motif from the image by estimating the visual
motif matte and reconstructing the latent image for blind removal of both opaque and semitrans-
parent motifs. Li et al.180 suggested a watermark processing framework using the conditional
GAN trained on a large-scale visible watermark dataset177 and the PASCAL VOC2012 dataset
for visible watermark removal in a real-world application. The generated watermark-less image
had photorealistic quality but not good performance in standard quantitative evaluation metrics
such as PSNR. Jiang et al.181 presented a watermark removal structure consisting of a watermark
extraction network that removed the watermark in the watermarked image and an image inpaint-
ing network that inpainted the image for a watermark-less image. The two networks were trained
on the PASCALVOC2012 and places2182 datasets. Cun and Pun183 introduced a multitask fea-
ture extractor and a watermarked region smoother incorporated with multiple perceptual losses
trained on the VAL2014 subset of the MSCOCO79 dataset and a dataset of logos to simulate the
procedure of image watermark detection, removal, and refinement. However, when the detection
failed or the textures in the watermark and background were similar, the network could not
remove the watermark perfectly.

To remove the image watermark generated by the deep learning model, many scholars have
proposed their methods from different perspectives. Shafieinejad et al.184 focused on backdoor-
based watermarking, removingd the watermark fully by just relying on public data and propos-
ing an attack that detected whether a model contained a watermark trained on th MNIST and
CIFAR-10 datasets. Chen et al.185 exploited a unified watermark removal framework based on
fine-tuning and incorporated it with an adaption of the elastic weight consolidation algorithm
and unlabeled data augmentation. William et al.186 described a neural network “laundering”
algorithm to remove black-box backdoor watermarks from neural networks trained on the
MNIST and CIFAR-10 datasets.

6 Future Scope

Bringing deep learning methods into the field of image security have solved many problems that
cannot be solved by traditional methods. Deep learning image methods need a lot of pretraining
time and depend too much on the training datasets, which are its characteristics. Furthermore,
being good at using these characteristics or not decides the performance of deep learning models.
In the future, the development directions could be summarized into five points.

1. Deep learning models should be designed to take more consideration of the property of
image security tasks and balance the model performance of all aspects. For example, to
enhance the robustness or antiattack ability of deep learning methods, possible restrictions
can be considered and set in advance in the design of the model architecture and training
methods. Because the stego-signal representing only a small part in stego-image is not
strong, finding a suitable method to enhance the stego-signal-to-noise ratio properly for
better performance in image steganalysis is important. Meanwhile, the difference between
the tampered image and the original image is very small, and understanding how to better
use deep learning according to this property for forgery detection needs to be continually
explored. Because the low-avalanche effect of neural network in end-to-end image encryp-
tion, considering the diffusion part is essential for the security.

Watermark 
removal

Watermarked 
image

Watermark 
detection

Watermark-less 
image

Fig. 18 The general process of deep learning methods for watermark removal.

Bao and Xue: Survey on deep learning applications in digital image security

Optical Engineering 120901-23 December 2021 • Vol. 60(12)



2. The internal working principles of deep learning should be better understood, and the
techniques of deep learning models should be develeop for better use. The input and out-
put of deep learning model are usually fixed, and designing a more flexible input and
output size contributes to deep learning methods being more widely used in practice.
A stronger image features extraction ability will make the action of deep learning more
accurate, which is an area that many authors have been studying. Promoting the interpret-
ability of deep learning helps people better design models according to the characteristics
of deep learning. Improving the generalization ability of deep learning model will make
the deep learning image security methods adapt to images in more scenarios. The large
amount of computation of neural networks has been criticized. It is imperative to design a
lightweight neural network using knowledge distillation, neural network pruning, and
other technologies to reduce the computational complexity, which is conducive to appli-
cations especially in industry.

3. There is a shortage of theories for deep learning image security, so establishing and con-
tinuously improving the theoretical system of deep learning image security are urgent.
Some deep learning methods in image security need to be explained from the view of
mathematics, while the targeted tests should be expanded from other angles. A better theo-
retical basis will guide faster and better development of the field of deep learning image
security.

4. Deep learning is a dataset driven technology, but the datasets established for some special
tasks are not perfect. It is necessary to establish larger and richer datasets for special tasks.
For example, the dataset used in the field of image forgery detection needs to include
images tampered by various tampering methods. There is an urgent need to establish
a more comprehensive dataset to promote the rapid development and application of diver-
sified tests of deep learning on special tasks.

5. Deep learning should be taken into other areas of image security to solve more traditional
image security problems. For example, using neural network to exchange keys in image
cryptography and neural network image homomorphic encryption are interesting research
directions.

Above all, there are still many challenges and development opportunities in the field of image
security for deep learning. It is significant to develop deep learning in image security.

7 Conclusion

This paper describes deep learning with respect to image steganography to generate the cover
image, the stego-image, embedding change probabilities, coverless steganography, and stega-
nalysis. As a result, we know that the image steganography method based on deep learning has
reached a good performance in embedding capacity and stego-image imperceptibility quality.
However, the robustness of deep learning-based image steganography algorithms needs further
detailed testing, analysis, and improvements; the embedded secret data extraction should
be more accurate; and the input and output size should be more flexible in future studies.
Furthermore, this paper combines and compares deep learning techniques used in image cryp-
tography as concerns in image compression, image resolution improvement, image object detec-
tion and classification, key generation, end-to-end image encryption, and image cryptoanalysis.
We find that end-to-end key generation and image encryption based on the deep learning model
have advantages in large key space and automatic generation, with a reduced reliance on com-
plex cryptography design knowledge. Furthermore, the improvement in the randomness of
generated ciphertext image and keys, quality of decrypted image, generalization ability and
efficiency of the encryption and decryption model, and resistance of facing chosen ciphertext
or plaintext attack are still significant research directions for the future. In addition, this paper
relates deep learning methods in image authentication from image forgery detection, water-
marked image generation, image watermark extraction and detection, image watermarking
attack, and image watermark removal and predicts the development of an image watermarking
method based on deep learning that has a high resistance to multiattacks, good imperceptibility
of the watermarked image, and a large capacity, which are future research directions for this
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topic. Finally, we summarize three future development directions through the whole analysis that
have enlightening significance for relevant researchers.
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