An all-optical digital-to-analog conversion (DAC) scheme based on time-domain pulse spectrum encoding is proposed and experimentally demonstrated. In this approach, the ultrafast optical pulses are first time-broadened and frequency-chirped based on wavelength-to-time mapping and then segmented and power weighted in both time and spectrum domains to produce the multi-band optical carrier. The optical carrier is intensity-modulated by the serial digital inputs to realize the time-domain pulse spectrum encoding. Each spectrum-encoded pulse is then time-compressed to achieve the incoherent weighted intensity summation of digital bits within each word. This approach generates the multi-band optical carrier and achieves the corresponding incoherent intensity summation using all-fiber structure; the system configuration is greatly simplified. Moreover, the time-domain pulse spectrum encoding could efficiently exploit the superwide spectrum resource offered by ultrafast optical pulses and potentially improve the system conversion resolution. A proof-of-concept experiment of a 4-bit DAC system based on time-domain pulse spectrum encoding is carried out, and the obtained results validate the feasibility of the proposed approach. In addition, the system performance in terms of the effective number of bits is investigated. |
ACCESS THE FULL ARTICLE
No SPIE Account? Create one
Ultrafast phenomena
Pulse signals
Dispersion
Signal attenuation
Analog electronics
Single mode fibers
Education and training