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ABSTRACT 

Modeling and experiments on nematic ordering in geometrically frustrated nematic and chiral nematic systems reveals 
diverse birefringent micro and sub-micro structures, including knotted and linked nematic braids, skyrmions, torons, and 
hopfions. Here, these complex defect structures are used to illustrate simulations of optical images and visualization of 
complex nematic fields. Particular attention is given to simulations of images obtained by three-photon excitation 
fluorescence polarizing microscopy that can unveil complex three dimensional nematic fields at the micrometer scale. 
 
Keywords: Director field, Q-tensor nematic field, splay, bend & twist deformations, topological defects, singular defects, 
nonsingular defects, nematic braids, torons, hopfions, knots, polarization microscopy, Pontryagin-Thom surface, three-
photon fluorescence polarizing microscopy. 
     
 

1. INTRODUCTION 

 
Complex geometrical constrains and intrinsic chirality in nematic mesophases allow for formation of stable and 
metastable defect structures of high complexity. Recently knots and links of arbitrary kind have been formed using laser 
micro-manipulation of nematic braids entangling colloidal particles in nematic liquid crystals [1]. In frustrated chiral 
nematic phases stable and metastable toron and hopfion defects have been implemented by laser tweezers [2,3]. Complex 
colloidal particles in the form of platelets, handle-bodies, and knots have led to intricate yet controllable nematic fields [4-
6]. In numerical studies we predicted numerous exotic structures in confined blue phases [7,8] and stable knotted 
disclinations in cholesteric droplets with homeotropic boundary conditions [9]. Moebius type colloidal particles were 
shown to directly induce knotted disclinations in simple nematics [10] Modeling studies based on the numerical 
minimization of the phenomenological free energy, supported with the adapted topological theory [11-14] allow for a 
rather straightforward study and characterization of the diverse structures. Crucial for the understanding of the nematic 
structures is the visualization of the ordering fields [15]. Here, we review some recently observed and predicted complex 
defect and neamatic-field structures using different visualization approaches for their presentation. The numerically 
obtained structures are also used to simulate polarization microscopy (PM) images and micrographs that are obtained with 
three-photon fluorescence PM for selected types of polarization [16]. Finally, this paper is a contribution towards 
predictable-design of complex soft materials with possible use in advanced complex optics and photonics.  
 

2. DESCRIPTIONS OF NEMATIC ORDERING FIELDS 

 
 
The director field is the central and most commonly used parameter to describe the orientational ordering of nematic 
liquid crystals. It is often used for approximate analytic and simplified numerical modeling. Formally, the possible states 
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of the director constitute a unit sphere (director is a unit-length vector-field), with opposite directions describing the same 
physical state.  Regions with an ill-defined orientational field are called topological defects. The studies of defects, based 
on the director profile, mostly focus on the topological properties of point defects and on the winding number of 
disclination lines. Such approaches can characterize elementary features in the director field through application of 
homotopy theory [17–20].  For point defects, topological charges are defined as integrals over the enclosing surfaces [19–
22]. The disclinations are well described by their winding numbers, but in case they are closed, they also carry a 
topological charge [23,13]. Visualization is essential for understanding of the nematic defect structures. The recent surge 
of interest in complex nematic defect structures, often at submicron scales, requires approaches where beside topological 
quantities also geometrical aspects and fine details of ordering play an essential role. Therefore, instead of a simple 
director based description of the orientational molecular ordering in nematogenic materials, a spatially dependent tensorial 
order parameter Qij [24] based approach is used. This tensor “nematic field” is defined as a second moment of the 
orientational molecular distribution, Qij = < 3aiaj/2 – δij >, where ai is a Cartesian coordinate of a - the single molecule 
orientational vector, and the brackets denote the ensemble average. Usually it is written in the form 
 
    ��� = ��3���� − 
���/2 + ���

���
�/2 − ���

���
�/2,    (1)

  
 

where the first term describes the average orientation of molecules along the director n and scales with the well-known 
degree of orientational order S, whereas the second two terms describe biaxiality of the molecular orientational 
distribution [24]. The parameter P measures the degree of biaxiality of the field, discriminating the e+ axis along which the 
fluctuations of the molecular orientation are largest, from the e– axis along which the fluctuations are smallest. Degree of 
order S ranges from –1/2 to 1, but in practice mostly stays positive, while P is in most areas practically zero. The 
equilibrium nematic field can be obtained by minimizing the model-form of the nematic free energy [24]. Note that 
relevant physical scales cover a broad range of values from several microns to only few nanometers. For smaller scales, 
molecular Monte Carlo and molecular dynamics approaches need to be used [25, 26]. On the experimental side, until 
recently, the conventional polarization microscopy has been practically the only tool for the determination of the nematic 
field. Measuring techniques improved with the evolution of precise fluorescence-based microscopy techniques [27-29]. By 
using multiple polarizations and detection of fluorescence signal, it is possible to determine the director field with 
submicron resolution in three spatial dimensions. In this way a three-dimensional director field can be reconstructed and 
visualized. The comparison of experimentally measured fields and predictions from modeling approaches can be used to 
improve weaknesses of the experimental reconstruction on one side and to adapt and improve the free-energy functional 
with all relevant terms for optimal prediction of the nematic field on the other hand [30].  
 
 

2.1. GLYPHS, STREAMLINES AND POLARIZATION MICROSCOP Y 
 

 
In nematic liquid crystals simple director field is usually represented by line segments (Figure 1a). Unfortunately, 
effectively, this is useful only if visualizing inplane director fields which are twodimensional. The out-of-plane director on 
a two-dimensional cross section was traditionally described by ‘nails’, where the out-of plane orientation was marked by 
distinguishing the length of the nail (Figure1c). With the advances of computer graphics a straightforward method is to 
draw the director as glyphs of different shapes (Figure1 b&d) where shading is used to represent orientation. In case those 
deformations are rather weak or more complex in the third dimension, streamlines that follow director field are a better of 
visualization than glyphs. It should be stressed that its implementation requires careful use of tensorial nature of the 
director field taking into account the n to –n symmetry of the director [15]. The approach with streamlines is illustrated by 
a visualizing the twisted boojums that accompany a colloidal particle with planar anchoring in a chromonic liquid crystal 
[18].  By comparing Figures 1e&f one clearly sees that glyphs hardly indicate the left & right twisting of the nematic     
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Figure 1: (a, b) Use of two kinds of glyphs for the presentation of 2D director fields in a cross section of a singular +1/2 disclination and 
(c,d) a nonsingular +1 twisted disclination. (e,f) Glyph presentation is contrasted to the stream lines for the case of counter-twisted 
boojums that accompany colloidal sphere enforcing planar anchoring in a chromonic liquid crystal. (g) Simulated polarization 
microscope picture of a director field induced by such a colloidal particle under crossed polarizers and (h) under crossed polarizers with 
added lambda plate. 
 
director which on contrary is clearly seen in the streamline presentation. The director field glyphs enhanced by color 
coding are another option to better describe 3D variation of the nematic field [15]. 
 
Experimentally, the most common way of observing liquid crystalline structures is by polarized optical transmission 
microscopy (PM) (e.g. see Ref. 24). This method has a strong potential for recognition of structures primarily in cases 
when the structures vary mostly in a plane perpendicular to the observation direction. However, even for rather simple 3D 
nematic fields the method is much less effective in determining details of the structure. The method is also limited to 
samples that are thinner than the coherence length of the light. To obtain a simulated PM picture usually simple straight 
ray optics is used to calculate the total phase shift between ordinary and extraordinary component of the ray. The 
computation is based on slicing the Q-tensor field into long and thin prisms along which effectively, the light-ray is 
propagated. The local variation of birefringence is described by the Jones matrices [31]. This technique allows for 
calculations of a transmitted monochromatic and polychromatic light. The simulated white light PM pictures of a two 
opposite twisted boojums accompanying a planar colloidal particle in a chromonic liquid crystal (Figures 1g&h)  
demonstrate that beside microscopy with cross polarizers also a picture with inserted lambda wave plate is needed to 
uncover twisting details of such 3D nematic field [32].   
  

2.2. DEGREE OF ORDER AND DISCLINATIONS 

 
Defect structures are often visualized by plotting only singular defect lines via drawing isosurfaces of constant nematic 
degree of order S for some preselected value that is lower as in unperturbed bulk nematic [31, 33]. The Figure 2a 
illustrates a simple case of a homeotropic colloidal spherical particle encircled by a -1/2 disclination ring. The 
visualization of the disclination loop via S-isosurface is accompanied by line segment representation of the inplane 
director field. In contrast, for a trefoil knot-like homeotropic colloidal particle accompanied by two knotted disclination 
lines (Figure 2b) the director is intentionally omitted as it strongly varies in all three spatial dimensions (for  details on  the  
experiment and modeling see Ref. 6). 
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Figure 2: Presentation of the -1/2 singular disclination lines that accompany colloidal particles with homeotropic surface anchoring of a 
nematic media using isosurfaces of S corresponding to the 5% reduction of the bulk order parameter. The Saturn ring disclination loop 
which encircles the spherical colloidal particle is complemented also by the nematic director field in a cross section (a). In case of 
knotted colloidal particle, the physical knot is entangled by two nematic field knots (b). To avoid an overcrowded picture the director 
field is intentionally not presented. 
 

2.3. SPLAY, BEND AND TWIST 

 
To examine the fine structure of the director field around defects, the elastic nematic deformation modes -splay, bend and 
twist- can be effectively extracted and visualized by highlighting the degree of specific deformations in the immediate 
surroundings of the defects without showing complete nematic field. One such parameter that easily visualizes the 
winding number of disclination lines is the scalar splay-bend parameter SSB, constructed from second derivatives of the 
order parameter tensor Qij [ 34]: 

 

��� =
�����
������

  , (2) 

 
where note that summation over repeated indices is assumed. Effectively, the scalar splay-bend parameter SSB is fully 
analogous to the divergence of the order- and flexoelectric polarization arising from the deformation of the nematic field 
in a simplified flexoelectric model [24]. Neglecting the biaxiality and variation of the degree of order S, the tensor form 
reduces to the well-known vector form: 

��� =
��
�
∇ ∙ ( (∇ ∙  ! −  × (∇ ×  !!.     (3)

    
The first term stems from a strong divergence of splay deformation that corresponds to positive SSB, while negative 
valuesof the second term imply strong divergence of the bend deformation. Splay-bend parameter visualization can be 
applied also for distorted director profiles, as long as the splay and bend deformations reach extremes nearby the 
disclination lines. The splay-bend parameter proves to be particularly efficient in finding escaped defect lines with integer 
winding numbers (see Ref. 15). When visualizing twist deformations in chiral and archiral nematic liquid crystals a local 
twist parameter STW, similar to the chiral term in the nematic elastic free-energy is used [8]: 
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where S is the bulk-order parameter and q0 is the inverse pitch different from zero only for intrinsically chiral phases, 
making STW zero in the ground state of chiral and achiral nematics. It is convenient for identifying twist variations of 

 
Figure 3: Colloidal dimmer confined to π-twisted nematic cell is bound by a (small) circular -1/2 disclination loop and a larger more 
complex -1/2 disclination loop that locally notably deviates from the -1/2 hyperbolic, as visualized by the splay-bend parameter and 
twist parameter. Blue color indicates large splay and yellow large bend. Green and violet indicates positive and negative twisting.   The 
two insets show local cross-sections of the larger loop. 
 
singular disclination lines mostly induced by geometrical confinement and for twisted deformations of nonsingular 
disclinations when the anisotropy of the twist elastic constant (weak) plays the crucial role. For practical purposes both 
parameters are scaled with the nematic correlation length, thus being dimensionless quantities. Figure 3 illustrates how the 
splay-bend and twist parameters vary along a -1/2 disclination loop entangling a colloidal dimer in a π-twisted nematic 
cell [35]. In Figure 4 it is illustrated how the splay-bend parameter SSB can reveal distortions of a -1/2 disclination loop in 
a cholesteric phase confined to a spherical droplet with the surface imposing strong homeotropic anchoring. The line 
cross-sections distort only close to the surface whereas in the bulk they exhibit geometrical distortions known as writhe 
and twist.  The sum of writhe and twist equals the topological invariant – self-linking number - of an arbitrary complex -
1/2 disclination loop [12,9].  

 
 

Figure 4: Knotted disclination loop in a cholesteric droplet with homeotropic surface anchoring. Diameter of the droplet is 5 times the 
value of the intrinsic cholesteric pitch. The splay-bend parameter and nematic order parameter are used to show that profile of the 
disclination which deviates substantially from the there-fold ribbon when near the surface of the droplet. 
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2.4. PONTRYAGIN–THOM SURFACE AND MULTI-PHOTON FLUORESCEN CE 
POLARIZATION MICROSCOPY  

 
The elementary polarization microscopy technique for 2D nematic structures based on counting dark Schlieren brushes 
was in past years extended to three dimensions by studying three-dimensional regions that share common director 
orientation, as can be determined by confocal multi-photon flurescence polarization microscopy [27-29]. Chen and 
collaborators have shown [3,13] that by selecting the light beam direction, the Pontryagin – Thom (PT) surface can be 
constructed that is formed of points where director is perpendicular to the beam direction. The surface is particularly 
simple when the system is characterized by a homogenous far-field director and a beam that is parallel to it. The PT 
surface is closed for nematic fields that have no defects and no confining surfaces. In case of confinement, the PT surface 
is limited by confining isosurfaces and similarly, if defects are present, they also limit the PT surface. For more details 
how PT surfaces are linked to topological charges see Ref.  15. In Figure 5, the colloidal particle in a homogenous 
unwinded cholesteric farfield is decorated by a hopfion, making the PT surface simple yet bounded by the particle.  The 

simulated confocal image of multi-photon PM is shown as well. In Figure 6, a cholesteric droplet with homeotropic 
surface anchoring contains a disclination loop in the form of a trefoil knot: the PT surface is complex and bounded by the 
disclination loop and the droplet surface. 

 
Figure 6: Trefoil knot in a cholesteric droplet with a diameter 5 times the intrinsic pitch. On the right panel a Pontryagin – Thom 
surface is plotted together with a color wheel describing the director orientation. 

 

 
Figure 5: Colloidal particle in the unwinded cholesteric decorated by a hopfion. Director presentations based on (a) glyphs, (b) splay-
bend parameter, (c) Pontryagin – Thom surface. (d) Simulated multi-photon fluorescent PM image. 
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3. CONCLUSION 

 
With advances in optical technology and increasing computing power, the resolution and complexity of both 
experimentally acquired data and simulation results is becoming increasingly higher. To manage the overwhelming 
amount of raw data, efficient visualisation techniques are an essential part of the research process, as they allows for  
observation and study of results in an intuitive way, and more easily spot the important features in complex structures. 
Today multiple state-of-the art data visualization softwares offer a variety of display methods, including real-time view 
manipulation, but in order to use them for the particular field of liquid crystals, relevant parameters must first be extracted 
from the available raw fields. In this brief review, we touched on a broad spectrum of visualization techniques and 
evaluated their scope of use, advantages and disadvantages. Notably, these approaches can also be combined to show 
specifically relevant information. For example, combining the splay-bend parameter isosurfaces with order parameter 
isosurfaces and director glyphs on a cross section is common to achieve a high information density while keeping the 
maximum readability. Beside the aesthetic appeal, the right choice of a method can uncover hidden structures and lead to a 
scientific breakthrough. Therefore, keeping up with the current presentation technology should not be neglected. 
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