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ABSTRACT   

Independent from the specifics of the application, a cost efficient manufacturing of solid oxide fuel cells (SOFC), its 
electrolyte membranes and other stack components, leading to reliable long-life stacks is the key for the commercial 
viability of this fuel cell technology.  
Tensile and shear stresses are most critical for ceramic components and especially for thin electrolyte membranes as used 
in SOFC cells.  Although stack developers try to reduce tensile stresses acting on the electrolyte by either matching CTE 
of interconnects and electrolytes or by putting SOFC cells under some pressure – at least during transient operation of 
SOFC stacks ceramic cells will experience some tensile stresses. 
Electrolytes are required to have a high Weibull characteristic fracture strength. Practical experiences in stack 
manufacturing have shown that statistical fracture strength data generated by tests of electrolyte samples give limited 
information on electrolyte or cell quality. In addition, the cutting process of SOFC electrolytes has a major influence on 
crack initiation. 
Typically, any single crack in one the 30 to 80 cells in series connection will lead to a premature stack failure drastically 
reducing stack service life. Thus, for statistical reasons only 100% defect free SOFC cells must be assembled in stacks. 
This underlines the need for an automated inspection. So far, only manual processes of visual or mechanical electrolyte 
inspection are established. Fraunhofer IKTS has qualified the method of optical coherence tomography for an automated 
high throughput inspection. Alternatives like laser speckle photometry and acoustical methods are still under 
investigation.      
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1. INTRODUCTION  
 
High temperature fuel cells are considered as one of the most promising technologies for energy conversion in the 21st 
century. Due to the high efficiency and the versatility of the technology, the Solid Oxide Fuel Cell (SOFC) or its 
reversed use the Solid Oxide Electrolyze Cell (SOEC) are favored by many commercial and academic developers. 
All concepts base on the combination of a defined number of smaller cells (planar, tubular or mixed design) to a larger 
cell assembly, the“stack”, for getting higher voltages and/or currents than from a single cell. Typically, up to one or in 
best case several kW electric DC power will be generated in a single SOFC stack. Several stacks can be combined again 
to larger systems or stack modules up to several 100kW. 
The SOFC stack is the key technology in the value chain from ceramic powders over cells to stacks and SOFC systems 
for different applications like industrial CHP systems, micro-CHP systems or off-grid power generators. 
The following article focusses on the example of planar stacks where 20 to 80 planar SOFC or SOEC cells are combined 
electrically in series connection and in a fluidic parallel mode to a single SOFC or SOEC stack. The findings can be 
transferred in principle to other stack designs as well.  
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Figure 5. 
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may be applied industrially. The comparison of the methods OCT and LSP in table 1. below is summarizing the 
technical parameters, advantages and limitations.  

 

Table 1.  Status of Technology readiness and application focus of OCT and LSP for SOFC cell testing 

Parameter OCT LSP 

Preferred inspection  
parameters 

• Cracks, failures • Integral Porosity, material 
composition 

• Cracks and other failures 

• stresses 

Advantages Easily compatible with optical 
inspection 

Several parameters can be 
evaluated in parallel 

Limitations Method is only applicable for light 
and translucent materials 

Failure catalogue required  

Selection of stimulation and 
calibration of the method for any 
component / material required 

Resolution and 

penetration depth 

Flexible up to <10µm 

3-5mm 

10µm 

Low, depending on parameter 
and stimulation 

100% testing time 
10x10cm cell 

 1 to 3 min/cell < 1min /cell 

Manufacturing process 
integration 

Separate measuring station Simple and flexible even in 
existing processes 

Technology readiness TRL 6 in Industrial NDE TRL 5 in Industrial NDE 

 
 

 

7. SUMMARY & CONCLUSIONS 
 
Thermal and mechanical robustness of SOFC cells and stacks had been a challenge in SOFC technology development for 
a long time. 

Over the last 10 years, SOFC Stack developers and cell manufacturers have learnt how to optimize the SOFC stack 
design and operation regimes to reduce critical thermal and mechanical stresses to values below 120 MPa while using 
high strength electrolytes, able to tolerate these stresses. This was a key steps towards SOFC stacks offering frequent 
cycling capability. 

Based on the statistical and practical risk of stack failures in production or early operational life due to cell 
imperfections, a 100% inspection of electrolytes and SOFC cells is inevitable. The preferred position in the 
manufacturing sequence of stacks is after cutting of the final cell shape from sintered electrolytes and again after printing 
electrodes and co-sintering or before the start of the stack manufacturing process. Industrial methods beyond visual 
inspection are not established yet9. Even a failure rate of 1% would results in yield rate loss of 200.000 € in stack 
production at projected volume production cost of 2.000 €/kW and (low) 10 MW per year production rate. Furthermore, 
an automated electrolyte inspection is required to push the stack failure rate due to cell fracture down to single ppm 
levels over the stack lifetime.   
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In this paper two innovative optical methods based on the interaction of light with the electrolyte or electrode material 
are proposed. Initial results show that the detectability of typical defects by both methods is good while the automated 
industrial solution still has to be developed.  
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