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ABSTRACT 

 

We present a double sided, single pass Michelson heterodyne interferometer for dimensional stability 

measurements. In preliminary measurements, the double deadpath configuration (no sample) showed better than 

±1.5 nm (2σ) over 13 hours. A 30 mm stainless gauge block was then measured with a stability of ±1.2 nm (2σ) 

over 9 hours. The interferometer was then moved to a facility capable of measuring in vacuum. In a pressure 

sealed environment, but not vacuum, the interferometer stability was better than ±0.6 nm (2σ) over 23 hours. 

Using a Fourier analysis on this drift measurement, the limiting factor is the slight spatial gradients in the 

refractive index. With relatively large air paths greater than 400 mm, refractive index fluctuations on the order 

of parts in 10
9
 are needed to cause this drift.  

 

I. INTRODUCTION 

 

Material, interface, and construction stability are important parameters for space instrumentation, (EUV-) 

lithography, and metrology in general. In both EUV lithography and space, more information is needed about 

material and mechanical connection stability during an atmospheric to vacuum transition, after thermal and 

mechanical cycling, and over time (drift). With space missions like LISA and GAIA, the stability requirements 

on both materials and constructions become more and more stringent and the time scales over which these 

stabilities are required increase as well. Presently, there is a lack of knowledge of material and construction 

stability to build these instruments to their requirements. As a first step, a measurement system with high 

resolution and low measurement uncertainty is required for the investigation into material stability. We are 

investigating an instrument for measuring length changes of a 50 mm long sample with a 10 pm (k=2) 

measurement uncertainty for 10 minute measurements and 100 pm (k=2) uncertainty for 1 day measurements.  

 

II. INTERFEROMETER CONCEPT 

 

We have developed a single-pass, double-sided interferometer, shown in Fig. 1, for measuring material stability 

[1]. A double-sided design was chosen because it eliminates the length change uncertainty due to the reference 

plate mounting [2]. With this design, the reference signal in the interferometer can also be used as a 

refractometer, which allows for the localized measurement of refractive index changes. This is a significant 

improvement (low uncertainty) over calculating the refractive index from environmental parameters [3]. This 

interferometer uses two spatially separated beams with a known frequency difference between the beams. These 

two beams are split equally forming eventually two different interference signals: one that measures the sample 

length change and the other that is a refractometer. The only optical path difference between the sample 

interferometer and refractometer interferometer is the slight spatial separation and the difference between the 

sample length and the vacuum tube length. 

 

Two spatially separated beams with the same polarization state and a slight frequency offset are used as the 

source for this interferometer. The reference beam (blue in Fig. 1) enters the interferometer in the top plane (see 

Front View, Fig. 1). It is split using a 45° turned beamsplitter with a special coating ensuring equal power 

output for the transmitted and reflected beams. The two ensuing beams are the refractometer-reference (RR) 

and the sample-reference (SR), with equal power. Both the RR and SR beams pass through PBS1, Q1, and Q2. 

After passing through Q1 and Q2, the polarization state is rotated 90°, where the beams reflect off PBS2. The 

beams then reflect off M2, M1, and PBS1, where they pass through Q1 and Q2 for a second time. The polarization 

state is rotated back to the original 0° and the beams transmit through PBS2. Here, the beams are split equally in 

a LDBS, where they are interfered with their respective measurement arm.  

 

The measurement beam (red in Fig. 1) enters the interferometer in the bottom plane and pass through the same 

rotated BS generating the sample-measurement (SM) and the refractometer-measurement (RM) beams. The RM 

beam follows the same nominal path as the RR and SR beams. It makes two passes in the interferometer, each 

time passing through a vacuum tube before exiting PBS2. When it enters the LDBS it is reflected upward and Proc. of SPIE Vol. 10565  1056569-2
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then interfered with the RR beam at the 50% beamsplitter surface. PDr is then used to measure the fluctuations 

in the interferometer, as well as changes in the refractive index.  

 

 
 

Fig. 1.  Schematic of the double sided, signal pass interferometer used in the research. The solid beams interfere 

with each other to generate a refractometer. The dashed beams interfere to measure sample length 

changes. The input beams are spatially separated with the same polarization state with an offset 

frequency to eliminate periodic nonlinearity. (BS, beamsplitter; PBS1,2, polarizing beamsplitter; Q1,2, 

quarter wave plate; M1,2, mirrors; VT, vacuum tube; LDBS, lateral displacement beamsplitter; PDr,s, 

photodetectors) 

 

The SM beam follows a slightly different path than the other three beams. The SM beam passes through PBS1 

and Q1, where it then reflects off the left side of the sample. The beam then passes back through Q1, where the 

polarization state is rotated 90°. The SM beam then reflects off PBS1, M1, M2, and PBS2. After this, the beam 

passes through Q2 and reflects off the right side of the sample. The beam then passes back through Q2 and now 

transmits through PBS2. The beam is then reflected upwards in the LDBS where it is interfered with the SR 

beam at the 50% beamsplitter surface. PDs is then used to measure sample length changes, as well as 

interferometer and reflective index changes.  

 

A third detector, not shown, is used to generate an optical (heterodyne) reference. The phase difference between 

the optical reference and the refractometer is measured and used to determine refractive index fluctuations. The 

phase difference between the optical reference and the sample measurement signal is used to determine sample 

length changes. After correcting for sample thermal expansion and pressure induced length changes, the 

difference between the refractometer measurement and the sample measurement is used to determine the drift 

which includes corrections for refractive index changes and interferometer instability.  

 

The source for this system contains a stabilized laser and two acousto-optic modulators (AOM) to generate 

spatially separated beams without frequency mixing, as shown in Fig. 2. The stabilized laser is a custom 3-mode 

stabilized laser with a fraction frequency stability better then 1 part in 10
10
 [4,5]. This stabilized laser has greater 

than 2 mW of useable power for the interferometer. The beam from this laser is then split equally and sent to 

two AOMs which are driven by 19.99 MHz and 20 MHz signals, creating a 10 kHz heterodyne beat frequency. 

 

 
 

Fig. 2.  Laser source and heterodyne frequency generating system used in the vacuum vessel experiments. A 

custom 3-mode stabilized laser with 2 mW of power and fractional frequency stability better than 1 part 

in 10
10
 was used as the source [4]. The polarization state is then aligned using H and then the laser is 

split equally. Two AOMs at slightly difference frequencies are then used to generate the f1 and f2 beams. 

(OI, optical isolator; BS, beamsplitter; H, half wave plate; AOM, acousto-optic modulator; M, mirror) 
Proc. of SPIE Vol. 10565  1056569-3
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III. PRELIMINARY EXPERIMENTS 

 

Preliminary experiments were performed in a double deadpath configuration. In this configuration, neither a 

sample nor a vacuum tube was used in the interferometer. This means the reference arms see essentially the 

same path as the measurement arms, with the exception in the LDBS. This, however, is corrected by using an 

appropriate LDBS in the opposite configuration in the source which splits the system into measurement and 

reference beams. This double deadpath configuration is the most basic setup for this interferometer and is used 

to establish a baseline noise level and to see whether common perturbations can be canceled and/or corrected. 

 

The results, shown in Fig. 3, show the two deadpath interferometers drift approximately 500 nm over 13 hours 

with 0.3 K and 300 Pa temperature and pressure fluctuations, respectively, over the same timeframe. The 

measured length change between the two deadpath interferometers was strongly correlated. The difference 

between the two interferometers was within ±1.5 nm (2σ). The noise in the measurement was likely due to 

residual temporally fluctuating spatial refractive index gradients in the beam paths. The each of the four beam 

paths (SM, SR, RR, RM) were about 400 mm in length each which corresponds to refractive index coupling 

between each beam to better than 2.5 parts in 10
9
. 

 

 
(a) 

 
(b) 

 
(c) 

 

Fig. 3.  (a) Length change of the two deadpath signals in the interferometer. The two signals are offset in the Y-

axis for clarity. (b) Temperature and pressure fluctuations during the measurement. The interferometer 

was placed in an insulation foam box to limit air currents and temperature fluctuations. (c) Measured 

drift (difference between the two deadpath interferometers) of the double deadpath interferometer. The 

noise is about ±1.5 nm (2σ). 

 
After measuring the deadpath, a 30 mm stainless steel gauge block (as an example) was measured over 9.5 

hours. The reference signal was still the deadpath (no vacuum tube was used). The results, shown in Fig. 4, 

show a significant difference between the measurement signal and the reference signal. There also is a high 

frequency component contributing large noise level of approximately 50 nm pk-pk. However, this noise level is 

common to both signals and is significantly reduced when the difference is taken. Proc. of SPIE Vol. 10565  1056569-4
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The air temperature and gauge block temperature were measured to correct for refractive index changes and to 

compensate for thermal expansion effects. In Fig. 4c, the one measurement and four different correction 

parameters are shown. First, the measured phase difference (φ) is the difference between the measurement and 

reference signals. This should be compensated for four different effects to reduce the measured drift value. 

These are from the laser frequency stability (freq), refractive index (RI) calculated using the temperature and 

pressure sensitivity coefficients reported by Estler [6], sample thermal expansion changes (CTE), and pressure 

induced length changes (press). 

 

After removing these effects for the measured phase change, the 30 mm gauge block drift was better than 6 nm 

pk-pk over 9.5 hours, as shown in Fig. 4d. This corresponds to a similar noise level and drift level seen in the 

preliminary deadpath experiments. Since the vacuum tube was not used in these experiments, the refractive 

index variations accounted for by temperature and pressure measurements. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 4.  (a) Measured length change of the two signals in the interferometer. The large difference is due to 

sample length change effects. (b) Temperature of the air and gauge block (GB) and pressure changes 

during the measurement. (c) Phase change between the measurement and reference signals and four 

correction curves from sample properties, environmental parameters, and laser stability. (d) Drift of a 30 

mm stainless steel GB after correcting for temperature, pressure, refractive index, and laser stability 

effects. Proc. of SPIE Vol. 10565  1056569-5
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These experiments were performed with a slightly different interferometer source. A beam from the 3-mode 

laser was split equally and one portion was frequency upshifted 20 MHz. This beam and original beam from the 

laser were used as the input to the interferometer. After detecting 20 MHz interference signals, each signal was 

mixed with a common oscillator at 19.99 MHz and filtered to generate 10 kHz signals where the phase was 

detected using a dual lock-in amplifier. 

 

IV. VACUUM VESSEL EXPERIMENTS 

 

The interferometer setup was moved to a different facility to implement measurements in a vacuum vessel. Prior 

to measuring in vacuum, the double deadpath setup was measured again to verify previous results. Fig. 5 shows 

the measurement results from the double deadpath setup in the vacuum vessel. 

 
(a) 

 
(b) 

 
(c) 

Fig. 5. (a) Comparison between the length change difference between the two deadpath interferometers and the 

measured temperature in the vacuum vessel over 23 hours. (b) Measured drift of the double deadpath 

interferometer over 23 hours after correcting for thermal fluctuations. (c) Single sided amplitude 

spectrum showing minimal disturbances above 0.1 Hz. The 1/f noise below 0.1 Hz is limited by 

refractive index perturbations in the beam paths. 

 

The length change difference between the two interferometer deadpath interferometers was strongly correlated 

to the temperature within the vacuum vessel. After removing the correlation, the measured drift was better than 

±0.6 nm (2σ) over 23 hours. The limit of this measurement is slight refractive index variations between the 

different beams within the interferometer. This is known to occur at frequencies below 0.1 Hz, shown in Fig. 5c, 

which was apparent as well in other measurements with this system.  

 

The correlation between the deadpath interferometer difference and the temperature change is likely due to 

subtle changes to the interferometer when reconfiguring the setup to be hosted in the vacuum vessel. The 

stabilized laser was fiber fed into the vessel. Both AOMs were placed in the vessel and near the interferometer 

due to space limitations. Also, three detectors were used in the vessel, which also contribute as heat sources. 

Lastly, some of the mounted components were switched, which is also likely source for differences between 

these results and previous results.  

 

Proc. of SPIE Vol. 10565  1056569-6
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The heat sources in the vacuum vessel will create slight air currents in the interferometer even though the 

system was pressure sealed. These air currents, combined with a relatively large optical path length (> 400 mm) 

per arm (x4 arms) means only slight refractive index variations are needed to cause these errors. Refractive 

index variations on the order of 10
-10
 are needed to create these errors. 

 

V. CURRENT STATUS 

 

Currently, the interferometer is undergoing experiments in a low vacuum environment to limit air currents and 

refractive index changes. At present, the interferometer is has been in a 3 mbar environment for 13 hours with 

less than 6 nm of total drift. As the system still needs time to stabilize, we expect this drift will taper off to sub-

nanometer levels. The noise level on top of the drift has also decreased from 25 pm in the previous double 

deadpath measurement in the vacuum vessel to better than 12 pm.   

 

VI. CONCLUSIONS 

 

This interferometer is currently capable of measuring nanometer level drift over a day. Using the second 

interferometer (refractometer) as a deadpath interferometer reference eliminates much of the high frequency 

noise due to optical mounts and vibrations. The limit factor for this system was the refractive index which 

contributed to errors at frequencies below 0.1 Hz due to residual temporally fluctuating spatial refractive index 

gradients in the beam paths. Even so, with 400 mm long beam paths, a 30 mm spatial separation between 

interferometers, and 20 mm spatial separation between reference and measurement arms per interferometer, the 

refractive index coupling between beams is better than a few parts in 10
9
.  
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