
Dark-Field Imaging on a Clinical CT System:
Modelling of Interferometer Vibrations

Clemens Schmida,b, Manuel Viermetza,b, Nikolai Gustschina,b, Jakob Haeuselea,b, Tobias
Lasserb,c, Thomas Koehlerd,e, and Franz Pfeiffera,b,e,f

aChair of Biomedical Physics, Department of Physics, Technical University of Munich, 85748
Garching, Germany.

bMunich Institute of Biomedical Engineering, Technical University of Munich, 85748 Garching,
Germany.

cComputational Imaging and Inverse Problems, Department of Informatics, Technical University
of Munich, 85748 Garching, Germany.

dPhilips Research, 22335 Hamburg, Germany.
eInstitute for Advanced Study, Technical University of Munich, 85748 Garching, Germany.
fDepartment of Diagnostic and Interventional Radiology, School of Medicine and Klinikum

rechts der Isar, Technical University of Munich, 81675 Munich, Germany.

ABSTRACT

X-ray computed tomography (CT) is an invaluable imaging technique for non-invasive medical diagnosis. However,
for soft tissue in the human body the inherent small difference in attenuation limits its significance. Grating-based
X-ray phase-contrast is a relatively novel imaging method which detects additional interaction mechanisms
between photons and matter, namely refraction and small-angle scattering, to generate additional images with
different contrast. The experimental setup involves a Talbot-Lau interferometer whose susceptibility to mechanical
vibrations hindered acquisition schemes suitable for clinical routine in the past. We present a processing pipeline
to identify spatially and temporally variable fluctuations occurring in the first interferometer installed on a
continuously rotating clinical CT gantry. The correlations of the vibrations in the modular grating setup are
exploited to identify a small number of relevant vibration modes, allowing for an artifact-free reconstruction of a
sample.

Keywords: Grating-based X-ray differential phase contrast, Computed Tomography, Phase Retrieval, Factor
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1. INTRODUCTION

Grating-based X-ray differential phase-contrast1 uses the Talbot effect to retrieve additional information about
the sample from the X-ray wavefront. Besides the conventional attenuation coefficient, the refractive index
decrement and ultra-small-angle scattering as the linear diffusion coefficient2 can be obtained. This is achieved by
generating a periodic interference pattern by a modulation grating G1, creating self-images at specific distances.
The “intensity” is the local mean of the pattern, the relative magnitude of the modulation is called “visibility”,
and the position of the pattern is the “phase”. These quantities are altered by the presence of a sample, where
attenuation leads to an overall intensity reduction of the pattern, refraction shifts its lateral position and coherent
small-angle scattering (diffusion) reduces the visibility. As the interference pattern is usually too small to be
resolved directly, an analyzer grating G2 is placed in front of the detector to sub-sample the wavefront.3 One of
the gratings is moved in small increments to obtain the convolution of the G2 modulation with the interference
pattern at multiple positions. From these data points the three signals transmission, dark-field contrast, and
differential phase shift can be retrieved. This procedure is called “phase stepping”. The method was developed
with highly coherent synchrotron radiation and brought to laboratory setups by including a third grating G0 in the
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Figure 1. Schematic depiction of the setup.
It is an inverse Talbot-Lau interferometer
with the sample placed between G1 and G2.
G0 and G1 are close to the X-ray source
and consist of a single grating, respectively.
The G2 consists of multiple smaller gratings
which are tiled to cover the whole detector.
The G0-G1 combination vibration creates
phase fluctuations globally on the detector.
The individual G2 tile vibration creates ad-
ditional tile-wise variations. The focal spot
movement creates global intensity and visi-
bility fluctuations due to shadowing. The
interference pattern amplitude is further
reduced by grating movement during an
exposure.

interferometer.4 Placed between G1 and a conventional X-ray source, it transforms the latter into many narrow slit
sources which are mutually incoherent but produce individual G1 interference patterns adding up constructively
at the detector plane. The combination of G0, G1, and G2 gratings is called a Talbot-Lau interferometer. Fig. 1
shows a sketch of the experimental setup of such an interferometer with inverse geometry,5 in which the sample is
placed between G1 and G2.

The first Talbot-Lau interferometer mounted in a continuously rotating clinical gantry is presented in.6 It is a
modified, commercial CT platform with 80 cm bore size, operated in a standard clinical scan protocol and with
sufficient field-of-view for imaging a human. The sampling of the stepping curve relies on vibrations intrinsic to
the system, meaning no explicit phase stepping is performed. These vibrations also cause fluctuations of the
interference pattern (intensity, visibility, and fringe phase) independently from the sample properties.

For artefact-free reconstruction, it is required to separate changes of the interference pattern caused by
vibrations from those caused by the sample. The goal of the presented work is to model the vibration-induced
changes in such a way that this separation is possible.

2. METHODS

The experimental setup of interest in this work is a commercial clinical gantry platform (Brilliance iCT, Philips)
which has been retrofitted with gratings to enable human CT scans giving dark-field contrast. A schematic of the
interferometer and the expected modes of vibrations is shown in Fig. 1. The system design is presented in.6 The
gantry is operated in a continuously rotating manner and the acquisition utilizes the vibrations intrinsic to the
system which generate sufficient sampling of the stepping curve to perform phase retrieval.

The general approach for separating the changes of the interference pattern induced by vibrations from those
induced by the sample is to derive a parametric model from an air scan, which describes the interference pattern
generated by the gratings and its variability. The goal is to minimize the number of parameters related to the
actual vibration state, as they need to be determined for each subsequent sample scan due to their limited
reproducibility. The process is set up in two steps: In the first step, polynomial variations for phase and visibility
are assumed. In a second step, the number of parameters is reduced using a principal component analysis.

2.1 Forward model

The canonical forward model for the measured intensity using a stepped Talbot-Lau interferometer is4

ysimple
pt = Ip (1 + Vp cos (ϕp + γt)) , (1)

with the expected intensity ysimple
pt in detector pixel p ∈ {1, . . . , P} at stepping position index t ∈ {1, . . . , T},

flat-field intensity Ip, flat-field visibility Vp, flat-field phase ϕp, and the global phase shift γt induced by moving
one of the gratings perpendicular to the grating bars. The flat-fields (Ip, Vp, ϕp) are intrinsic to the interferometer
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setup and usually assumed to be constant during a scan and between scans. In laboratory setups it is assumed
that γt is known and exactly the same for air scan and sample scan.

As indicated in Fig. 1 we expect various vibrations which will lead to a pixel- and time-dependent change of
the intensity, visibility, and phase of the interference pattern. The forward model (1) is extended to

ypt = Ip
(
1 + Ivibpt

) [
1 + Vp

(
1 + V vib

pt

)
cos

(
ϕp + ϕvib

pt

)]
, (2)

with Ivibpt , V vib
pt , and ϕvib

pt representing spatial and temporal fluctuations over p and t.

2.2 Phase fluctuations

As indicated in Fig. 1 we assume translations and rotations of the G0 grating, G1 grating, the G2 carrier, and the
individual G2 tiles. We initially treat each G2 tile as an independent interferometer, so p refers to a pixel behind
one G2 tile.

According to Dittmann et al.,7 the resulting changes of the phase can be accurately modeled by low-order
two-dimensional polynomials over the detector. We define a two-dimensional polynomial term Pij = (Pijp) of
order i along the width and order j along the height of the interferometer in pixel p as Pijp = w(p)ih(p)j . w(p) is
the w coordinate along the width and h(p) the h coordinate along the height of the interferometer in pixel p.
Each term of the polynomial is multiplied with a coefficient γijt to give ϕvib

pt

ϕvib
pt =

∑
i,j

γijtPijp . (3)

A maximum order of one is chosen along the grating bars (in j here) and two perpendicular to them (in i here).7

2.3 Visibility fluctuations

According to Horn et al.8 change in total phase (i.e. the terms inside the cosine) during an exposure leads to
a visibility drop proportional to the first time-derivative of the total phase. Besides movement of the gratings,
changes of the X-ray focal spot location can also cause visibility fluctuations as the gratings are bent to a
cylindrical surface and carefully focused onto the intended source position. It is assumed that both can be
approximated by two-dimensional polynomials. We formulate a general model for the visibility fluctuation

V vib
pt =

∑
i,j

βijtPijp , (4)

with the maximum polynomial order in i and j doubled in comparison to (3), such that the first time-derivative
of the phase vibrations can be modeled.

2.4 Principal vibration components

Instead of modeling each G2 tile independently, it is desirable to approximate the fluctuations with a small
number of dominant shared modes to reduce the amount of free parameters per exposure.

We use principal component analysis (PCA) to reduce the number of parameters. Let X ∈ RP×T be a data
matrix with P variables in the rows and T observations in the columns. The singular value decomposition on
X is given as X = UΣV T, with the orthogonal matrix U ∈ RP×P , the diagonal matrix Σ ∈ RP×T , and the
orthogonal matrix V ∈ RT×T . Σ contains the singular values of X on its diagonal which are defined to be
in descending order. The rows of ΣV T are the “principal components” of X and the columns of U are the
“principal directions” of X, i.e. the magnitude of each principal component per observation. Let the function
PCA be defined as acting on a matrix X and returning ΣV T and UT: PCA(X) → (ΣV T,UT).

To apply PCA on the combined fluctuations from all G2 tiles, their terms V vib
pt and ϕvib

pt are concatenated
along the width of the interferometer and the index p is changed from locally on a G2 tile to globally on the
detector. With this definition of PCA, the joint principal components B = (Bkp) and C = (Ckp) (both ∈ RP×T )
over all G2 tiles of the visibility and phase fluctuations are determined via

PCA(V vib
pt ) → (Bkp, β

⋆
kt) ; PCA(ϕvib

pt ) → (Ckp, γ⋆
kt) . (5)
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Figure 2. The most dominant principal components of the spatial fluctuations in intensity, visibility, and phase (left). All
images are scaled to [-1, 1]. Vertical lines correspond to G2 tile boundaries. The size of each principal component is equal to
the number of detector columns times rows. The number of principal components used for processing is determined by the
scree plots of the respective (normalized) eigenvalues of XTX obtained by the PCA (right). Two dominant components
in intensity and visibility are identified based on the first “knee” in the scree plots. For the phase channel there is no
distinct knee and a number of four principal components are chosen based on the impact on the reconstruction of the
refractive index decrement. The vibrations in visibility and phase are a combination of global and tile-wise characteristics.

The coefficients β⋆
kt and γ⋆

kt correspond only to the magnitude of principal component k at exposure t, not to the
original polynomial model.

The fluctuations can now be approximated with a reduced number B⋆ and C⋆ of modes:

V vib
pt ≈

B⋆∑
k=1

β⋆
ktBkp ; ϕvib

pt ≈
C⋆∑
k=1

γ⋆
ktCkp . (6)

The dominant modes of the intensity fluctuations A = (Akp) ∈ RP×T are determined by applying PCA on the
normalized residuum

Ivibpt =
ŷpt
ypt

− 1 ; PCA(Ivibpt ) → (Akp, α
⋆
kt) , (7)

with the measured values ŷpt and the predicted signal ypt including only visibility and phase fluctuations. Again
we approximate Ivibpt with a reduced number A⋆ of modes:

Ivibpt ≈
A⋆∑
k=1

α⋆
ktAkp . (8)

3. RESULTS

We show the results from processing an air scan with the proposed PCA method in Fig. 2. The number of
eigenvalues of XTX before the first “knee” in the scree plots of the principal components in intensity and visibility
are used as A⋆ and B⋆, i.e. the number of vibration modes to keep for processing a sample scan. Because of the
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Figure 3. Reconstruction of a phantom in attenuation coefficient (left), linear diffusion coefficient (center), and refractive
index decrement (right) with a global polynomial fluctuation model (top) in all channels and principal vibration components
obtained via the proposed pipeline (bottom). All channels are free of vibration artifacts when processed with the PCA
model as shown in (D), (E) and (F). The materials of the cylinders are (clock-wise starting with the large cylinder)
Polyoxymethylene (POM), dry wool, moist wool, soaked wool, chocolate chips, water, and neoprene. No beam-hardening
correction is applied which leads to POM and water showing a non-zero diffusion coefficient. The windowing is (A), (D):
[-0.05, 2.2] × 10-1 cm-1; (B), (E): [-2, 8] × 10-2 cm-1; (C), (F): [-4, 2] × 10-1 cm-1. Small window in (A), (D): [-3, 3] ×
10-3 cm-1.

lack of a distinct knee in the phase channel, the number of modes C⋆ are increased until there is no noticeable
difference in the reconstructed refractive index decrement. We obtain A⋆ = B⋆ = 2 and C⋆ = 4. Especially the
phase vibrations show tile-wise behavior, while substrate structure is visible in the intensity. The vertical gray
lines correspond to the gaps between G2 tiles.

The main goal of the vibration modeling is to facilitate artefact-free reconstruction. This requires a simultaneous
estimation of vibration parameters and sample parameters, which is in general a difficult task and described in a
different paper.9 Here, we disentangle these two estimations by the following approach for demonstrating the
accuracy of the model: The selected sample is small so that only the central part of the detector is covered. This
allows us to fit the vibration parameters robustly by a least-squares fit to the outer parts of the detector for each
exposure. Subsequently, object parameters are estimated using a sliding-window phase-retrieval.10

The vibration modes in Fig. 2 are used on the scan of an object consisting of a Polyoxymethylene (POM)
cylinder of 5 cm diameter and six falcon tubes with 3 cm diameter each, filled with wool at three different levels of
dampness, chocolate chips, water, and neoprene, respectively.

One scan consists of 2400 exposures over a full 360◦ gantry rotation which takes 1 s. The X-ray tube is
operated at 80 kVp and 550mA. A subsequent air scan is used with the proposed reference processing method to
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extract the PCA vibration model shown in Fig. 2.

The results are compared with a simplified pipeline in which fluctuations in all channels are only modeled with
polynomials Pijp up to second order along width and height of the whole detector. Also in intensity, polynomials
P replace the dominant components A from PCA. This simplified pipeline does not handle tile-wise vibrations
nor the intricate details of the intensity fluctuations shown in Fig. 2.

Fig. 3 shows the central slices of the resulting volumes in attenuation, diffusion coefficient,11 and refractive
index decrement.12 The reconstruction is performed via filtered back-projection.13 The simplified pipeline
using global polynomials suffers from artifacts in all channels. The attenuation and linear diffusion coefficient
show roughly circular fringe artifacts. The refractive index decrement is dominated by concentric rings and
a bright/dark blob structure in the center. None of these artifacts appear in the volumes reconstructed with
vibrations from PCA.

4. CONCLUSION

We proposed a processing scheme to identify and correct for vibrations of a Talbot-Lau interferometer mounted
inside a rotating clinical CT gantry. The tile-wise vibrations are coupled by applying principal component analysis
(PCA) and only the first few dominant components are used for processing a sample scan. In the intensity channel
dominant fluctuation components are identified by PCA on the normalized residual. The resulting vibration model
has few parameters per exposure for the intricate fluctuations, still allowing for an artifact-free reconstruction of
a sample. A comparison with a vibration model using global polynomial fluctuations in all channels shows that
they are not sufficient to capture the system’s dynamics and lead to artifacts in the reconstruction of a sample.
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