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ABSTRACT 

At present, many scholars have done a great amount of research in link prediction. Researchers have found that the 

attributes of neighbors cannot be ignored in the study of expressing node similarity. Some scholars synthetically consider 

the degree and H-index to better express node influence. On this basis, the paper introduces a weight factor β to evaluate 

the role of degree and H-index, then proposes a mixed influence based on diversity of degree and H-index of neighbors 

model, and carries out experiments on twelve data sets. The experimental results indicate that the link prediction 

performance can be improved by the weight factor β to the hybrid influence of neighbors. 
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1. INTRODUCTION

Predicting unobserved connections or future connections based on existing connections in the network topology as a link 

prediction problem, it is an important topic in physics and computer science, the basic idea is that the existing connection 

structure of a network can indicate that new connections are more likely to occur in an evolving network, or that unobserved 

connections are missing in a partially known network1-4. Link prediction has many applications. For example, friends 

recommendation in social network, product recommendation in shopping website5-7, pre-experimental analysis in protein 

interaction networks and metabolic networks8. In addition, link prediction can also reveal the structural growth or formation 

mechanism of complex networks9. 

Link prediction has been studied by scientists from different fields because of its wide application value and theoretical 

significance. Researchers have achieved great success in many similarity algorithms, especially topological similarity 

algorithms10. There are three kinds of topology similarity algorithms based on path length: local similarity algorithm, global 
similarity algorithm and semi-local similarity algorithm. The local similarity index considers the influence of the common 

neighbors of two disconnected nodes on the connection. For example, CN Index11 considers the amount of common 

neighbors. Adamic-Adar (AA) Index12 study the contribution of the degree of the common neighbor node to the connection; 

Resource Allocation Index13 considers suppressing the common neighbors of large nodes. The global similarity algorithm 

considers the topology of the whole network, Katz Index14 computes all paths among two disconnected points under the 

condition that short paths are given priority. Local Random Walk (LRW) Index15 limits the random number in the semi-

local range; Superposed Random Walk Index15 superposed LRW contributions to paths of different lengths. Some 

researchers can reflect the influence of nodes better by using mixed indicators and improve the prediction results when 

applying them to SRW. For example, Zhu et al.16 proposed SHI model and HHI model, using node degree and H-index to 

jointly reflect node influence. In the DCHI model and HCHI model proposed by Tian Yang et al.17, degrees mixed with 

coreness and H-index mixed with coreness are respectively used to jointly reflect the influence of node. In the HIN model 

proposed by Gao et al.18, the value of degree and H-index is used to reflect node influence. 

So far, there is a lot of research on mixed indicators to express node influence, these studies have not fully explored the 

value of mixed indicators. Through in-depth study, based on the HIN model, we introduce a weight factor β to balance the 

degree and H-index, so as to propose the DHIN model, which can reflect the node influence more accurately. 

Figure 1 describes some of the attributes of the node, such as H-index and degree. The degree of node 𝑎 is 3, the degrees 

of the three neighboring nodes of node a are 3, 4, and 5 respectively, so the H-index is 3. When only study the degree of 

endpoints, the influence of endpoint 𝑎 is 3. When the influence of node a is multiplied by the degree and H-index, the 
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influence of node 𝑎 is 9. By contrast, the hybrid influence promotes the connection of the two nodes. 

Figure 1. (Color online) Node influence graph based on H-index and degree. 

Note: Endpoint 𝑎 represents a source node with H-index and degree are both 3. Node 𝑏 represents a destination node. All solid and 
dotted lines represent existing and potential links, respectively. 

In this article, we propose a DHIN model. Through the depth investigation of twelve reference data sets and extensive 

experiments show that DHIN can improve predictive performance compared to these mainstream standards and HIN. 

In Section 2, we establish a DHIN model. Sections 3 introduce twelve benchmark experimental data sets. Sections 4 show 

the methods. Section 5 shows the discussion and results. Section 6 summarizes this research. 

2. MODEL

The model in this study is oriented to an undirected network 𝐺(𝑉,𝐸), where 𝑉 and 𝐸 represents the group of points and 

connections, respectively. For each pair of nodes 𝑥, 𝑦 ⊂ 𝑉 , there is a fraction 𝑠𝑥𝑦   that represents the probability of

connection between them. In this paper, the value of similarity is directly used as the score of 𝑠𝑥𝑦 . After the score of all

non-existent connection is arranged in descending order, the connection with the highest score is most likely to exist in the 

future or already exist but not detected. 

2.1 HIN model 

According to Lu et al.15, Zhu et al.18 introduced the mixed influence index as a metric into the SRW proposed by Lu et al.15, 

then constructing the HIN model. Lu et al.15 established a similarity index using a random walk. The probability of one-

step transition of two endpoints X and Y through a random walk using a Markov chain is 𝑝𝑥𝑦 = 𝑎𝑥𝑦 𝑘𝑥⁄  , where 𝑘𝑥

represents the degree of 𝑥, 𝑎𝑥𝑦 = 1 when 𝑥 is connected to 𝑦, and 𝑎𝑥𝑦 = 0 if not. When the step size is 𝑡, the nodes 𝑥

and 𝑦  are represented as {𝑥 = 𝑥0 = 𝑦𝑡 , 𝑥1 = 𝑦𝑡−1, … , 𝑥𝑡−1 = 𝑦1, 𝑥𝑡 = 𝑦0 = 𝑦} . Therefore, the t-step transition

probability from node X to node Y is denoted as 𝜋𝑥𝑦(𝑡) = ∏𝑖=0
𝑡−1𝑝𝑥𝑖𝑥𝑖+1

 and 𝜋𝑦𝑥(𝑡) = ∏𝑖=0
𝑡−1𝑝𝑦𝑖𝑦𝑖+1

 . Then, Zhu et al.

replaced the degree effect in SRW by combining the H-index and degree, so as to realize the mixed effect HIN of neighbor 

index. 
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∑ ℎ𝑧𝑧∈𝛤(𝑥) , node 𝑦 in the same way.

2.2 DHIN model 

On the basis of HIN, we introduce the idea of weighting, and use the weight factor to balance the H-index and degree, so 
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as to propose the DHIN model. 

𝑆𝑥𝑦
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̅̅ ̅ =
1

|𝛤(𝑥)|
∑ ℎ𝑧𝑧∈𝛤(𝑥) , node 𝑦 in the same way.

3. EXPERIMENTAL DATA

Our dataset of 12 real networks in this experiment：(1) US Air97(USAir)19 uses the data from the United States airline 

network. (2) Yeast PPI(Yeast)20 uses data from the yeast networks on protein-protein relationships. (3) Food Web (Food)21 

uses data from carbon exchange relationships. (4) Power Grid (Power)22 uses data from the Electric transmission Network 
in the Western US. (5) NetScience (NS)23 uses data based on the collaboration of scientists by paper in scientific networks. 

(6) Jazz24 uses the data from the musicians network. (7) e-mail network (e-mail)25 uses the data from the e-mail

communication network of URV. (8) Slavko26 uses the data from Slavko Zitnik’s friendship network on social network. (9)

UC social network (UCsocial)27 uses the data from an online social network formed by UC Irvine students. (10) Infectious

(Infec)28 uses the data from a network of offline contacts made by visitors through an exhibition called “Infectious: Stay

Away”. (11) EuroSiS web (EuroSiS)29 uses data from an interactive network of “social science” participants. (12) C.

elegans (CE)22 uses the data from the C. elegans worm neuron network. Table 1 gives the basic topology characteristics of

the twelve networks.

In order to realize the preprocessing, the arc is changed into a directionless link. To ensure that networks have no authority 

and no direction, we need to eliminate loops and multilaterals. Then, on the premise of ensuring link connectivity, the 

maximum link is extracted to simplify the network subgraph. 

Table 1. Seven fundamental topological characteristics of the 12 benchmark networks. 

Nets |𝑉| |𝐸| 〈𝑘〉 〈𝑑〉 𝐶 𝑟 𝐻 

USAir 332 2128 12.81 2.74 0.749 -0.208 3.36 

Yeast 2370 10904 9.2 5.16 0.378 0.469 3.35 

Food 128 2075 32.42 1.78 0.334 -0.112 1.24 

Power 4941 6594 2.669 15.87 0.107 0.003 1.45 

NS 1461 2742 3.75 5.82 0.878 0.461 1.85 

Jazz 198 2742 27.7 2.24 0.633 0.02 1.4 

Email 1133 5451 9.62 3.61 0.254 0.078 1.94 

Slavko 334 2218 13.28 3.05 0.488 0.247 1.62 

Ucsocial 1893 13825 14.62 3.06 0.138 -0.188 3.81 

Infec 410 2765 13.49 3.63 0.467 0.226 1.39 

EuroSiS 1272 6454 10.15 3.86 0.382 -0.012 2.46 

CE 453 2025 8.94 2.66 0.655 -0.225 4.49 

Notes: |𝑉| describes the number of nodes, |𝐸| represents links, 〈𝑘〉 represents the average degree, 
〈𝑑〉  denotes the average distance, 𝐶  denotes the clustering coefficient, 𝑟  describes the 

assortativity coefficient, 𝐻 defined as 𝐻 = 〈𝑘2〉 〈𝑘〉2⁄  , denotes the degree heterogeneity. 

First, the network connection set is randomly divided into two parts, 90% of the training set 𝐸𝑇 and 10% of the test set 
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𝐸𝑃,while the connectivity of 𝐸𝑇 is ensured1. In addition, there are 30 identical and independent branches on the network. 

Next, to achieve average accuracy in a statistical manner, we performed the experimental procedure on 30 separate training 

and test sets to, and recalled over 30 implementation measures. 

4. EXPERIMENTAL METHODS

4.1 Metric 

We use AUC30 to measure the accuracy of algorithms. It can be interpreted as the probability that a potential link (a link in 

EP) score higher than a non-existent link (a link in U-E,). In algorithm implementation, we usually calculate a score for 

each unobserved link. Then, each time we randomly select a missing link and a non-existent link to compare their scores, 

if in 𝑛 independent comparisons, there are 𝑛′ missing links with higher scores and 𝑛′′ missing links with the same scores, 

then the AUC value is 

𝐴𝑈𝐶 =
𝑛′ + 0.5𝑛′′

𝑛
(3) 

For purely probabilistic algorithms, the AUC tends to 0.5 when each result is independent. Therefore, as long as the 

accuracy of the algorithm is greater than 0.5, the performance of the algorithm is better than the pure probability algorithm. 

4.2 Baselines 

We describe the following six basic models: 

CN Index11 focusing the number of common neighbors, which is defined as 

𝑆𝑥𝑦
𝐶𝑁 = |𝛤(𝑥) ∩ 𝛤(𝑦)| (4) 

where 𝛤(𝑋), 𝑋 ∈  {𝑥, 𝑦} , describes the set of neighbors of 𝑋  and |𝛤(𝑥)  ∩  𝛤(𝑦)|  represent the common neighbors 

between nodes 𝑥 and 𝑦. 

AA Index12, which is improved from CN, using the inverse logarithm to suppress the contribution of a large degree of 

common neighbors, it defined as 

𝑠𝑥𝑦
𝐴𝐴 = ∑

1

log(𝑘𝑧)
𝑧∈𝛤(𝑥)∩𝛤(𝑦)

(5) 

where 𝑘𝑧 describe the endpoint degree of 𝑧.

Resource-Allocation (RA)13, originated from AA. The main idea is that if the degree of neighbor is larger, the possibility 

of nodes being connected is smaller, it defined as 

𝑠𝑥𝑦
𝑅𝐴 = ∑

1

𝑘𝑧
𝑧∈𝛤(𝑥)∩𝛤(𝑦)

(6) 

Local Path (LP) Index15 takes into account the similarity between specific step-size paths(two and three step), which is 

defined as 

𝑆𝐿𝑃 = 𝐴2 + 𝜀𝐴3 (7) 

where A describes the adjacency matrix, 𝜀 represents a penalty parameter. 

SRW Index15 limits the random number within the quasi-local range then superposed contributions to paths of different 

lengths, which is defined as 

𝑠𝑥𝑦
𝑆𝑅𝑊(𝑡) = ∑[

𝑘𝑥

2|𝐸|
𝜋𝑥𝑦(𝑙) +

𝑘𝑦

2|𝐸|
𝜋𝑦𝑥(𝑙)]

𝑡

𝑙=2

(8) 

The probability of one-step transition of two endpoints X and Y through a random walk using a Markov chain is 𝑝𝑥𝑦 =
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𝑎𝑥𝑦 𝑘𝑥⁄ , where 𝑘𝑥 describe the degree of node X, 𝑎𝑥𝑦 = 1 when x is connected to Y, and 𝑎𝑥𝑦 = 0 if not. When the step

size is t, the nodes x and y are represented as {𝑥 = 𝑥0 = 𝑦𝑡 , 𝑥1 = 𝑦𝑡−1, … , 𝑥𝑡−1 = 𝑦1, 𝑥𝑡 = 𝑦0 = 𝑦}. Therefore, the t-step

transition probability from node X to node Y is denoted as 𝜋𝑥𝑦(𝑡) = ∏𝑖=0
𝑡−1𝑝𝑥𝑖𝑥𝑖+1

and 𝜋𝑦𝑥(𝑡) = ∏𝑖=0
𝑡−1𝑝𝑦𝑖𝑦𝑖+1

.

HIN18 is showed in Section 2. 

5. RESULTS

To examine the performance of our model, we ran simulations on twelve data sets and compared the resulting data with 

the primary baseline, and the results are discussed below. 

According to the description in Sections 1 and 2, we believe that integrating the endpoints H-index and degree can better 

describe node influence and improve link prediction performance. To verify our thoughts, we propose a new model DHIN. 

First, we obtain the value of random walk 𝑡 corresponding to the maximum of the predicted results when there is no 

weight (excluding the influence of inhibiting factor 𝛽). The corresponding values of t are shown in parentheses after DHIN 

in Figure 2; DHIN gets the optimal AUC value with the least steps 𝑡, which is 3 in Figure 2a USAir, 3 in Figure 2b Yeast, 

3 in Figure 2c Food, 14 in Figure 2d Power, 8 in Figure 2e NS, 2 in Figure 2f Jazz, 7 in Figure 2g Email, 4 in Figure 2h 

Slavko, 9 in Figure 2i UCsocial, 4 in Figure 2j Infec, 5 in Figure 2k Eurosis and 4 in Figure 2l CE. Then we set the 

weighting factor β from 0.1 to 0.9 at 0.1 intervals. 

In Figure 2, DHIN shows its optimal values of AUC at certain inhibitory factor of 𝛽 ∈ [0,1) on random walk steps 𝑡 in 

the different datasets, i.e., 𝛽 = 0.3 in Figure 2a USAir, 𝛽 = 0.7 in Figure 2b Yeast, 𝛽 = 0.9 in Figure 2c Food, 𝛽 = 0.8 

in Figure 2d Power, 𝛽 = 0.4 in Figure 2e NS, 𝛽 = 0.6 in Figure 2f Jazz, 𝛽 = 0.6 in Figure 2g Email , 𝛽 = 0.8 in Figure 

2h Slavko, 𝛽 = 0.1  in figure 2i UCsocial, 𝛽 = 0.4  in figure 2j Infec , 𝛽 = 0.7  in Figure 2k Eurosis and 𝛽 = 0.1  in 

Figure 2l CE. 

DHIN introduced the idea of weight into hybrid influence index based on HIN. We study the relationship between weights 

𝛽 and AUC of two endpoints with typical predictive length L=100, under the condition that the maximum random walk 

step 𝑡 (𝑡 is from 1 to 15) of each data set obtained by HIN remains unchanged. The optimal values are calculated by the 

parameter 𝛽 from 0.1 to 0.9. 

The detailed data in Figure 2 are shown in Table 2 and compares the AUC on WHIN with six models. DHIN obtained the 

optimal value on seven data sets, four for SRW (Power, Slavko, Ucsocial, EuroSiS) and one for LP (Food). By comparison, 

DHIN improved predictive performance. 

Table 2. AUC of seven models on twelve benchmark network under the condition of 𝐿 =  100. 

AUC CN AA RA LP SRW HIN DHIN 

USAir 0.977781 0.984263 0.986586 0.973134 0.989705 (3) 0.989851 (3) 0.99002 (3, 0.3) 

Yeast 0.736897 0.737023 0.737053 0.743085 0.744265 (3) 0.744233 (3) 0.744292 (3, 0.7) 

Food 0.616496 0.617357 0.619666 0.827907 0.77069 (3) 0.769437 (3) 0.769316 (3, 0.9) 

Power 0.679672 0.679644 0.679649 0.764137 0.949493 (14) 0.949299 (14) 0.94927 (14, 0.8) 

NS 0.990236 0.990331 0.990353 0.994177 0.995597 (8) 0.995593 (8) 0.9956 (8, 0.4) 

Jazz 0.972277 0.976377 0.981308 0.947589 0.981307 (2) 0.982827 (2) 0.983208 (2, 0.6) 

Email 0.881974 0.883095 0.8824 0.945157 0.956093 (6) 0.956229 (7) 0.95646 (7, 0.6) 

Slavko 0.964003 0.965942 0.965657 0.965124 0.971646 (4) 0.971492 (4) 0.971568 (4, 0.8) 

Ucsocial 0.813189 0.817415 0.817553 0.948598 0.950135 (7) 0.948185 (9) 0.949157 (9, 0.1) 

Infec 0.962356 0.964272 0.964238 0.975218 0.980498 (4) 0.980572 (4) 0.980811 (4, 0.4) 

EuroSiS 0.955322 0.956548 0.956051 0.980574 0.985396(5) 0.985197 (5) 0.985201 (5, 0.7) 

CE 0.951563 0.977061 0.979053 0.9558 0.985181 (3) 0.985212 (4) 0.985287 (4, 0.1) 

Proc. of SPIE Vol. 12506  1250621-5



Figure 2. (Color line) AUC of the DHIN (red square) and the random walk step 𝑡 (black square). 

In Table 2, the value of 𝐿 represents the number of candidate links. Each data point is an average of over 30 separate 

implementation processes, and each point represents a random partition of 90-10% of the training and test sets. The 

maximum values are bold. On SRW, HIN and DHIN the first value in the parentheses represent the corresponding optimal 

random walk step 𝑡. On DHIN the second value is optimal weight 𝛽. It can be concluded from Table 2 that DHIN’s 

prediction results are better than other models in more than half of the data sets. All results represent the optimal situation 

by adjusting the coefficient. 

In addition, computational complexity needs to be considered on describe link prediction performance. The time 

complexity of CN, AA, RA have 𝑂(𝑁3) and LP, SRW, HIN, DHIN have 𝑊 × 𝑂(𝑁3) with coefficient 𝑊. To sum up, 

DHIN showed a significant improvement with remain the time complexity. 

6. CONCLUSIONS

The value of the mixing coefficient has not been fully explored in the existing link prediction studies using node hybrid 

influence. Through analysis, we propose a new DHIN index focusing on DHIN. By comparing the test results on twelve 

datasets with six indices, we investigate the utility of the mixed effects of tenure weight factors in link prediction. Therefore, 
the accuracy of DHIN proposed in this paper is obviously superior to other indexes. 
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