
Reciprocal collaboration network for 3D skeleton-based human motion 

prediction 

Zhiquan Hea,b,c, Lujun Zhangb, Wenming Caob* 
a College of Information Engineering, Shenzhen Key Laboratory of Media Security, Shenzhen 

University, Shenzhen, China; b Guangdong Multimedia Information Service Engineering 

Technology Research Center, Shenzhen University, Shenzhen, China; c Guangdong Key Laboratory 

of Intelligent Information Processing, Shenzhen, China 

ABSTRACT 

Noticing that the human motion in both the positive and inverted time sequence are predictable, we design a reciprocal 

network which contains a forward and a backward prediction network to learn this information respectively, and then 

train the two networks in a collaborative and iterative way with the guidance of consistency constraint. Based on the 

reciprocal network, we establish an error compensation network to approximate the error of forward prediction network 

for making the forecast closer to the real pose. Extensive experiments show that our approach outperforms most recent 

methods in both short and long term motion predictions on Human 3.6M and CMU Mocap. 
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1. INTRODUCTION 

With the given prior 3D pose sequence comprised of key joint and skeleton of body, 3D skeleton-based human motion 

prediction can forecast the future pose sequence, which plays a crucial role in numerous field1-4. For example, the 3D 

skeleton-based human motion prediction is vital for intelligent interaction like auto-driving5 and pedestrian tracking6-8.  

For forecasting the future motion pose sequence, Fragkiadaki et al.9 propose an Encoder-Recurrent-Decoder (ERD) 

network based on recurrent neural networks. Due to the relationships or constraints between different body parts of pose 

sequences, Li et al.10 propose a multiscale graph neural networks to extract the characteristic relationships between 

different body parts. Guo11 present a skeleton network (SkeNet) to learn local representations on different body 

components separately. Mao et al.12 propose a simple feed-forward deep network for motion prediction, which takes both 

temporal smoothness and spatial dependencies among human body joints into account. Cui et al.13 represent the skeletal 

pose as a novel dynamic graph and propose a deep generative model based on graph networks and adversarial learning. 

Exiting research fully considers the temporal features of human motion pose sequence in positive temporal sequence, but 

does not consider the features of the inverted temporal sequence. According to Sun et al.14, the inverted temporal pose 

sequence also contains the kinematics information of human body, which plays a key role in motion prediction. Let the 

time invert and image that person is moving backwards. The forward moving pose sequence follow the constraint of 

human kinematics. So do the backward moving pose sequence, since the only difference between them is that their 

directions of time, and they follow the consistency constraints.  

Based on this, we propose a novel model, called Reciprocal Collaboration Network (RCN) for 3D skeleton-based human 

motion prediction. Our model is composed of three networks: a forward prediction network F which forecast the future 

motion pose in positive temporal sequence with the past motion pose, and a backward prediction network G which 

forecast the past motion pose in an inverse temporal sequence with the future motion, and an error compensation network 

to predict the error of F to make the result match the real pose better. Both the networks F and G are inverse operations to 
each other, which means that they satisfy a reciprocal constraint. After a reciprocal training stage, the networks F and G 

should have a strong consistency, which is the key to build the error compensation network (ECN). We experiment our 

method on CMU Mocap and Human 3.6M datasets, and the result demonstrates that our method is effective in human 

motion prediction. 
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2. RELATED WORK 

In recent years, neural network had been increasingly recognized in human motion prediction. For example, Jain et al.15 

captures the rich interactions in the underlying spatial-temporal graph, and propose the Structural-RNN. Li et al.10 

presents a method to extract the structural features in different scale of human body component, and organizes a network 

forecasting the human pose based on GRU. In Li et al.16, the problem of over-smoothing is solved by extracting 

comprehensive pose information from multiple spectral bands using graph scattering. Observing the repetition of human 

behaviour, Wei17 utilize motion attention to capture the similarity from context.  

Besides the approaches based on RNN, Li18 present a method using the hierarchical structure of convolutional networks 

to capture spatial-temporal correlation, Aksan et al.19 utilizes the transformer based architecture for generation of human 

motion modelling. Exiting work resolves the problem of motion prediction by capturing the pose feature in the positive 

time sequence. But the approaches above do not exploit the temporal features fully, Sun et al.14 notices that the human 

motion pose, governed the constraints of human kinematics, are both forward predictable and backward predictable. In 
this work, we built a reciprocal network to extract the feature in both positive and inverted temporal sequence, and an 

error compensation based on the reciprocal network to correct the prediction of forward network further. 

3. PROBLEM FORMULATION  

Assuming that :0 0[ ,..., ]− −=
p pT TX X X  represent the observed pose of length 1+pT  in the past, where  N D

iX  with 

N joints and D = 3 dimension space data denote the motion pose at time i . The task of human motion prediction is to 

generate the future pose 1: 1[ ,..., ]=
f fT TX X X  of fT  length with the past pose observed :0− pTX .  

In order to exploit the rich temporal features of pose, we add a backward prediction network to capture the information in 

an inverted temporal sequence, which can be another guidance of the forward prediction network. 

4. METHOD OVERVIEW 

Figure 1 shows the whole structure of our model. Backward network strength the forward network with a Consistency 

constraint, and ECN aim to improve forward network performance further by generating a tiny error compensation. To 

propose our reciprocal collaboration network (RCN), we introduce the network in four aspects in this section: reciprocal 

framework structure, the error compensation network, a new loss function of RCN and architecture of each network. 

Forward 

Network F

Backward 

Network F

ECNB

 

Figure 1. Whole structure of RCN. 

4.1 Reciprocal framework structure 

In order to capture the information of both the positive and 1nverted temporal sequence, our framework organizes a 

forward and a backward prediction network structure. As illustrated in Figure 2, both of the human motion in positive 

and inverted temporal sequence are predictable. The network F and G should be the same structure and they are pre-

trained independently. It should be noted that the whole data, cover the future motion data, is usable during the training 

stage. So we can pre-train the network G by the same approach of network F. 
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Figure 2. The pre-train stage of F and G. The pose described by green segment denotes observed pose, and the pose described by blue 

segment denotes predicted results. X  represent the positive temporal and 
inX  represent the inverted one. 

With the motion N observed past, network F predict the future motion ( )=M F N , and network G predict the past 

motion ( )=N G M  using the future motion M. If the network F and G learn well in pre-train stage, then they should 

satisfy the consistency constraints, which illustrated by 

( ( ))N G F N                                                                           (1) 

( ( ))M F G M                                                                        (2) 

Utilizing the constrains above, both of the network F and G can be corrected further by each other. Specifically, when the 

network is trained, the network G can verify the accuracy of F. If the prediction ( )=M F N  is incorrect, with this M as 

input, G can’t generate the inerrant motion that matches N due to the constrains (2). Likewise, when training the network 

G, F can also guide network G to correct. If G generate the incorrect forecast N , as the verified network, M generated 

by F should have a large distance from M. These prediction distance of the verified network can also guide the trained 

network to correct their forecast. 

Based on this, we can improve the performance of the incorrect network through a reciprocal collaboration learning. In 

reciprocal collaboration learning, we first train the network F and keep the network G which be used to verify F only. 

Then we train the network G and keep F. The forward network F and the backward network G are trained alternately and 

iteratively (Figure 3). 

Forward 

Network F

Backward 

Network F

X-Tp:0 X-Tp:0+X1:Tf

X1:Tf

X^
-Tp:0+X^

1:Tf

L+

L-

reciprocal collaboration network

Invert model

 

Figure 3. The forward network F learns in the reciprocal training stage. 

4.2 Error compensation network 

After the reciprocal train stage, both the network F and G have a strong consistency to each order. Base on this, we 
propose a novel approach to help the prediction of F match the ground truth better, which called the error compensation 

network (ECN). 
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We denote B  is the prediction of F, A  is the prediction of G, and  = −A A A . As illustrated in Figure 4, using the 

error of G ( A )and the ground truth of F( B ), ECN aim to predict B , the error of network F, to help B  match B  

better. 

GCN
Backward 

Network F

B

A

B

B A

Error Compensation Network

1loss2loss

 

Figure 4. The architecture of RCN. 

4.3 Loss function 

Let X represent the truth pose in the positive sequence of time and
inX represent the inverted one. The forward network 

F aim to predict the future pose sequence 1: :0( )−=
f PT TX F X . On the contrary, the backward network predict the past 

pose sequence 1: :0( )−=
f P

in in

T TX G X , where the input :0− P

in

TX
 
is a restructured sequence composes of 1: fTX and

1 :0+ −P FT TX .In other word, using the predicted pose of F, we should restructure a 1+pT length sequence , as long as the 

input of F, to train G, which aims to keep the symmetry of F and G.   

As is shown in Figure 2, the forward network F trained follow the guidance of 
+L  and 

−L , where the 1: 1:

+ = −
f fT TL X X

and 1: 1:

− = −
f f

in in

T TL X X . Combined the 
+L  and 

−L , the loss function of network F is: 

(1 ) + −= + −forL L L                                                                     (3) 

We design the loss function of network G in the same approach. The backward network G predict the past sequence 

1: ( )−=
f p

in in

T TX G X , and F predict the future sequence 1: :0( )−=
f pT TX F X  with the restructured sequence. The backward 

network G trained follow the guidance of 
−L  and 

+L , where 1: 1:

− = −
f f

in in

T TL X X and 1: 1:

+ = −
f fT TL X X , the loss 

function of network G is: 

 (1 ) − += + −backL L L                                                                    (4) 

In reciprocal training stage, we train the network F and G alternately with 
forL and 

backL , which improves the 

performance both of two network. 

ECN Loss Function: We design double loss to train the error compensation network. As shown in Figure 4, A  denotes 

the prediction of G corrected by B . Hoping the network F have a better forecast, A  should match A  better than A . 

Then we design 1 = −loss A A  and  2 = − − −loss A A A A . The loss function is: 

1 1 2 2 = +Loss loss loss                                                                    (5) 

4.4 Network Architectures 

Our forward and backward prediction network are the same structure and adapt the architecture from Maosen Li et al.10 

who have shown impressive performance for features extraction from multiscale human body component. Both of two 
network follows the encoder-decoder model, where encoder contain the cascaded multiscale graph computational blocks 
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(MGCU) to extract and fuse the feature in different scale of body component, and decoder is organized base on GRU. 

And ECN is based on GCN. 

5. EXPERIMENTS 

5.1 Datasets 

CMU Mocap datasets has 5 main categories data of motion: ‘human interaction’, ‘interaction with environment’, 

‘locomotion’, ‘physical activities & sports’, and ‘situations & scenarios’. Be consistent with Li et al.18, we select 8 

action: ‘basketball’, ‘basketball signal’, ‘directing traffic’, ‘jumping’, ‘running’, ‘soccer’, ‘walking’ and ‘washing 

window’, where each motion data consists of 38 joint and we preserve 26 useful joint. 

Human 3.6m datasets has 15 different classes of motion performed by 7 actors, where each subject contains 32 joint and 

discard 10 redundant joints. Be consistent with Li et al.10, we train the model on 6 subjects and test on 5th subject. 

5.2 Evaluation Metrics 

We consider a mean angle error (MAE) to evaluate our model. Let  ,  ,
 


 
denote the euler angles between the 

adjacent bones, the MAE is evaluated as: 

2

1
( ) ( ) ( )

1
     = − + − + −

−
MAE

m
                                       (6) 

5.3 Comparison to state-of-the-art methods 

We compare our model to last method10, 12, 18-20 on the two datasets. Short-term prediction predicts the future pose within 

500 milliseconds. As shown in the Tables 1 and 2, we compare our approach with recent work at “80ms”, “160ms”, 
“320ms” and “400ms” and consistent to Li et al.10. In Human3.6M datasets, our approach has advantage in action 

“Posing”, “purchases”, “Sitting down”, “Waiting” and “Walking Together” and obtains competitive results on others. In 

CMU Mocap datasets, our method outperforms recent approach in “Basketball”, “Basketball Signal”, “running” and 

“working” 

Table 1. MAE of different methods for short-term prediction on Human3.6M. We also present the RCN without ECN model. 

Motion Walking Eating Smoking Discussion 

millisecond 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 

ResGRU12 0.29 0.49 0.71 0.78 0.25 0.42 0.68 0.83 0.32 0.6 1 1.11 0.31 0.69 1.03 1.12 

CEM18 0.33 0.54 0.68 0.73 0.22 0.36 0.58 0.71 0.26 0.49 0.96 0.92 0.32 0.67 0.94 1.01 

Traj-GCN12 0.18 0.31 0.49 0.56 0.16 0.29 0.5 0.62 0.22 0.41 0.86 0.8 0.2 0.51 0.77 0.85 

DMGNN10 0.18 0.31 0.49 0.58 0.17 0.3 0.49 0.59 0.22 0.39 0.81 0.77 0.26 0.65 0.92 0.99 

RCN(-ECN) 0.19 0.31 0.54 0.57 0.16 0.28 0.47 0.59 0.23 0.41 0.86 0.78 0.30 0.68 0.95 1.00 

RCN (Ours) 0.19 0.31 0.52 0.56 0.16 0.28 0.45 0.58 0.22 0.41 0.84 0.77 0.29 0.67 0.97 1.03 

Motion Directions Greeting Phoning Posing 

millisecond 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 

ResGRU20 0.41 0.64 0.8 0.92 0.57 0.83 1.45 1.6 0.59 1.06 1.45 1.6 0.45 0.85 1.34 1.56 

CEM18 0.39 0.6 0.8 0.91 0.51 0.82 1.21 1.38 0.59 1.13 1.51 1.65 0.29 0.6 1.12 1.37 

Traj-GCN12 0.26 0.45 0.7 0.79 0.35 0.61 0.96 1.13 0.53 1.02 1.32 1.45 0.23 0.54 1.26 1.38 

DMGNN10 0.25 0.44 0.65 0.71 0.36 0.61 0.94 1.12 0.52 0.97 1.29 1.43 0.2 0.46 1.06 1.34 

RCN(-ECN) 0.25 0.45 0.67 0.73 0.38 0.60 0.96 1.12 0.52 1.00 1.30 1.44 0.22 0.45 0.99 1.2 
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RCN (Ours) 0.25 0.44 0.67 0.73 0.38 0.60 0.94 1.11 0.52 1.00 1.30 1.43 0.2 0.43 0.97 1.18 

Motion Purchases Sitting Sitting Down Taking Photo 

millisecond 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 

ResGRU20 0.58 0.79 1.08 1.15 0.41 0.68 1.12 1.33 0.47 0.88 1.37 1.54 0.28 0.57 0.9 1.02 

CEM18 0.63 0.91 1.19 1.29 0.39 0.61 1.02 1.18 0.41 0.78 1.16 1.31 0.23 0.49 0.88 1.06 

Traj-GCN12 0.42 0.66 1.04 1.12 0.29 0.45 0.82 0.97 0.3 0.63 0.89 1.01 0.15 0.36 0.59 0.72 

DMGNN10 0.41 0.61 1.05 1.14 0.26 0.42 0.76 0.97 0.32 0.65 0.93 1.05 0.15 0.34 0.58 0.71 

RCN(-ECN) 0.46 0.68 1.03 1.11 0.25 0.42 0.79 0.97 0.31 0.63 0.93 1.01 0.16 0.38 0.62 0.77 

RCN (Ours) 0.46 0.65 1.01 1.09 0.25 0.42 0.81 0.99 0.3 0.62 0.90 1.01 0.15 0.36 0.62 0.75 

Motion Waiting Walking Dog Walking Together  

millisecond 80 160 320 400 80 160 320 400 80 160 320 400     

ResGRU20 0.32 0.63 1.07 1.26 0.52 0.89 1.25 1.4 0.27 0.53 0.74 0.79     

CEM18 0.3 0.62 1.09 1.3 0.59 1 1.32 1.44 0.27 0.52 0.71 0.74     

Traj-GCN12 0.23 0.50 0.92 1.15 0.46 0.8 1.12 1.3 0.15 0.35 0.52 0.57     

DMGNN10 0.22 0.49 0.88 1.1 0.42 0.72 1.16 1.34 0.15 0.33 0.50 0.57     

RCN(-ECN) 0.23 0.50 0.94 1.11 0.41 0.77 1.15 1.35 0.15 0.33 0.50 0.55     

RCN (Ours) 0.22 0.49 0.94 1.07 0.43 0.78 1.17 1.33 0.15 0.33 0.49 0.54     

Table 2. MAE of different method in 8 actions of CMU Mocap. We present the MAE at both short and long term. 

Motion Basketball Basketball Signal Directing Traffic Jumping 

millisecond 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 

ResGRU20 0.49 0.77 1.26 1.45 1.77 0.42 0.76 1.33 1.54 2.17 0.31 0.58 0.94 1.1 2.06 0.57 0.86 1.76 2.03 2.42 

CEM18 0.36 0.62 1.07 1.17 1.95 0.33 0.62 1.05 1.23 1.98 0.26 0.58 0.91 1.04 2.08 0.38 0.6 1.36 1.58 2.05 

Traj-GCN12 0.33 0.52 0.89 1.06 1.71 0.11 0.2 0.41 0.53 1 0.15 0.32 0.52 0.6 2 0.31 0.49 1.23 1.39 1.8 

DMGNN10 0.3 0.46 0.89 1.11 1.66 0.1 0.17 0.31 0.41 1.26 0.15 0.3 0.57 0.72 1.98 0.37 0.65 1.49 1.71 1.79 

RCN(-ECN) 0.3 0.47 0.88 1.10 1.66 0.1 0.17 0.31 0.41 0.89 0.15 0.32 0.57 0.72 1.98 0.35 0.62 1.48 1.69 1.77 

RCN (Ours) 0.29 0.47 0.86 1.05 1.69 0.09 0.17 0.32 0.41 0.81 0.16 0.37 0.59 0.71 2 0.35 0.61 1.45 1.68 1.72 

Motion Running Soccer Walking Washing Window 

millisecond 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 

ResGRU20 0.32 0.48 0.65 0.74 1 0.29 0.5 0.87 0.98 1.73 0.35 0.45 0.59 0.64 0.88 0.31 0.47 0.74 0.93 1.37 

CEM18 0.28 0.43 0.54 0.57 0.69 0.28 0.48 0.79 0.9 1.58 0.35 0.44 0.46 0.51 0.77 0.3 0.47 0.79 1 1.39 

Traj-GCN12 0.33 0.55 0.73 0.74 0.95 0.18 0.29 0.61 0.71 1.4 0.33 0.45 0.49 0.53 0.61 0.22 0.33 0.57 0.75 1.2 

DMGNN10 0.19 0.31 0.47 0.49 0.64 0.22 0.32 0.79 0.91 1.54 0.3 0.34 0.38 0.43 0.6 0.2 0.27 0.62 0.81 1.09 

RCN(-ECN) 0.19 0.29 0.45 0.9 0.64 0.20 0.33 0.65 0.77 1.51 0.3 0.33 0.38 0.45 0.61 0.2 0.28 0.59 0.80 1.19 

RCN (Ours) 0.19 0.29 0.44 0.47 0.66 0.20  0.37 0.65 0.73 1.49 0.3 0.33 0.36 0.39 0.56 0.2 0.27 0.6 0.78 1.15 
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Long-term prediction aims to forecast the pose over 500 milliseconds. We compare our result at “1000ms” in CMU 

Mocap, and the result at “560ms” and “1000ms” in Human3.6M. Tables 2 and 3 shows the MAE of various approach. In 

CMU Mocap, our approach has an accurate prediction on action “Basketball Signal” and have a competitive result on 

action “Jumping” and “Walking”. In human3.6M, our model has a lowest MAE in action “Discussion”. 

Table 3. MAE of various method on the 4 representative actions of H3.6M dataset for long-term prediction. 

Motion Walking Eating Smoking Discussion 

Millisecond 560 1000 560 1000 560 1000 560 1000 

ResGRU20 0.93 1.03 0.95 1.08 1.25 1.5 1.43 1.69 

CEM18 0.98 0.92 1.01 1.24 0.97 1.62 1.56 1.86 

Traj-GCN12 0.65 0.67 0.76 1.12 0.87 1.57 1.33 1.7 

DMGNN10 0.66 0.75 0.74 1.14 0.83 1.52 1.33 1.45 

RCN(-ECN) 0.69 0.92 0.79 1.22 0.85 1.56 1.31 1.41 

RCN 0.69 0.89 0.82 1.24 0.83 1.55 1.31 1.38 

6. CONCLUSIONS 

Considering the human motion in an inverted time sequence also contains kinesiology information, we propose a 

reciprocal network which contains a forward network and a backward network for 3D skeleton-based human motion 

prediction, and train each network alternately and iteratively based on consistency constraints. This leads to our network 

being equipped with a model with rich kinesiology information in different directions of time sequence. Noticing that the 

consistency of the forward and backward prediction network, we design an error compensation network to generate a 

prediction error as a compensation of the forward network, which improves the performance of reciprocal network 
effectively. The result shows that our approach is effective both in short and long term motion prediction on public 

benchmark datasets. 
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